Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Density Measurements
3.2. Microhardness Test
- -
- HV is hardness;
- -
- E is the elastic modulus;
- -
- YS is the yield strength;
- -
- A is the semi-angle of the conical indenter.
3.3. Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balhaddad, A.A.; Kansara, A.A.; Hidan, D.; Weir, M.D.; Xu, H.H.; Melo, M.A.S. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact. Mater. 2019, 4, 43–55. [Google Scholar] [CrossRef]
- Silk, H. Diseases of the mouth. Prim. Care Clin. Off. Pract. 2014, 41, 75–90. [Google Scholar] [CrossRef]
- Pilcher, L.; Pahlke, S.; Urquhart, O.; O’Brien, K.; Dhar, V.; Fontana, M.; González-Cabezas, C.; Keels, M.A.; Mascarenhas, A.K.; Nascimento, M.M.; et al. Direct materials for restoring caries lesions: Systematic review and meta-analysis-a report of the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 2023, 154, e1–e98. [Google Scholar] [CrossRef]
- Wang, L.; D’Alpino, P.P.; Lopes, L.; Pereira, J. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. J. Appl. Oral Sci. 2003, 11, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.; Lee, J. Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads. J. Dent. Biomech. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Yap, A.; Koh, W.; Tsai, K.; Lim, C. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials 2004, 25, 2455–2460. [Google Scholar] [CrossRef]
- Jafarpour, D.; Ferooz, R.; Ferooz, M.; Bagheri, R. Physical and Mechanical Properties of Bulk-Fill, Conventional, and Flowable Resin Composites Stored Dry and Wet. Int. J. Dent. 2022, 2022, 7946239. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, Y.; Hyoung, L.H. Ranking and selection of dental restorative composite materials using FAHP-FTOPSIS technique: An application of multi criteria decision making technique. J. Mech. Behav. Biomed. Mater. 2022, 132, 105298. [Google Scholar]
- Ramkumar, Y.; Mayank, S.; Anoj, M.; Seul-Yi, L.; Soo-Jin, P. Selection and ranking of dental restorative composite materials using hybrid Entropy-VIKOR method: An application of MCDM technique. J. Mech. Behav. Biomed. Mater. 2023, 147, 106103. [Google Scholar]
- Ramkumar, Y.; Anoj, M. Comparative investigation of tribological behavior of hybrid dental restorative composite materials. Ceram. Int. 2022, 48, 6698–6706. [Google Scholar]
- Carvalho, A.; Pinto, P.; Madeira, S.; Silva, F.S.; Carvalho, O.; Gomes, J.R. Tribological Characterization of Dental Restorative Materials. Biotribology 2020, 23, 100140. [Google Scholar] [CrossRef]
- Maier, E.; Grottschreiber, C.; Knepper, I.; Opdam, N.; Petschelt, A.; Loomans, B.; Lohbauer, U. Ulrich Evaluation of wear behavior of dental restorative materials against zirconia in vitro. Dent. Mater. 2022, 38, 778–788. [Google Scholar] [CrossRef]
- Christian, M.; Soeren, S.; Klaus, L.; Matthias, K. Wear of composite resin veneering materials and enamel in a chewing simulator. Dent. Mater. 2007, 23, 1382–1389. [Google Scholar]
- Paul, L.; Elke, D.; Kirsten, V.L.; Marleen, P.; Bart, V.M. How to simulate wear?: Overview of existing methods. Dent. Mater. 2006, 22, 693–701. [Google Scholar]
- Heintze, S.D.; Zellweger, G.; Zappini, G. The relationship between physical parameters and wear of dental composites. Wear 2007, 263, 1138–1146. [Google Scholar] [CrossRef]
- Yudaev, P.; Chuev, V.; Klyukin, B.; Kuskov, A.; Mezhuev, Y.; Chistyakov, E. Polymeric Dental Nanomaterials: Antimicrobial Action. Polymers 2022, 14, 864. [Google Scholar] [CrossRef]
- Go, H.B.; Lee, M.J.; Seo, J.Y.; Byun, S.Y.; Kwon, J.S. Mechanical properties and sustainable bacterial resistance effect of strontium-modified phosphate-based glass microfiller in dental composite resins. Sci. Rep. 2023, 13, 17763. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, C.Y.; Cheng, S.L.; Cheng, H. Effects of bleaching agents on dental restorative materials: A review of the literature and recommendation to dental practitioners and researchers. J. Dent. Sci. 2015, 10, 345–351. [Google Scholar] [CrossRef]
- Rüdiger, H.; Björn, T.; Nina, L.; Bogna, S. Impact of artificial aging by thermocycling on edge chipping resistance and Martens hardness of different dental CAD-CAM restorative materials. J. Prosthet. Dent. 2021, 125, 326–333. [Google Scholar]
- Gatin, E.; Luculescu, C.; Iordache, S.; Patrascu, I. Morphological investigation by AFM of dental ceramics under thermal processing. J. Optoelectron. Adv. Mater.—JOAM 2013, 15, 1136–1141. [Google Scholar]
- Sfeatcu, R.; Luculescu, C.; Ciobanu, L.; Balan, A.; Gatin, E.; Patrascu, I. Dental Enamel Quality and Black Tooth Stain: A New Approach and Explanation by using Raman and AFM Techniques. Part. Sci. Technol. 2015, 33, 429–435. [Google Scholar] [CrossRef]
- Gatin, E.; Ciucu, C.G.; Berlic, C. Investigation and comparative survey of some dental restorative materials. Optoelectron. Adv. Mater.—Rapid Commun. 2008, 2, 284–290. [Google Scholar]
- Gatin, E.; Iordache, S.; Matei, E.; Luculescu, C.; Iordache, A.; Grigorescu, C.; Ilici, R. Raman Spectroscopy as Spectral Tool for Assessing the Degree of Conversion after Curing of Two Resin-Based Materials Used in Restorative Dentistry. Diagnostics 2022, 12, 1993. [Google Scholar] [CrossRef]
- Gatin, E.; Nagy, P.; Iordache, S.; Iordache, A.; Luculescu, C. Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery. Diagnostics 2022, 12, 723. [Google Scholar] [CrossRef]
- Gatin, E.; Nagy, P.; Paun, I.; Dubok, O.; Bucur, V.; Windisch, P.; Windisch, P. Raman Spectroscopy: Application in Periodontal and Oral Regenerative Surgery for Bone Evaluation. IRBM 2019, 40, 279–285. [Google Scholar] [CrossRef]
- Available online: https://store.kerrdental.com/en-uk/ (accessed on 30 November 2023).
- Jafarzadeh, T.-S.; Erfan, M.; Behroozibakhsh, M.; Fatemi, M.; Masaeli, R.; Rezaei, Y.; Bagheri, H.; Erfanz, Y. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.; Alania, Y.; Natale, L.; Rodrigues, M.; Watts, D.; Braga, R. Trends in restorative composites research: What is in the future? Braz. Oral Res. 2017, 31, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Vaizoglu, G.; Ulusoy, N.; Alagöz, L. Effect of Coffee and Polishing Systems on the Color Change of a Conventional Resin Composite Repaired by Universal Resin Composites: An In Vitro Study. Materials 2023, 16, 6066. [Google Scholar] [CrossRef]
- Weidmann, S.M.; Weatherell, J.A.; Hamm, S.M. Variations of enamel density in sections of human teeth. Arch. Oral Biol. 1967, 12, 85–97. [Google Scholar] [CrossRef]
- Nicholson, J.W. Ytterbium (III) Fluoride in Dental Materials. Inorganics 2023, 11, 449. [Google Scholar] [CrossRef]
- Dias, A.; Gonçalves, C.; Caço, A.; Santos, L.; Piñeiro, M.; Vega, L.F.; Coutinho, J.A.; Marrucho, I.M. Densities and Vapor Pressures of Highly Fluorinated Compounds. J. Chem. Eng. Data 2005, 50, 1328–1333. [Google Scholar] [CrossRef]
- Popov, L. Physical Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Willis, H.A.; Zichy, V.J.I.; Hendra, P. The Laser-Raman and Infra-red Spectra of Poly(Methyl Methacrylate). Polymer 1969, 10, 737–746. [Google Scholar] [CrossRef]
- Chaurasia, S.; Rao, U.; Mishra, A.K.; Sijoy, C.D.; Mishra, V. Raman spectroscopy of poly (methyl methacrylate) under laser shock and static compression. J. Raman Spectrosc. 2020, 51, 860–870. [Google Scholar] [CrossRef]
- Xu, X.S.; Ming, H.; Zhang, Q.J.; Zhang, Y.S. Properties of Raman spectra and laser-induced birefringence in polymethylmethacrylate optical fibres. J. Opt. A Pure Appl. Opt. 2002, 4, 237. [Google Scholar]
- Shin, W.S.; Li, X.F.; Schwartz, B.; Wunder, S.L.; Baran, G.R. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent. Mater. 1993, 9, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Miletic, V.; Santini, A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J. Dent. 2012, 40, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Damoun, S.; Papin, R.; Ripault, G.; Rousseau, M.; Rabadeux, J.C.; Durand, D. Radical polymerization of methyl methacrylate in solution monitored and studied by Raman spectroscopy. J. Raman Spectrosc. 1992, 23, 385–389. [Google Scholar] [CrossRef]
- Panpisut, P.; Liaqat, S.; Zacharaki, E.; Xia, W.; Petridis, H.; Young, A.M. Dental Composites with Calcium / Strontium Phosphates and Polylysine. PLoS ONE 2016, 11, e0164653. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Razi, M.M.; Ashley, P.; Abou Neel, E.A.; Hofmann, M.P.; Young, A.M. Quantifying effects of interactions between polyacrylic acid and chlorhexidine in dicalcium phosphate—Forming cements. J. Mater. Chem. B 2014, 2, 1673–1680. [Google Scholar] [CrossRef]
- Elfakhri, F.; Alkahtani, R.; Li, C.; Khaliq, J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram. Int. 2022, 48, 27280–27294. [Google Scholar] [CrossRef]
- Taher, R.; Moharam, L.; Amin, A.; Zaazou, M.H.; El-Askary, F.S.; Ibrahim, M.N. The effect of radiation exposure and storage time on the degree of conversion and flexural strength of different resin composites. Bull. Natl. Res. Cent. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Rezaei, S.; Abbasi, M.; Mahounak, F.S.; Moradi, Z. Curing Depth and Degree of Conversion of Five Bulk-Fill Composite Resins Compared to a Conventional Composite. Open Dent. J. 2019, 13, 422–429. [Google Scholar] [CrossRef]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites—Changes at 24 hours post cure. Open Dent. 2015, 40, E92–E101. [Google Scholar] [CrossRef] [PubMed]
Dental Materials | Composition | Filler Loading (wt%) | Release Date (On the Market) | Manufacturer |
---|---|---|---|---|
XRV Herculite® | Bis-GMA (bisphenol glycidil dimethacrylate) TEGDMA (triethylene glycol dimethacrylate) Prepolymerized filler (silica nanofiller-20–50 nm nanoparticles, barium submicron fillers-0.6 µm average size) Titanium Dioxide (TiO2) Organic pigments for shading | 59% | October 2017 | Kerr Corp., Orange, CA, USA |
OptiShade® | BisGMA (bisphenol glycidil dimethacrylate) BisDMA (bisphenol A dimethacrylate) TEGDMA (triethylene glycol dimethacrylate) Filler (spherical silica and zirconia particles with effective particle size is 5–400 nm, 400 nm barium glass particles) | 80% | June 2021 | |
VertiseFlow® | Bis-GMA (bisphenol glycidil dimethacrylate) GPDMA (glycerolphosphoric acid dimethacrylate) HEMA (hydroxyethyl methacrylate) Pre-polymerized filler (silanated barium glass, nano-sized colloidal SiO2, YF3) | 70% | November 2021 |
Time (s) | Ρ VertiseFlow (g/cm3) ± SD | Ρ Optishade (g/cm3) ±SD | Ρ Herculite (g/cm3) ±SD |
---|---|---|---|
5 | 1.0146 ± 0.05 | 0.4184 ± 0.02 | 0.5497 ± 0.02 |
10 | 0.8641 ± 0.04 | 0.733 ± 0.03 | 1.7716 ± 0.08 |
15 | 1.8606 ± 0.09 | 0.4527 ± 0.02 | 1.8408 ± 0.09 |
20 | 0.6367 ± 0.03 | 0.7442 ± 0.03 | 2.7015 ± 0.1 |
Raman Band | Assignment | Reference |
---|---|---|
602.6 | νs(C–C–O) | [34] |
638.6 | ν(C–COO) | [35] |
810.8 | νs(C–O–C) | [34] |
1113.5 | νa(C–O–C) and C–C skeleton backbone | [34,35] |
1188 | νa(C–O–C) and C–C skeleton backbone | [34,35] |
1225 | ν(C–O) | [34,36] |
1295 | ν(C–COO) | [34,36] |
1403.6 | CH2 twist or wag | [34] |
1456.7 | δa(C–H) of α–CH3δa(C–H) of O–CH3 | [34,35] |
1607.7 | Aliphatic C-C | [37] |
1638.3 | Aromatic C=C | [37] |
1718.1 | ν (C=O) | [34] |
2929 | Combination band | [34] |
2954.6 | νs C–H stretching | [35] |
2990.4 | νa C–H stretching | [35] |
Composite Name | Monomer Composition | DC (% ± SD) (5 s) | DC (% ± SD) (10 s) | DC (% ± SD) (15 s) | DC (% ± SD) (20 s) |
---|---|---|---|---|---|
Vertise Flow | 30%methacrylate | 80.89 ± 4.04 | 80.87 ± 4.04 | 82 ± 4.1 | 85 ± 4.25 |
Herculite | 41% methacrylate | 74.8 ± 3.7 | 74.3 ± 3.7 | 72.08 ± 3.6 | 80.4 ± 4.0 |
Optishade | 80% methacrylate | 89.4 ± 4.47 | 91.9 ± 4.5 | 90.8 ± 4.54 | 79.2 ± 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, S.-M.; Iordache, A.-M.; Gatin, D.I.; Grigorescu, C.E.A.; Ilici, R.R.; Luculescu, C.-R.; Gatin, E. Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements. Polymers 2024, 16, 466. https://doi.org/10.3390/polym16040466
Iordache S-M, Iordache A-M, Gatin DI, Grigorescu CEA, Ilici RR, Luculescu C-R, Gatin E. Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements. Polymers. 2024; 16(4):466. https://doi.org/10.3390/polym16040466
Chicago/Turabian StyleIordache, Stefan-Marian, Ana-Maria Iordache, Dina Ilinca Gatin, Cristiana Eugenia Ana Grigorescu, Roxana Romanita Ilici, Catalin-Romeo Luculescu, and Eduard Gatin. 2024. "Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements" Polymers 16, no. 4: 466. https://doi.org/10.3390/polym16040466
APA StyleIordache, S. -M., Iordache, A. -M., Gatin, D. I., Grigorescu, C. E. A., Ilici, R. R., Luculescu, C. -R., & Gatin, E. (2024). Performance Assessment of Three Similar Dental Restorative Composite Materials via Raman Spectroscopy Supported by Complementary Methods Such as Hardness and Density Measurements. Polymers, 16(4), 466. https://doi.org/10.3390/polym16040466