An Approach to Testing Antivandal Composite Materials as a Function of Their Thickness and Striker Shape—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Composite Materials
- Vermiculite instead of one aramid fabric layer, hazelnut shells instead of one linen fabric layer (Group B composites).
2.2. Thickness Measurement
2.3. Microstructural Analysis
2.4. Impact Strength
2.5. Statistical Analysis
3. Results
3.1. Thickness Measurement
- Group A—with a single fabric layer of materials with a thickness ranging from 3.3 to 4.1 mm (W1o–W5o);
- Group B—with double fabric layers of materials with a thickness ranging from 4.4 to 6.3 mm (W1a–W5a).
3.2. Impact Strength Parameter
3.3. Impact Strength Parameter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thrasher, E.J.; Schnell, J.B. Summary report on vandalism and passenger security in the transit industry. Transp. Res. Rec. 1995, 487, 46–54. [Google Scholar]
- Mitrenga, P.; Makovicka, L.; Markova, I. Observation of fire characteristics of selected covering materials used in upholstered seats. Transp. Res. Proceda 2021, 55, 1775–1782. [Google Scholar] [CrossRef]
- Pravilonis, T.; Sokolovskij, E. Analysis of composite material properties and their possibilities to use tchem in bus frame construction. Transport 2020, 35, 368–378. [Google Scholar] [CrossRef]
- Liu, B.; Wang, W.; Sutherland, L. Experimental and numerical response and failure of laterally impacted carbon/glass fibre-reinforced hybrid composite laminates. Int. J. Impact Eng. 2023, 179, 104654. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Graupner, N.; Kühn, N.; Müssig, J. Influence of sample thickness, curvature and notches on the Charpy impact strength—An approach to standardise the impact strength of curved test specimens and biological structures. Polym. Test. 2021, 93, 106864. [Google Scholar] [CrossRef]
- Hatami, F.; Mohjoobin, M.H.; Hatami, F. Design and construction of bus stop shelter using composite materials and new building. Turk. Online J. Des. Art Commun. 2016, 6, 2672–2689. [Google Scholar]
- Gholizadeh, S. A review of impact behaviour in composite materials. Int. J. Mech. Prod. Eng. 2019, 7, 35–46. [Google Scholar]
- Mizera, K.; All, E.I.A. Materiały Informacyjne Dotyczące Kompozytów Hybrydowych o Wysokiej Odporności na Akty Wandalizmu; CIOP-PIB; Centralny Instytut Ochrony Pracy: Warsaw, Poland, 2022. [Google Scholar]
- Bunea, M.; Bosoanca, R.; Eni, C.; Cristache, N.; Stefanescu, V. The impact characteristics of fabric reinforced hybrid composites. Mater. Plast. 2017, 54, 286–290. [Google Scholar] [CrossRef]
- Negawo, T.A.; Polat, Y.; Akgul, Y.; Kilic, A.; Jawaid, A. Mechanical and dynamic mechanical thermal properties of ensete fiber/woven glass fiber fabric hybrid composites. Compos. Struct. 2021, 259, 113221. [Google Scholar] [CrossRef]
- Caminero, M.A.; Gacía-Moreno, I.; Rodríguez, G.P. Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence. Polym. Test. 2017, 63, 530–541. [Google Scholar] [CrossRef]
- Słasińska, K.; Mizera, K.; Kirpluks, M.; Kozikowski, A.K.P.; Barczewski, M.; Celiński, M.; Mizera, K.; Gałecka, M.; Skukis, E.; Kalnins, K.; et al. The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Composites. Materials 2022, 15, 301. [Google Scholar] [CrossRef]
- Celiński, M.; Sałasińska, K.; Mizera, K.; Kozikowski, P. Fire behavior of sandwich panels with different cores. In Advances in the Toxicity of Construction and Building Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 137–170. [Google Scholar]
- Irzmańska, E.; Mizera, K.; Litwicka, N.; Sałasińska, K. Evaluating the composite resistance for potential validation acts: Validation of measurement procedures for evaluating the properties of anti-vandal materials for public transportation vehicle applications. Autex Res. J. 2024; in review. [Google Scholar]
- Al-Shammari, M.A.; Abdullah, S.E. Improvement the mechanical and thermal properties of hyper composite materials. Int. J. Energy Environ. Issue Appl. Mech. Res. 2017, 8, 567–576. [Google Scholar]
- Sałasińska, K.; Kirpluks, M.; Cabulis, P.; Kovalovs, A.; Skukis, E.; Kozikowski, P.; Celiński, M.; Mizera, K.; Gałecka, M.; Kalnins, K.; et al. Experimental Investigation of the Mechanical Properties and Fire Behavior of Epoxy Composites Reinforced by Fabrics and Powder Fillers. Processes 2021, 9, 738. [Google Scholar] [CrossRef]
- Kropidlowska, P.; Irzmanska, E.; Jurczyk-Kowalska, M. Evaluation of damage of polymeric toecaps used in protective footwear—Case study. Polimery 2019, 64, 514–521. [Google Scholar] [CrossRef]
- ISO 20344:2022-04; Środki Ochrony Indywidualnej—Metody Badania Obuwia. Polish Committee for Standardization: Warsaw, Poland, 2022.
- Mizera, K.; Irzmańska, E.; Litwicka, N.; Kozikowski, P.; Sałasińska, K.; Gajek, A. Flammability properties and resistance to vandalism of hybrid composites reinforced with fabrics and powder fillers. Przem. Chem. 2023, 102, 141541. [Google Scholar] [CrossRef]
- Wang, C.; Su, D.; Xie, Z.; Zhang, K.; Wu, N.; Han, M.; Zhou, M. Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres. Polym. Test. 2021, 101, 107314. [Google Scholar] [CrossRef]
- Raj, J.I.D.; Geethan, K.A.V.; Rajan, A.J.; Ananth, S.V. Characterization of epoxy resin based banana fiber reinforced composite with waste CD powder filler. Mater. Today Proc. 2023, 90, 19–23. [Google Scholar]
- Alam, M.S.; Chowdhury, M.A. Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials. Alex. Eng. J. 2020, 59, 4121–4137. [Google Scholar] [CrossRef]
- Sevinic, H.; Durgun, M.Y. A novel epoxy-based composite with eggshell, PVC sawdust, wood sawdust and vermiculite: An investigation on radiation absorption and various engineering properties. Constr. Build. Mater. 2021, 300, 123985. [Google Scholar] [CrossRef]
- Gmitrzuk, M.; Smoczyński, Z.; Szudrowicz, M. Hybrid composite materials of a polymer matrix reinforced with fibers: Mechanical and ballistic properties. Przem. Chem. 2016, 95, 1014–1019. [Google Scholar]
- Rahmat, M.; Ashrafi, B.; Naftel, A.; Djokic, D.; Martinez-Rubi, Y.; Jakubinek, M.B.; Simard, B. Enhanced Shear Performance of Hybrid Glass Fiber–Epoxy Laminates Modified with Boron Nitride Nanotubes. ACS Appl. Nano Mater. 2018, 1, 2709–2717. [Google Scholar] [CrossRef]
Sample Symbol | W1o | W2o | W3o | W4o | W5o |
---|---|---|---|---|---|
Photograph | |||||
aramid fabric | 1a | 1a | 1a | 1a | |
carbon fabric | 1b | 1b | 1b | 1b | |
glass fabric | 1c | 1c | 1c | 6c | |
basalt fabric | 1d | 1d | 1d | 1d | |
linen fabric | 1e | 1e | 1e | 1e | |
vermiculite | 1a | 1a | 1a | ||
glass beads | 1c | 1c | |||
nut shells | 1e | 1e | 1e |
Sample Symbol | W1a | W2a | W3a | W4a | W5a |
---|---|---|---|---|---|
Photograph | |||||
aramid fabric | 2a | 2a | 1a | 2a | 2a |
carbon fabric | 2b | 1b | 2b | 2b | 2c |
glass fabric | 2c | 2c | 2c | 1c | 2b |
basalt fabric | 2d | 2d | 2d | 2d | 2d |
linen fabric | 2e | 2e | 2e | 2e | 2e |
vermiculite | 1a | ||||
nut shells | 1e |
Image | |||
---|---|---|---|
Dimensions | radius (R) = approx. 25 mm | radius (R) = approx. 10 mm | angle = 90° and radius (R) = approx. 3 mm |
Symbol | (1) | (2) | (3) |
Sample Symbol Group A—with Single Fabric Layer | W1o | W2o | W3o | W4o | W5o |
Thickness [mm] | 4.1 | 3.3 | 3.9 | 3.4 | 3.5 |
Standard deviation | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 |
Sample symbol Group B—with double fabric layers | W1a | W2a | W3a | W4a | W5a |
Thickness [mm] | 5.4 | 6.1 | 6.2 | 4.7 | 4.6 |
Standard deviation | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 |
Number | Striker Type | Mean | Median | Min | Max | Variance | Standard Deviation | Skewness | Kurtosis | W | p |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 5.54 | 5.67 | 3.87 | 6.73 | 1.11 | 1.05 | −1.04 | 2.10 | 0.927 | 0.576 |
2 | 5.43 | 5.50 | 5.23 | 5.63 | 0.03 | 0.17 | −0.26 | −2.52 | 0.892 | 0.368 | |
3 | 5.37 | 5.50 | 4.93 | 5.63 | 0.08 | 0.29 | −1.05 | −0.11 | 0.891 | 0.362 | |
B | 1 | 22.89 | 24.57 | 16.83 | 26.63 | 9.80 | 17.12 | 4.14 | −0.89 | −0.88 | 0.894 |
2 | 20.71 | 19.83 | 15.70 | 29.90 | 14.20 | 29.96 | 5.47 | 1.58 | 2.95 | 0.855 | |
3 | 24.43 | 25.10 | 20.03 | 28.10 | 8.07 | 9.67 | 3.11 | −0.48 | −0.39 | 0.980 |
Group of Materials | Levene Test | ANOVA Test | ||
---|---|---|---|---|
F | p | F | p | |
1 | 2.563 | 0.118 | 0.088 | 0.917 |
2 | 0.361 | 0.704 | 0.923 | 0.424 |
Dependent Variable | Independent Variable | |
---|---|---|
Dependent variable | 1 | 0.813 |
Independent variable | 0.813 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irzmańska, E.; Mizera, K.; Litwicka, N.; Sałasińska, K. An Approach to Testing Antivandal Composite Materials as a Function of Their Thickness and Striker Shape—A Case Study. Polymers 2024, 16, 591. https://doi.org/10.3390/polym16050591
Irzmańska E, Mizera K, Litwicka N, Sałasińska K. An Approach to Testing Antivandal Composite Materials as a Function of Their Thickness and Striker Shape—A Case Study. Polymers. 2024; 16(5):591. https://doi.org/10.3390/polym16050591
Chicago/Turabian StyleIrzmańska, Emilia, Kamila Mizera, Natalia Litwicka, and Kamila Sałasińska. 2024. "An Approach to Testing Antivandal Composite Materials as a Function of Their Thickness and Striker Shape—A Case Study" Polymers 16, no. 5: 591. https://doi.org/10.3390/polym16050591
APA StyleIrzmańska, E., Mizera, K., Litwicka, N., & Sałasińska, K. (2024). An Approach to Testing Antivandal Composite Materials as a Function of Their Thickness and Striker Shape—A Case Study. Polymers, 16(5), 591. https://doi.org/10.3390/polym16050591