Investigating the Structure and Properties of Epoxy Nanocomposites Containing Nanodiamonds Modified with Aminoacetic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of the ND Surface
2.3. Characterization of ND
2.4. Preparation of Epoxy Nanocomposites
2.5. Testing of the Nanocomposites
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- George, J.S.; Vijayan, P.P.; Paduvilan, J.K.; Salim, N.; Sunarso, J.; Kalarikkal, N.; Hameed, N.; Thomas, S. Advances and Future Outlook in Epoxy/Graphene Composites for Anticorrosive Applications. Prog. Org. Coat. 2022, 162, 106571. [Google Scholar] [CrossRef]
- Mikhalchenkov, A.M.; Kravchenko, I.N.; Fes’kov, S.A.; Barmina, O.V.; Kuznetsov, Y.A.; Ašonja, A. Wear of Epoxy Composites with Sludge Filler by Means of Cutting Tool Grinding under a Shock-Abrasive Impact. J. Mach. Manuf. Reliab. 2022, 51, S126–S131. [Google Scholar] [CrossRef]
- Xiang, Q.; Xiao, F. Applications of Epoxy Materials in Pavement Engineering. Constr. Build. Mater. 2020, 235, 117529. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Yaseen, M.; Huang, K. A Review on the Self-Healing Ability of Epoxy Polymers. J. Appl. Polym. Sci. 2021, 138, 50260. [Google Scholar] [CrossRef]
- Mikhal’chenkov, A.M.; Fes’kov, S.A.; Kozarez, I.V. Influence of the Concentration and Particle Size of the Filler in Epoxy–Gravel Composite on the Resistance to Contact Deformation When Introducing a Solid Sphere. Russ. Eng. Res. 2023, 43, 972–975. [Google Scholar] [CrossRef]
- Shcherbakov, A.S.; Mostovoy, A.S.; Yakovlev, N.A.; Arzamastsev, S.V. Effect of Carbon Nanotube Functionalization on the Physicochemical and Mechanical Properties of Modified Fiber-Reinforced Composites Based on an Epoxy Resin. Russ. J. Appl. Chem. 2021, 94, 1080–1087. [Google Scholar] [CrossRef]
- Nabinejad, O.; Sujan, D.; Rahman, M.E.; Liew, W.Y.H.; Davies, I.J. Hybrid Composite Using Natural Filler and Multi-Walled Carbon Nanotubes (MWCNTs). Appl. Compos. Mater. 2018, 25, 1323–1337. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Effect of Graphene and CNT Reinforcement on Mechanical and Thermomechanical Behavior of Epoxy—A Comparative Study. J. Appl. Polym. Sci. 2018, 135, 46101. [Google Scholar] [CrossRef]
- Kavimani, V.; Soorya Prakash, K.; Thankachan, T.; Udayakumar, R. Synergistic Improvement of Epoxy Derived Polymer Composites Reinforced with Graphene Oxide (GO) plus Titanium Di Oxide(TiO2). Compos. Part B Eng. 2020, 191, 107911. [Google Scholar] [CrossRef]
- Jamali, S.; Zare, Y.; Rhee, K.Y. Modeling of Mechanical Behaviors and Interphase Properties of Polymer/Nanodiamond Composites for Biomedical Products. J. Mater. Res. Technol. 2022, 19, 2750–2758. [Google Scholar] [CrossRef]
- Neitzel, I.; Mochalin, V.; Knoke, I.; Palmese, G.R.; Gogotsi, Y. Mechanical Properties of Epoxy Composites with High Contents of Nanodiamond. Compos. Sci. Technol. 2011, 71, 710–716. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Kadykova, Y.A.; Bekeshev, A.Z.; Tastanova, L.K. Epoxy Composites Modified with Microfibers of Potassium Polytitanates. J. Appl. Polym. Sci. 2018, 135, 46651. [Google Scholar] [CrossRef]
- Mostovoi, A.S.; Plakunova, E.V.; Panova, L.G. New Epoxy Composites Based on Potassium Polytitanates. Int. Polym. Sci. Technol. 2013, 40, 49–51. [Google Scholar] [CrossRef]
- Mostovoi, A.S.; Yakovlev, E.A.; Burmistrov, I.N.; Panova, L.G. Use of Modified Nanoparticles of Potassium Polytitanate and Physical Methods of Modification of Epoxy Compositions for Improving Their Operational Properties. Russ. J. Appl. Chem. 2015, 88, 129–137. [Google Scholar] [CrossRef]
- Tseluikin, V.; Dzhumieva, A.; Tribis, A.; Tikhonov, D.; Tsyganov, A.; Gorshkov, N.; Lopukhova, M. Study of Electrodeposition and Properties of Composite Nickel Coatings Modified with Ti3C2TX MXene. Coatings 2023, 13, 1042. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites. Nanomaterials 2023, 13, 1337. [Google Scholar] [CrossRef]
- Wie, J.; Kim, M.; Kim, J. Enhanced Thermal Conductivity of a Polysilazane-Coated A-BN/Epoxy Composite Following Surface Treatment with Silane Coupling Agents. Appl. Surf. Sci. 2020, 529, 147091. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Liu, X. Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties. ACS Appl. Mater. Interfaces 2020, 12, 6503–6515. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M.; Fallah, A.; Eftekharipour, F. Preparation of Dual-Use GPTES@ZnO Photocatalyst from Waste Warm Filter Cake and Evaluation of Its Synergic Photocatalytic Degradation for Air-Water Purification. J. Environ. Manag. 2023, 342, 118352. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M. Silanizing Nano SiO2 and Its Application in Recycled Nitrile Rubber to Prepare Super Oil Resistant/Superhydrophobic/Superoleophilic Oil/Water Separator. J. Environ. Chem. Eng. 2022, 10, 107971. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M. Synergistic Effect of Microwave Assisted Devulcanization of Waste NBR Rubber and Using Superhydrophobic/Superoleophilic Silica Nanoparticles on Oil-Water Separation. Alex. Eng. J. 2023, 69, 67–84. [Google Scholar] [CrossRef]
- Schrand, A.M.; Hens, S.A.C.; Shenderova, O.A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 2009, 34, 18–74. [Google Scholar] [CrossRef]
- Krueger, A.; Lang, D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. 2012, 22, 890–906. [Google Scholar] [CrossRef]
- Khan, M.; Hamid, A.; Tiehu, L.; Zada, A.; Attique, F.; Ahmad, N.; Ullah, A.; Hayat, A.; Mahmood, I.; Hussain, A.; et al. Surface Optimization of Detonation Nanodiamonds for the Enhanced Mechanical Properties of Polymer/Nanodiamond Composites. Diam. Relat. Mater. 2020, 107, 107897. [Google Scholar] [CrossRef]
- Karami, P.; Salkhi Khasraghi, S.; Hashemi, M.; Rabiei, S.; Shojaei, A. Polymer/Nanodiamond Composites—A Comprehensive Review from Synthesis and Fabrication to Properties and Applications. Adv. Colloid Interface Sci. 2019, 269, 122–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rhee, K.Y.; Park, S.-J. Nanodiamond Nanocluster-Decorated Graphene Oxide/Epoxy Nanocomposites with Enhanced Mechanical Behavior and Thermal Stability. Compos. Part B Eng. 2017, 114, 111–120. [Google Scholar] [CrossRef]
- Kim, S.-H.; Rhee, K.Y.; Park, S.-J. Amine-Terminated Chain-Grafted Nanodiamond/Epoxy Nanocomposites as Interfacial Materials: Thermal Conductivity and Fracture Resistance. Compos. Part B Eng. 2020, 192, 107983. [Google Scholar] [CrossRef]
- Haleem, Y.A.; Liu, D.; Chen, W.; Wang, C.; Hong, C.; He, Z.; Liu, J.; Song, P.; Yu, S.; Song, L. Surface Functionalization and Structure Characterizations of Nanodiamond and Its Epoxy Based Nanocomposites. Compos. Part B Eng. 2015, 78, 480–487. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Shi, W.; Castillo-Rodríguez, M.; Su, D.S.; Wang, D.-Y. Coordinating Mechanical Performance and Fire Safety of Epoxy Resin via Functionalized Nanodiamond. Diam. Relat. Mater. 2020, 108, 107964. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Shcherbakov, A.; Zhumabekova, A.; Serikbayeva, G.; Vikulova, M.; Svitkina, V. Effect of Phosphorus and Chlorine Containing Plasticizers on the Physicochemical and Mechanical Properties of Epoxy Composites. J. Compos. Sci. 2023, 7, 178. [Google Scholar] [CrossRef]
- Mostovoy, A.; Shcherbakov, A.; Yakovlev, A.; Arzamastsev, S.; Lopukhova, M. Reinforced Epoxy Composites Modified with Functionalized Graphene Oxide. Polymers 2022, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- Amirbeygi, H.; Khosravi, H.; Tohidlou, E. Reinforcing Effects of Aminosilane-Functionalized Graphene on the Tribological and Mechanical Behaviors of Epoxy Nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47410. [Google Scholar] [CrossRef]
- ISO 178: 2019; Plastics—Determination of Flexural Properties. ISO Committee: Geneva, Switzerland, 2019.
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzeland, 2012.
- ISO 179-1:2010; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2010.
- ISO 306:2022; Plastics. Thermoplastic Materials. Determination of Vicat Softening Temperature (VST). ISO: Geneva, Switzerland, 2022.
- Bekeshev, A.; Mostovoy, A.; Tastanova, L.; Kadykova, Y.; Kalganova, S.; Lopukhova, M. Reinforcement of Epoxy Composites with Application of Finely-Ground Ochre and Electrophysical Method of the Composition Modification. Polymers 2020, 12, 1437. [Google Scholar] [CrossRef] [PubMed]
- Kryshtal, A.P.; Mchedlov-Petrossyan, N.O.; Laguta, A.N.; Kriklya, N.N.; Kruk, A.; Osawa, E. Primary Detonation Nanodiamond Particles: Their Core-Shell Structure and the Behavior in Organo-Hydrosols. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126079. [Google Scholar] [CrossRef]
- Baidakova, M.V.; Kukushkina, Y.A.; Sitnikova, A.A.; Yagovkina, M.A.; Kirilenko, D.A.; Sokolov, V.V.; Shestakov, M.S.; Vul’, A.Y.; Zousman, B.; Levinson, O. Structure of Nanodiamonds Prepared by Laser Synthesis. Phys. Solid State 2013, 55, 1747–1753. [Google Scholar] [CrossRef]
- Singh, B.; Mohanty, A. Analysis of Thermal and Mechanical Properties of Annealed Surface Modified Nanodiamond/Epoxy Nanocomposites. Mater. Res. Express 2019, 6, 125316. [Google Scholar] [CrossRef]
- Feng, P.; Kong, Y.; Yu, L.; Li, Y.; Gao, C.; Peng, S.; Pan, H.; Zhao, Z.; Shuai, C. Molybdenum Disulfide Nanosheets Embedded with Nanodiamond Particles: Co-Dispersion Nanostructures as Reinforcements for Polymer Scaffolds. Appl. Mater. Today 2019, 17, 216–226. [Google Scholar] [CrossRef]
- Rahmani, P.; Shojaei, A.; Pirhady Tavandashti, N. Nanodiamond Loaded with Corrosion Inhibitor as Efficient Nanocarrier to Improve Anticorrosion Behavior of Epoxy Coating. J. Ind. Eng. Chem. 2020, 83, 153–163. [Google Scholar] [CrossRef]
- Yang, W.; Feng, W.; Liao, Z.; Yang, Y.; Miao, G.; Yu, B.; Pei, X. Protection of Mild Steel with Molecular Engineered Epoxy Nanocomposite Coatings Containing Corrosion Inhibitor Functionalized Nanoparticles. Surf. Coat. Technol. 2021, 406, 126639. [Google Scholar] [CrossRef]
- Qian, W.-M.; Vahid, M.H.; Sun, Y.-L.; Heidari, A.; Barbaz-Isfahani, R.; Saber-Samandari, S.; Khandan, A.; Toghraie, D. Investigation on the Effect of Functionalization of Single-Walled Carbon Nanotubes on the Mechanical Properties of Epoxy Glass Composites: Experimental and Molecular Dynamics Simulation. J. Mater. Res. Technol. 2021, 12, 1931–1945. [Google Scholar] [CrossRef]
- Bao, T.; Wang, Z.; Zhao, Y.; Wang, Y.; Yi, X. Improving Tribological Performance of Epoxy Composite by Reinforcing with Polyetheramine-Functionalized Graphene Oxide. J. Mater. Res. Technol. 2021, 12, 1516–1529. [Google Scholar] [CrossRef]
- Tiwari, N.; Shaikh, A.A.; Malek, N.I. Modification of the Multiphase Shape Memory Composites with Functionalized Graphene Nanoplatelets: Enhancement of Thermomechanical and Interfacial Properties. Mater. Today Chem. 2022, 24, 100826. [Google Scholar] [CrossRef]
- Biuk Afshari, B.; Jamshidi, M.; Rostami, M.; Ghamarpoor, R. Improving the Mechanical/Anticorrosive Properties of a Nitrile Rubber-Based Adhesive Filled with Cerium Oxide Nanoparticles Using a Two-Step Surface Modification Method. ACS Omega 2022, 7, 44912–44927. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M. Synthesis of Vinyl-Based Silica Nanoparticles by Sol–Gel Method and Their Influences on Network Microstructure and Dynamic Mechanical Properties of Nitrile Rubber Nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar] [CrossRef] [PubMed]
- Goyat, M.S.; Hooda, A.; Gupta, T.K.; Kumar, K.; Halder, S.; Ghosh, P.K.; Dehiya, B.S. Role of Non-Functionalized Oxide Nanoparticles on Mechanical Properties and Toughening Mechanisms of Epoxy Nanocomposites. Ceram. Int. 2021, 47, 22316–22344. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, G.; Xiao, W.; Sui, G.; Yang, X. Effect of Amine Functionalized MWCNT-Epoxy Interfacial Interaction on MWCNT Dispersion and Mechanical Properties of Epoxy-Amine Composites. Polym. Compos. 2018, 39, E2552–E2561. [Google Scholar] [CrossRef]
- Sari, M.G.; Ramezanzadeh, B. Epoxy Composite Coating Corrosion Protection Properties Reinforcement through the Addition of Hydroxyl-Terminated Hyperbranched Polyamide Non-Covalently Assembled Graphene Oxide Platforms. Constr. Build. Mater. 2020, 234, 117421. [Google Scholar] [CrossRef]
- Ali, F.; Ishfaq, N.; Said, A.; Nawaz, Z.; Ali, Z.; Ali, N.; Afzal, A.; Bilal, M. Fabrication, Characterization, Morphological and Thermal Investigations of Functionalized Multi-Walled Carbon Nanotubes Reinforced Epoxy Nanocomposites. Prog. Org. Coat. 2021, 150, 105962. [Google Scholar] [CrossRef]
- Tikhani, F.; Moghari, S.; Jouyandeh, M.; Laoutid, F.; Vahabi, H.; Saeb, M.R.; Dubois, P. Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers 2020, 12, 644. [Google Scholar] [CrossRef]
- Sul, J.-H.; Prusty, B.G.; Crosky, A. Effect of the Addition of Multi-Walled Carbon Nanotubes on the Thermomechanical Properties of Epoxy Resin. Polym. Compos. 2017, 38, 1873–1880. [Google Scholar] [CrossRef]
- Hameed, A.; Islam, M.; Ahmad, I.; Mahmood, N.; Saeed, S.; Javed, H. Thermal and Mechanical Properties of Carbon Nanotube/Epoxy Nanocomposites Reinforced with Pristine and Functionalized Multiwalled Carbon Nanotubes. Polym. Compos. 2015, 36, 1891–1898. [Google Scholar] [CrossRef]
- Shahrestanaki, A.A.K.; Mehrshad, M.; Akhlaghi, S.H. Preparation and Non-Isothermal Cure Kinetics Study of Epoxy Resin Nanocomposites with Amine and Epoxy Functionalized Magnetic Nanoparticles. High Perform. Polym. 2021, 33, 1025–1034. [Google Scholar] [CrossRef]
Composition, Parts by Mass | σben, MPa | Eben, MPa | σten, MPa | Eten, MPa | aim, kJ/m2 |
---|---|---|---|---|---|
100 ED-20 + 40 TCPP + 15 PEPA | 85 ± 2.8 | 2077 ± 62 | 34 ± 1.7 | 1634 ± 50 | 9.0 ± 0.35 |
100 ED-20 + 40 TCPP + 15 PEPA + 0.01 ND | 100 ± 3.0 | 2734 ± 83 | 41 ± 2.0 | 2006 ± 80 | 9.8 ± 0.38 |
100 ED-20 + 40 TCPP + 15 PEPA + 0.05 ND | 102 ± 3.2 | 3065 ± 90 | 46 ± 2.2 | 2160 ± 86 | 11.0 ± 0.42 |
100 ED-20 + 40 TCPP+ 15PEPA + 0.10 ND | 110 ± 3.3 | 3676 ± 105 | 52 ± 2.4 | 2220 ± 88 | 14.0 ± 0.56 |
100 ED-20 + 40 TCPP + 15 PEPA + 0.50 ND | 81 ± 2.5 | 4668 ± 140 | 43 ± 2.1 | 2390 ± 92 | 10.1 ± 0.40 |
Composition, Parts by Mass | τgel, min | τcur, min | Tmax, °C |
---|---|---|---|
ED-20 + TCPP + PEPA | 104 | 146 | 88 |
ED-20 + TCPP + PEPA + ND | 95 | 142 | 110 |
ED-20 + TCPP + PEPA + ND(2.5% aminoacetic acid) | 82 | 114 | 115 |
ED-20 + TCPP + PEPA + ND(5.0% aminoacetic acid) | 80 | 108 | 119 |
ED-20 + TCPP + PEPA + ND(7.5% aminoacetic acid) | 78 | 106 | 122 |
Composition, Parts by Mass, Cured by 15 Parts by Mass of PEPA | Tstart–Tend Tmax °C | H, J/g |
---|---|---|
ED-20 + TCPP + ND | 66–151 106 | 488 |
ED-20 + TCPP + ND(2.5% aminoacetic acid) | 64–155 108 | 585 |
ED-20 + TCPP + ND(5.0% aminoacetic acid) | 48–177 110 | 663 |
ED-20 + TCPP + ND(7.5% aminoacetic acid) | 41–175 109 | 691 |
Composition, Parts by Mass, Cured by 15 Parts by Mass of PEPA | T5%, °C | T30%, °C | T50%, °C | T70%, °C | Residues at 800 °C, wt% |
---|---|---|---|---|---|
ED-20 + TCPP | 195 | 281 | 392 | 515 | 5.1 |
ED-20 + TCPP + ND | 205 | 284 | 394 | 525 | 3.7 |
ED-20 + TCPP + ND(5.0% aminoacetic acid) | 216 | 291 | 412 | 536 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostovoy, A.; Bekeshev, A.; Shcherbakov, A.; Tastanova, L.; Akhmetova, M.; Apendina, A.; Lopukhova, M. Investigating the Structure and Properties of Epoxy Nanocomposites Containing Nanodiamonds Modified with Aminoacetic Acid. Polymers 2024, 16, 449. https://doi.org/10.3390/polym16040449
Mostovoy A, Bekeshev A, Shcherbakov A, Tastanova L, Akhmetova M, Apendina A, Lopukhova M. Investigating the Structure and Properties of Epoxy Nanocomposites Containing Nanodiamonds Modified with Aminoacetic Acid. Polymers. 2024; 16(4):449. https://doi.org/10.3390/polym16040449
Chicago/Turabian StyleMostovoy, Anton, Amirbek Bekeshev, Andrey Shcherbakov, Lyazzat Tastanova, Marzhan Akhmetova, Ainagul Apendina, and Marina Lopukhova. 2024. "Investigating the Structure and Properties of Epoxy Nanocomposites Containing Nanodiamonds Modified with Aminoacetic Acid" Polymers 16, no. 4: 449. https://doi.org/10.3390/polym16040449
APA StyleMostovoy, A., Bekeshev, A., Shcherbakov, A., Tastanova, L., Akhmetova, M., Apendina, A., & Lopukhova, M. (2024). Investigating the Structure and Properties of Epoxy Nanocomposites Containing Nanodiamonds Modified with Aminoacetic Acid. Polymers, 16(4), 449. https://doi.org/10.3390/polym16040449