Development of a Machine Learning Model to Predict the Color of Extruded Thermoplastic Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compounding Equipment
2.3. Color Measurement
3. Machine Learning Architectures
3.1. Bagging with Decision Tree Regression
3.2. Deep Neural Network
3.3. Multiple Linear Regression
3.4. Random Forest Regression
4. Machine Learning Methodology
4.1. Data Exploration through the Pearson Correlation Coefficient
4.2. Dataset Allocation
4.3. Evaluation Metric
5. Results
5.1. Performance of Machine Learning Model
5.2. Impact of Sample Size on Machine Learning Accuracy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Formulation | Inline L* | Inline a* | Inline b* | Offline L* | Offline a* | Offline b* |
---|---|---|---|---|---|---|
1 | 14.37 | 2.11 | 6.33 | 86.68 | −0.49 | 8.87 |
2 | 24.74 | 0.45 | 5.72 | 83.06 | −0.81 | 12.15 |
3 | 31.44 | −0.06 | 6.43 | 84.94 | −0.17 | 10.64 |
4 | 39.17 | 0.14 | 9.71 | 86.36 | 0.32 | 8.24 |
5 | 44.48 | 0.92 | 13.14 | 88.01 | −0.54 | 6.13 |
6 | 48.25 | 1.98 | 16.38 | 90.95 | −0.36 | 5.56 |
7 | 49.93 | 2.55 | 18.05 | 92.94 | −0.44 | 5.23 |
8 | 50.57 | 2.73 | 18.69 | 94.06 | −0.42 | 5.02 |
9 | 50.94 | 2.82 | 19.11 | 94.69 | −0.43 | 4.58 |
10 | 48.46 | 1.33 | 12.74 | 75.55 | −0.42 | 3.21 |
11 | 45.14 | 1.41 | 11.15 | 66.74 | −0.4 | 1.29 |
12 | 41.25 | 1.44 | 9.80 | 59.63 | −0.37 | 0.29 |
13 | 33.54 | 1.18 | 6.88 | 44.66 | −0.17 | −1.03 |
14 | 24.03 | 1.08 | 4.19 | 27.95 | 0.39 | −0.44 |
15 | 18.00 | 1.80 | 5.10 | 26.48 | 0.38 | 0.07 |
16 | 14.40 | 1.96 | 5.25 | 70.81 | −56.05 | 10.94 |
17 | 14.55 | 1.65 | 5.05 | 63.96 | −68.34 | 16.37 |
18 | 14.73 | 1.05 | 4.82 | 52.7 | −70.06 | 20.14 |
19 | 14.86 | 0.60 | 4.76 | 41.81 | −53.38 | 15.94 |
20 | 14.96 | 0.29 | 4.71 | 32.2 | −26.83 | 7.7 |
21 | 15.07 | 0.00 | 4.64 | 26.06 | −5.42 | 0.62 |
22 | 15.14 | −0.15 | 4.59 | 24.97 | −1.18 | −0.9 |
23 | 15.24 | −0.27 | 4.63 | 24.87 | −0.66 | −1.19 |
24 | 15.78 | 1.98 | 6.40 | 24.84 | 1.09 | 3.15 |
25 | 15.88 | 1.98 | 6.35 | 23.97 | 0.4 | 1.98 |
26 | 15.19 | 1.96 | 6.19 | 23.98 | 0.4 | 1.97 |
27 | 15.20 | 1.98 | 6.24 | 24.03 | 0.4 | 1.94 |
28 | 15.26 | 1.99 | 6.26 | 24.03 | 0.4 | 1.95 |
29 | 15.29 | 2.01 | 6.33 | 24.11 | 0.4 | 1.91 |
30 | 15.70 | 2.05 | 6.53 | 24.12 | 0.41 | 1.94 |
31 | 15.44 | 2.14 | 6.60 | 23.96 | 0.4 | 2.01 |
32 | 16.27 | 2.13 | 6.41 | 81.44 | −3.39 | 1.34 |
33 | 16.39 | 2.09 | 6.33 | 76.34 | −6.06 | −6.03 |
34 | 16.50 | 2.10 | 6.25 | 65.04 | −10.42 | −22.51 |
35 | 16.56 | 2.15 | 6.12 | 55.55 | −10.49 | −36.02 |
36 | 16.56 | 2.19 | 6.09 | 42.42 | 0.09 | −50.14 |
37 | 16.59 | 2.21 | 6.04 | 34.15 | 16.07 | −54.19 |
38 | 16.58 | 2.24 | 5.96 | 30.78 | 20.03 | −50.65 |
39 | 16.60 | 2.29 | 5.88 | 27.16 | 19.01 | −40.4 |
40 | 16.73 | 1.94 | 6.35 | 82.68 | −10.3 | 79.52 |
41 | 17.65 | 1.19 | 8.44 | 82.12 | −6.79 | 85.79 |
42 | 18.18 | 0.47 | 10.76 | 79.87 | 1.66 | 90.88 |
43 | 19.27 | −0.59 | 14.36 | 76.68 | 11.56 | 90.26 |
44 | 20.13 | −1.29 | 17.61 | 73.5 | 21.74 | 87.14 |
45 | 20.83 | −1.69 | 21.01 | 70.14 | 30.64 | 82.29 |
46 | 21.54 | −1.47 | 22.98 | 67.68 | 36.11 | 78.3 |
47 | 16.86 | 2.15 | 33.52 | 64.26 | 42.23 | 72.51 |
48 | 23.20 | 3.49 | 21.00 | 82.69 | −5.13 | 61.86 |
49 | 26.16 | 3.96 | 35.05 | 80.77 | −1.15 | 69.22 |
50 | 24.52 | 5.51 | 40.48 | 76.42 | 9.22 | 76.01 |
51 | 22.49 | 7.12 | 43.69 | 72.3 | 17.24 | 75.34 |
52 | 17.75 | 2.92 | 38.77 | 39.12 | −3.05 | 21.52 |
53 | 14.72 | 1.65 | 34.56 | 26 | 0.69 | 3.3 |
54 | 16.86 | 2.15 | 33.52 | 25.08 | 0.54 | 1.71 |
55 | 44.78 | −0.56 | 7.72 | 75.89 | −5.33 | −6.27 |
56 | 43.13 | −1.17 | 5.29 | 71.97 | −6.19 | −12.14 |
57 | 38.48 | −2.03 | −0.71 | 60.6 | −5.24 | −26.93 |
58 | 33.61 | −2.12 | −6.24 | 52.94 | −1.99 | −35.12 |
59 | 26.99 | −0.62 | −0.80 | 38.43 | −2.25 | −8.83 |
60 | 19.75 | 1.17 | 1.70 | 23.98 | 0.68 | −0.97 |
61 | 15.50 | 1.88 | 4.61 | 23.62 | 0.65 | 0.53 |
62 | 24.01 | −7.16 | 9.50 | 67.86 | −39.25 | 3.2 |
63 | 24.80 | −8.09 | 9.88 | 62.57 | −44.73 | 8.02 |
64 | 22.68 | −6.96 | 9.21 | 50.62 | −46.06 | 5.83 |
65 | 20.43 | −5.85 | 8.68 | 43 | −39.76 | 6.06 |
66 | 16.84 | −4.22 | 8.02 | 34.84 | −18.75 | 2.12 |
67 | 16.12 | −2.08 | 7.01 | 24.68 | −0.58 | 1.04 |
68 | 18.07 | 1.02 | 6.25 | 24.95 | −1.37 | 0.83 |
69 | 14.63 | 3.75 | 7.24 | 61.4 | 63.16 | −6.31 |
70 | 14.82 | 4.31 | 7.53 | 55.5 | 71.35 | 1.46 |
71 | 15.03 | 4.80 | 7.92 | 51.42 | 69.84 | 17.81 |
72 | 15.18 | 5.22 | 8.17 | 48.08 | 65.4 | 31.76 |
73 | 15.28 | 5.61 | 8.39 | 44.86 | 61.18 | 36.52 |
74 | 15.40 | 5.88 | 8.53 | 41.3 | 56.05 | 33.22 |
75 | 15.45 | 6.02 | 8.58 | 39.12 | 52.5 | 29.7 |
76 | 15.11 | 6.08 | 8.48 | 36.6 | 47.55 | 25.41 |
77 | 38.76 | 26.41 | 5.81 | 65.73 | 51.64 | 3.92 |
78 | 35.32 | 31.16 | 4.25 | 61.39 | 58.12 | 6.59 |
79 | 27.58 | 33.64 | 3.26 | 53.28 | 62.67 | 14.54 |
80 | 23.15 | 29.58 | 4.38 | 49.94 | 61.27 | 17.73 |
81 | 19.75 | 18.42 | 3.11 | 34.64 | 25.15 | 4.53 |
82 | 16.01 | 7.91 | 5.62 | 28.04 | 10.24 | 8.2 |
83 | 15.10 | 5.79 | 6.90 | 27.16 | 7.41 | 7.06 |
References
- Kirchner, E.J.J.; Ravi, J. Setting tolerances on color and texture for automotive coatings. Color Res. Appl. 2014, 39, 88–98. [Google Scholar] [CrossRef]
- Arino, I.; Johansson, S.; Kleist, U.; Liljenström-Leander, E.; Rigdahl, M. The Effect of Texture on thePass/Fail Colour Tolerances of Injection-Molded Plastics. Color Res. Appl. 2007, 32, 47–54. [Google Scholar] [CrossRef]
- ISO/CIE 11664-4:2019(E); Colorimetry—Part 4: CIE 1976 L*A*B* Colour Space. International Commission on Illumination (CIE): Vienna, Austria, 2017.
- Schanda, J. Colorimetry: Understanding the CIE System; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 496. [Google Scholar]
- Reshadat, R.; Balke, S.T.; Calidonio, F.; Dobbin, C.J. In-line Color Monitoring of Pigmented Polyolefins During Extrusion. I. Assessment. In Coloring Technology for Plastics; William Andrew: Norwich, NY, USA, 1999; pp. 141–148. [Google Scholar]
- Krumbholz, N.; Hochrein, T.; Vieweg, N.; Hasek, T.; Kretschmer, K.; Bastian, M.; Mikulics, M.; Koch, M. Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. Polym. Test. 2009, 28, 30–35. [Google Scholar] [CrossRef]
- X-Rite, Incorporated. Measuring “True” Color; Should I Use SCE or SCI? X-Rite, Incorporated. Available online: https://www.xrite.com/service-support/measuringtruecolorshouldiusesceorsci (accessed on 30 June 2023).
- Reshadat, R.; Desa, S.; Joseph, S.; Mehra, M.; Stoev, N.; Balke, S.T. In-line near-infrared monitoring of polymer processing. Part I: Process/monitor interface development. Appl. Spectrosc. 1999, 53, 1412–1418. [Google Scholar] [CrossRef]
- Equitech. Probes For Difference Applications. Equitech. Available online: https://equitechintl.com/products/probes/ (accessed on 4 October 2023).
- Keong, N.P. Inline colour monitoring of thermoplastic extrusion: Correlation of colour measurement and rheological behavior. In Proceedings of the 13th SPSJ International Polymer Conference (IPC2023), Hokaido, Japan, 18–21 June 2023. [Google Scholar]
- Lee, J.; Kim, J.; Kim, J. A Study on the Architecture of Artificial Neural Network Considering Injection-Molding Process Steps. Polymers 2023, 15, 4578. [Google Scholar] [CrossRef]
- Shams-Nateri, A.; Amirshahi, S.; Latifi, M. Prediction of Yarn Cross-Sectional Color from Longitudinal Color by Neural Network. Res. J. Text Appar. 2006, 10, 25–35. [Google Scholar] [CrossRef]
- Jeon, J.; Rhee, B.; Gim, J. Melt Temperature Estimation by Machine Learning Model Based on Energy Flow in Injection Molding. Polymers 2022, 14, 5548. [Google Scholar] [CrossRef]
- Joo, C.; Park, H.; Kwon, H.; Lim, J.; Shin, E.; Cho, H.; Kim, J. Machine Learning Approach to Predict Physical Properties of Polypropylene Composites: Application of MLR, DNN, and Random Forest to Industrial Data. Polymers 2022, 14, 3500. [Google Scholar] [CrossRef]
- Munir, N.; Nugent, M.; Whitaker, D.; McAfee, M. Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions. Pharmaceutics 2021, 13, 1432. [Google Scholar] [CrossRef]
- Munir, N.; McMorrow, R.; Mulrennan, K.; Whitaker, D.; McLoone, S.; Kellomäki, M.; Talvitie, E.; Lyyra, I.; McAfee, M. Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid. Polymers 2023, 15, 3566. [Google Scholar] [CrossRef] [PubMed]
- ISO/CIE 11664-2:2022(E); Colorimetry—Part 2: CIE Standard Illuminants. International Commission on Illumination (CIE): Vienna, Austria, 2022.
- X-Rite, Incorporated. Ci7800 Sphere Benchtop Spectrophotometer. Available online: https://www.xrite.com/categories/benchtop-spectrophotometers/ci7x00-family/ci7800 (accessed on 30 June 2023).
- Agate, S.; Williams, A.; Dougherty, J.; Velev, O.D.; Pal, L. Polymer Color Intelligence: Effect of Materials, Instruments, and Measurement Techniques—A Review. ACS Omega 2023, 8, 23257–23270. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Pasting small votes for classification in large databases and on-line”, Machine Learning. Mach. Learn. 1999, 36, 85–103. [Google Scholar] [CrossRef]
- Ho, T. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Amini, M.; Abbaspour, K.C.; Khademi, H.; Fathianpour, N.; Afyuni, M.; Schulin, R. Neural network models to predict cation exchange capacity in arid regions of Iran. Eur. J. Soil Sci. 2005, 56, 551–559. [Google Scholar] [CrossRef]
- Knofczynski, G.T.; Mundfrom, D. Sample Sizes When Using Multiple Linear Regression for Prediction. Educ. Psychol. Meas. 2007, 68, 431–442. [Google Scholar] [CrossRef]
- Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng. 2019, 174, 776–789. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Pramanik, S.; Chowdhury, U.N.; Pramanik, B.K.; Huda, N. A comparative study of bagging, boosting and C4. 5: The recent improvements in decision tree learning algorithm. Asian J. Inf. Technol. 2010, 9, 300–306. [Google Scholar]
- Machova, K.; Puszta, M.; Barcak, F.; Bednar, P. A comparison of the bagging and the boosting methods using the decision trees classifiers. Comput. Sci. Inf. Syst. 2006, 3, 57–72. [Google Scholar] [CrossRef]
- Mijwel, M.M. Artificial neural networks advantages and disadvantages. Mesop. J. Big Data 2021, 2021, 29–31. [Google Scholar] [CrossRef]
- Vittinghoff, E.; Glidden, D.V.; Shiboski, S.C.; McCulloch, C.E. Linear, Logistic, Survival, and Repeated Measures Models. In Regression Methods in Biostatistics; Springer: New York, NY, USA, 2011; p. 509. [Google Scholar]
- Langsetmo, L.; Schousboe, J.T.; Taylor, B.C.; Cauley, J.A.; Fink, H.A.; Cawthon, P.M.; Kado, D.M.; Ensrud, K.E.; Osteoporotic Fractures in Men (MrOS) Research Group. Advantages and disadvantages of random forest models for prediction of hip fracture risk versus mortality risk in the oldest old. JBMR Plus 2023, 7, e10757. [Google Scholar] [CrossRef] [PubMed]
Formulation | PC Makrolon 2807 | EBS L-205F | Tiona 288 | Raven 1010 | Heliogen Green K 8730 | Ultramarine Blue 05 | Solvent Yellow 114 | Plast Red 8355 |
---|---|---|---|---|---|---|---|---|
1 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 99.65 | 0.3 | 0.05 | 0 | 0 | 0 | 0 | 0 |
3 | 99.6 | 0.3 | 0.1 | 0 | 0 | 0 | 0 | 0 |
4 | 99.45 | 0.3 | 0.25 | 0 | 0 | 0 | 0 | 0 |
5 | 99.2 | 0.3 | 0.5 | 0 | 0 | 0 | 0 | 0 |
6 | 98.7 | 0.3 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 97.7 | 0.3 | 2 | 0 | 0 | 0 | 0 | 0 |
8 | 96.7 | 0.3 | 3 | 0 | 0 | 0 | 0 | 0 |
9 | 94.7 | 0.3 | 5 | 0 | 0 | 0 | 0 | 0 |
10 | 98.7 | 0.3 | 0.999 | 0.001 | 0 | 0 | 0 | 0 |
11 | 98.7 | 0.3 | 0.995 | 0.005 | 0 | 0 | 0 | 0 |
12 | 98.7 | 0.3 | 0.99 | 0.01 | 0 | 0 | 0 | 0 |
13 | 98.7 | 0.3 | 0.96 | 0.04 | 0 | 0 | 0 | 0 |
14 | 98.7 | 0.3 | 0.7 | 0.3 | 0 | 0 | 0 | 0 |
15 | 98.7 | 0.3 | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
16 | 99.69 | 0.3 | 0 | 0 | 0.01 | 0 | 0 | 0 |
17 | 99.68 | 0.3 | 0 | 0 | 0.02 | 0 | 0 | 0 |
18 | 99.65 | 0.3 | 0 | 0 | 0.05 | 0 | 0 | 0 |
19 | 99.6 | 0.3 | 0 | 0 | 0.1 | 0 | 0 | 0 |
20 | 99.5 | 0.3 | 0 | 0 | 0.2 | 0 | 0 | 0 |
21 | 99.3 | 0.3 | 0 | 0 | 0.4 | 0 | 0 | 0 |
22 | 99.1 | 0.3 | 0 | 0 | 0.6 | 0 | 0 | 0 |
23 | 98.7 | 0.3 | 0 | 0 | 1 | 0 | 0 | 0 |
24 | 99.69 | 0.3 | 0 | 0.01 | 0 | 0 | 0 | 0 |
25 | 99.68 | 0.3 | 0 | 0.02 | 0 | 0 | 0 | 0 |
26 | 99.65 | 0.3 | 0 | 0.05 | 0 | 0 | 0 | 0 |
27 | 99.6 | 0.3 | 0 | 0.1 | 0 | 0 | 0 | 0 |
28 | 99.5 | 0.3 | 0 | 0.2 | 0 | 0 | 0 | 0 |
29 | 99.3 | 0.3 | 0 | 0.4 | 0 | 0 | 0 | 0 |
30 | 99.1 | 0.3 | 0 | 0.6 | 0 | 0 | 0 | 0 |
31 | 98.7 | 0.3 | 0 | 1 | 0 | 0 | 0 | 0 |
32 | 99.69 | 0.3 | 0 | 0 | 0 | 0.01 | 0 | 0 |
33 | 99.68 | 0.3 | 0 | 0 | 0 | 0.02 | 0 | 0 |
34 | 99.65 | 0.3 | 0 | 0 | 0 | 0.05 | 0 | 0 |
35 | 99.6 | 0.3 | 0 | 0 | 0 | 0.1 | 0 | 0 |
36 | 99.5 | 0.3 | 0 | 0 | 0 | 0.2 | 0 | 0 |
37 | 99.3 | 0.3 | 0 | 0 | 0 | 0.4 | 0 | 0 |
38 | 99.1 | 0.3 | 0 | 0 | 0 | 0.6 | 0 | 0 |
39 | 98.7 | 0.3 | 0 | 0 | 0 | 1 | 0 | 0 |
40 | 99.69 | 0.3 | 0 | 0 | 0 | 0 | 0.01 | 0 |
41 | 99.68 | 0.3 | 0 | 0 | 0 | 0 | 0.02 | 0 |
42 | 99.65 | 0.3 | 0 | 0 | 0 | 0 | 0.05 | 0 |
43 | 99.6 | 0.3 | 0 | 0 | 0 | 0 | 0.1 | 0 |
44 | 99.5 | 0.3 | 0 | 0 | 0 | 0 | 0.2 | 0 |
45 | 99.3 | 0.3 | 0 | 0 | 0 | 0 | 0.4 | 0 |
46 | 99.1 | 0.3 | 0 | 0 | 0 | 0 | 0.6 | 0 |
47 | 98.7 | 0.3 | 0 | 0 | 0 | 0 | 1 | 0 |
48 | 98.7 | 0.3 | 0.95 | 0 | 0 | 0 | 0.05 | 0 |
49 | 98.7 | 0.3 | 0.9 | 0 | 0 | 0 | 0.1 | 0 |
50 | 98.7 | 0.3 | 0.7 | 0 | 0 | 0 | 0.3 | 0 |
51 | 98.7 | 0.3 | 0.5 | 0 | 0 | 0 | 0.5 | 0 |
52 | 98.7 | 0.3 | 0.48 | 0.02 | 0 | 0 | 0.5 | 0 |
53 | 98.7 | 0.3 | 0 | 0.025 | 0 | 0 | 0.975 | 0 |
54 | 98.7 | 0.3 | 0 | 0.05 | 0 | 0 | 0.95 | 0 |
55 | 98.7 | 0.3 | 0.95 | 0 | 0 | 0.05 | 0 | 0 |
56 | 98.7 | 0.3 | 0.9 | 0 | 0 | 0.1 | 0 | 0 |
57 | 98.7 | 0.3 | 0.7 | 0 | 0 | 0.3 | 0 | 0 |
58 | 98.7 | 0.3 | 0.5 | 0 | 0 | 0.5 | 0 | 0 |
59 | 98.7 | 0.3 | 0.48 | 0.02 | 0 | 0.5 | 0 | 0 |
60 | 98.7 | 0.3 | 0 | 0.025 | 0 | 0.975 | 0 | 0 |
61 | 98.7 | 0.3 | 0 | 0.05 | 0 | 0.95 | 0 | 0 |
62 | 98.7 | 0.3 | 0.95 | 0 | 0 | 0.05 | 0 | 0 |
63 | 98.7 | 0.3 | 0.9 | 0 | 0 | 0.1 | 0 | 0 |
64 | 98.7 | 0.3 | 0.7 | 0 | 0 | 0.3 | 0 | 0 |
65 | 98.7 | 0.3 | 0.5 | 0 | 0 | 0.5 | 0 | 0 |
66 | 98.7 | 0.3 | 0.48 | 0.02 | 0 | 0.5 | 0 | 0 |
67 | 98.7 | 0.3 | 0 | 0.025 | 0 | 0.975 | 0 | 0 |
68 | 98.7 | 0.3 | 0 | 0.05 | 0 | 0.95 | 0 | 0 |
69 | 99.69 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.01 |
70 | 99.68 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.02 |
71 | 99.65 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.05 |
72 | 99.6 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.1 |
73 | 99.5 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.2 |
74 | 99.3 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.4 |
75 | 99.1 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.6 |
76 | 98.7 | 0.3 | 0 | 0 | 0 | 0 | 0 | 1 |
77 | 98.7 | 0.3 | 0.95 | 0 | 0 | 0 | 0 | 0.05 |
78 | 98.7 | 0.3 | 0.9 | 0 | 0 | 0 | 0 | 0.1 |
79 | 98.7 | 0.3 | 0.7 | 0 | 0 | 0 | 0 | 0.3 |
80 | 98.7 | 0.3 | 0.5 | 0 | 0 | 0 | 0 | 0.5 |
81 | 98.7 | 0.3 | 0.48 | 0.02 | 0 | 0 | 0 | 0.5 |
82 | 98.7 | 0.3 | 0 | 0.025 | 0 | 0 | 0 | 0.975 |
83 | 98.7 | 0.3 | 0 | 0.05 | 0 | 0 | 0 | 0.95 |
Parameter | Value |
---|---|
Random state for Decision Tree Regression | 42 |
Number of base estimators | 1000 |
Random state for Bagging Regression | 42 |
Number of parallel jobs | −1 |
Parameter | Value |
---|---|
Number of hidden layers | 2 |
Number of input layer neurons | 11 |
Number of hidden layer neurons | 192 |
Number of output layer neurons | 3 |
Hidden layer activation function | Relu |
Optimizer | Adam |
Loss function | RMSE |
Training iterations (epochs) | 50 |
Batch size | 32 |
Parameter | Value |
---|---|
fit_intercept | True |
Normalize | False |
Copy_X | True |
Number of jobs | None |
Parameter | Value |
---|---|
Random state for Random Forest | 42 |
Number of base estimators | 1000 |
Chemical Component | Offline Color Data | Pearson Correlation Coefficient |
---|---|---|
Plast Red 8355 | Offline a* value | 0.355185 |
Solvent Yellow 114 | Offline a* value | 0.119745 |
EBS L-205F | Offline a* value | 0.021655 |
PC Makrolon 2807 | Offline a* value | 0.001232 |
Raven 1010 | Offline a* value | −0.048207 |
Tiona 288 | Offline a* value | −0.074003 |
Heliogen Green K 8730 | Offline a* value | −0.097658 |
Ultramarine Blue 05 | Offline a* value | −0.106822 |
Chemical Component | Offline Color Data | Pearson Correlation Coefficient |
---|---|---|
Solvent Yellow 114 | Offline b* value | 0.3597 |
PC Makrolon 2807 | Offline b* value | 0.105443 |
Plast Red 8355 | Offline b* value | 0.047905 |
EBS L-205F | Offline b* value | 0.012755 |
Tiona 288 | Offline b* value | −0.059283 |
Heliogen Green K 8730 | Offline b* value | −0.074992 |
Raven 1010 | Offline b* value | −0.102322 |
Ultramarine Blue 05 | Offline b* value | −0.359825 |
Chemical Component | Offline Color Data | Pearson Correlation Coefficient |
---|---|---|
Tiona 288 | Offline L* | 0.447425 |
Solvent Yellow 114 | Offline L* | −0.008293 |
PC Makrolon 2807 | Offline L* | −0.130144 |
EBS L-205F | Offline L* | −0.162846 |
Plast Red 8355 | Offline L* | −0.225973 |
Heliogen Green K 8730 | Offline L* | −0.23764 |
Ultramarine Blue 05 | Offline L* | −0.354951 |
Raven 1010 | Offline L* | −0.359394 |
Inline Color Data | Offline Color Data | Pearson Correlation Coefficient |
---|---|---|
Inline L* | Offline L* | 0.583606 |
Inline a* | Offline a* | 0.576646 |
Inline b* | Offline b* | 0.522276 |
Model | Aggregated dE |
---|---|
Bagging Regression with Decision Tree Regression | 10.84 |
Deep Neural Networks | 22.90 |
Multiple Linear Regression | 25.39 |
Random Forest | 10.75 |
Machine Learning Model | Bagging with Decision Tree Regression | Neural Networks | Multiple Linear Regression | Random Forest Regression |
---|---|---|---|---|
Pros | Less probability of overfitting [20] | Incorporated multi-task learning, where learning does not occur solely for one task [11] | Fast calculation speed [14] | Effective for learning with limited samples [26] |
Simple model [20] | Able to implicitly detect complex nonlinear relationships between dependent and independent variables [27] | Robust for learning with strong data error [26] | ||
Robust to the effect of noisy data [28] | Feasible for nonlinear or approximately linear problems [26] | |||
Cons | Uses significant computational complexity [29] | Unexplained behaviors of the model [30] | Assumes data are normally distributed, homogenous in variance, and independent of one another [31] | Uses significant computational resources, as they require several splitting and evaluations of candidate splits [20] |
Loss of simplicity compared to a simple decision tree [29] | The duration of training a Neural Network is unknown [30] | There are no equations linking the variables with the predicted variable [32] | ||
Proneness to overfitting [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neo, P.K.; Leong, Y.W.; Soon, M.F.; Goh, Q.S.; Thumsorn, S.; Ito, H. Development of a Machine Learning Model to Predict the Color of Extruded Thermoplastic Resins. Polymers 2024, 16, 481. https://doi.org/10.3390/polym16040481
Neo PK, Leong YW, Soon MF, Goh QS, Thumsorn S, Ito H. Development of a Machine Learning Model to Predict the Color of Extruded Thermoplastic Resins. Polymers. 2024; 16(4):481. https://doi.org/10.3390/polym16040481
Chicago/Turabian StyleNeo, Puay Keong, Yew Wei Leong, Moi Fuai Soon, Qing Sheng Goh, Supaphorn Thumsorn, and Hiroshi Ito. 2024. "Development of a Machine Learning Model to Predict the Color of Extruded Thermoplastic Resins" Polymers 16, no. 4: 481. https://doi.org/10.3390/polym16040481
APA StyleNeo, P. K., Leong, Y. W., Soon, M. F., Goh, Q. S., Thumsorn, S., & Ito, H. (2024). Development of a Machine Learning Model to Predict the Color of Extruded Thermoplastic Resins. Polymers, 16(4), 481. https://doi.org/10.3390/polym16040481