Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation
Abstract
:1. Introduction
2. Experimental Sections
2.1. Experimental Materials
2.2. Experimental Steps
2.3. Gas Separation Measurement and Calculation Formula
Other Measurements
3. Results and Discussion
3.1. Surface Morphology of PI and PI/IL1 (x %) Membranes
3.2. Mechanical Properties of PI and PI/ILn (x %) Membranes
- (1)
- The effect of IL content on the mechanical properties of PI membranes
- (2)
- The effect of IL types on the mechanical properties of PI membranes
3.3. Gas Separation Performance of PI and PI/ILn (x %) Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Benavides, M.; David, O.; Johnson, T. High-performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J. Membr. Sci. 2018, 550, 198–207. [Google Scholar] [CrossRef]
- Muntha, S.; Kausar, A.; Siddiq, M. Progress on polymer-based membranes in gas separation technology. Polym. Plast. Technol. Eng. 2016, 55, 1282–1298. [Google Scholar] [CrossRef]
- Han, G.; Yu, N.; Liu, D.; Yu, G.; Chen, X.; Zhong, C. Stepped enhancement of CO2 adsorption and separation in IL-ZIF-IL composites with shell-interlayer-core structure. AIChE J. 2020, 67, 17112–17117. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, Z.; Ji, X. CO2 absorption using a hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol absorbent. Fluid. Phase Equilibr. 2021, 188, 113011–113025. [Google Scholar] [CrossRef]
- Zeeshan, M.; Yalcin, K.; Oztuna, F.E.S.; Unal, U.; Keskin, S.; Uzun, A. A new class of porous materials for efficient CO2 separation: Ionic liquid/graphene aerogel composites. Carbon 2021, 171, 79–87. [Google Scholar] [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of Ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- da Luz, M.; Dias, G.; Zimmer, H.; Bernard, F.L.; Nascimento, J.F.D.; Einloft, S. Poly(ionic liquid)s-based polyurethane blends: Efect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends. Polym. Bull. 2021, 79, 6123–6139. [Google Scholar] [CrossRef]
- Lei, L.; Lindbråthen, A.; Zhang, X.; Favvas, E.P.; Sandru, M.; Hillestad, M.; He, X. Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. J. Membr. Sci. 2020, 614, 118529. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, X.; Xu, L.; Zhang, G.; Zheng, J.; Tong, Z.; Shen, C.; Meng, Q. Preparation of amino-functional UiO-66/PIMs mixed matrix membranes with [bmim][Tf2N] as regulator for enhanced gas separation. Membranes 2021, 11, 35. [Google Scholar] [CrossRef]
- Xue, W.-L.; Wang, L.; Li, Y.K.; Chen, H.; Fu, K.X.; Zhang, F.; He, T.; Deng, Y.H.; Li, J.R.; Wan, C.-Q. Reticular chemistry for ionic liquid-functionalized metal-organic frameworks with high selectivity for CO2. ACS Sustain. Chem. Eng. 2020, 8, 18558–18567. [Google Scholar] [CrossRef]
- Hu, T.; Dong, G.; Li, H.; Chen, V. Effect of PEG and PEO-PDMS copolymer additives on the structure and performance of Matrimid@ hollow fibers for CO2 separation. J. Membr. Sci. 2014, 468, 107–117. [Google Scholar] [CrossRef]
- Lin, W.; Chung, T. Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes. J. Membr. Sci. 2001, 186, 183–193. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 1, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Kenarsari, S.D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A.G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013, 468, 77–97. [Google Scholar] [CrossRef]
- Qu, Y.; Du, X.; Cheng, K.; Zang, Y. Synthesis and permselectivity of a soluble two-dimensional macromolecular sheet by solid-solid interfacial polycondensation followed by chemical exfoliation. ACS Mater. Lett. 2020, 2, 1121–1128. [Google Scholar] [CrossRef]
- Ravi, C.; Dutta, K.; Bhatia, K. Interfacial engineering of MOF-based mixed matrix membrane through atomistic simulations. J. Phys. Chem. C 2019, 124, 594–604. [Google Scholar] [CrossRef]
- Tanaka, K.; Islam, N.; Kido, M.; Kita, H.; Okamoto, K.-I. Gas permeation and separation properties of sulfonated polyimide membranes. Polymer 2006, 47, 4370–4377. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Dong, J.; Li, H.-B.; Zhang, Q.; Zhao, X. Ionic polyimide membranes containing Troger’s base: Synthesis, microstructure and potential application in CO2 separation. J. Membr. Sci. 2020, 602, 117967. [Google Scholar] [CrossRef]
- Xin, Q.; Shao, W.; Ma, Q.; Ye, X.; Huang, Z.; Li, B.; Wang, S.; Li, H.; Zhang, Y. Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Appl. Mater. Interfaces 2020, 2020, 12–42. [Google Scholar] [CrossRef]
- Klepić, M.; Jansen, J.C.; Fuoco, A.; Esposito, E.; Izák, P.; Petrusová, Z.; Vankelecom, I.F.; Randová, A.; Fíla, V.; Lanč, M.; et al. Gas separation performance of carbon dioxide-selective poly(vinyl alcohol)-ionic liquid blend membranes: The effect of temperature, feed pressure and humidity. Sep. Purif. 2021, 270, 13–33. [Google Scholar] [CrossRef]
- Bei, P.; Liu, H.; Zhang, Y.; Gao, Y.; Cai, Z.; Chen, Y. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation. Environ. Sci. Pollut. Res. 2020, 28, 738–753. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Kwon, S. Synthesis and characterization of highly soluble and oxygen permeable new polyimides based on twisted biphenyl dianhydride and spirobifluorene diamine. Macromolecules 2005, 38, 7950–7956. [Google Scholar] [CrossRef]
- Shamsipur, H.; Dawood, B.A.; Budd, P.M.; Bernardo, P.; Clarizia, G.; Jansen, J.C. Thermally rearrangeable PIM-polyimides for gas separation membranes. Macromolecules 2014, 47, 5595–5606. [Google Scholar] [CrossRef]
- Shrimant, B.; Dangat, Y.; Kharul, U.K.; Wadgaonkar, P.P. Intrinsically microporous polyimides containing spirobisindane and phenazine units: Synthesis, characterization and gas permeation properties. J. Polym. Sci. A Polym. Chem. 2018, 56, 766–775. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. CO2/N2 Separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities. Membranes 2020, 10, 154. [Google Scholar] [CrossRef]
- An, H.; Lee, A.S.; Kammakakam, I.; Sang Hwang, S.; Kim, J.H.; Lee, J.H.; Suk Lee, J. Bromination/debromination-induced thermal crosslinking of 6FDA-durene for aggressive gas separations. J. Membr. Sci. 2018, 545, 358–366. [Google Scholar] [CrossRef]
- Ferreira, T.J.; Vera, A.T.; de Moura, B.A.; Esteves, L.M.; Tariq, M.; Esperança, J.M.S.S.; Esteves, I.A.A.C. Paramagnetic ionic liquid/metal organic framework composites for CO2/CH4 and CO2/N2 separations. Front. Chem. 2020, 8, 590191–590210. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, H.; Wang, Q.; Ma, W.; Yang, G.; Xu, S.; Li, S.; Su, G.; Qu, Y.; Zhang, M.; et al. Optimization of a MOF blended with modified polyimide membrane for high-performance gas separation. Membranes 2021, 12, 34. [Google Scholar] [CrossRef]
- Vu, M.-T.; Lin, R.; Diao, H.; Zhu, Z.; Bhatia, S.K.; Smart, S. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes. J. Membr. Sci. 2019, 587, 117157. [Google Scholar] [CrossRef]
- Clara, C. Mixed Matrix Membranes. Membranes 2019, 9, 149. [Google Scholar] [CrossRef]
- Ahmad, N.; Leo, C.; Mohammad, A. Enhancement on the CO2 separation performance of mixed matrix membrane using ionic liquid. Mater. Lett. 2021, 304, 148–157. [Google Scholar] [CrossRef]
- Paola, B.; Daniela, Z.; Gabriele, C. Triggering the gas transport in PVdF-HFP membranes via Imidazolium Ionic Liquids. Sep. Purif. 2020, 250, 117201–117206. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Leo, C.P.; Mohammad, A.W.; Shaari, N.; Ang, W.L. Recent progress in the development of ionic liquid-based mixed matrix membrane for CO2 separation: A review. Int. J. Energy Res. 2021, 45, 9800–9830. [Google Scholar] [CrossRef]
- Hayashi, E.; Hashimoto, K.; Thomas, M.L.; Tsuzuki, S.; Watanabe, M. Role of Cation Structure in CO2 Separation by Ionic Liquid/Sulfonated Polyimide Composite Membrane. Membranes 2019, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zha, Y.; Du, X.; Xu, S.; Zhang, M.; Jia, H. Interfacial polymerization of self-standing covalent organic framework membranes at alkane/ionic liquid interfaces for dye separation. ACS Appl. Polym. Mater. 2022, 10, 7528–7536. [Google Scholar] [CrossRef]
- Tachibana, S.; Hashimoto, K.; Mizuno, H.; Ueno, K.; Watanabe, M. Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes. Polymer 2022, 15, 124533–124555. [Google Scholar] [CrossRef]
- You, L.; Guo, Y.; He, Y.; Huo, F.; Zeng, S.; Li, C.; Zhang, X.; Zhang, X. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane. Front. Chem. Sci. Eng. 2021, 16, 141–151. [Google Scholar] [CrossRef]
- Kanehashi, S.; Kishida, M.; Kidesaki, T.; Shindo, R.; Sato, S.; Miyakoshi, T.; Nagai, K. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. J. Membr. Sci. 2013, 430, 211–222. [Google Scholar] [CrossRef]
- Iqra, S.; Arshad, H.; Sarah, F. Effect analysis of nickel ferrite (NiFe2O4) and titanium dioxide (TiO2) nanoparticles on CH4/CO2 gas permeation properties of cellulose acetate based mixed matrix membranes. J. Polym. Environ. 2019, 27, 1449–1464. [Google Scholar] [CrossRef]
- Ana, M.; Pascual, D.; Angel, L.; Vicente, D. Poly(3-hydroxybutyrate)/ZnO bionano composites with improved mechanical, barrier and antibacterial properties. Int. J. Mol. Sci. 2014, 15, 10950–10960. [Google Scholar] [CrossRef]
- Sona, R.; Cor, J. Carbon Dioxide Solubility in the Homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. J. Chem. Eng. Data 2009, 54, 382–386. [Google Scholar] [CrossRef]
- Qiu, Y.; Ren, J.; Zhao, D.; Li, H.; Deng, M. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. J. Energy Chem. 2016, 25, 122–130. [Google Scholar] [CrossRef]
- Liliana, C.; Tome, M.; Isabel, M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. [Google Scholar] [CrossRef]
- Chen, H.; Li, P.; Chung, T. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int. J. Hydrogen Energy 2012, 37, 11796–11804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Zhao, S.; Qu, Y.; Jia, H.; Xu, S.; Zhang, M.; Geng, G. Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation. Polymers 2024, 16, 393. https://doi.org/10.3390/polym16030393
Du X, Zhao S, Qu Y, Jia H, Xu S, Zhang M, Geng G. Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation. Polymers. 2024; 16(3):393. https://doi.org/10.3390/polym16030393
Chicago/Turabian StyleDu, Xiaoyu, Shijun Zhao, Yanqing Qu, Hongge Jia, Shuangping Xu, Mingyu Zhang, and Guoliang Geng. 2024. "Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation" Polymers 16, no. 3: 393. https://doi.org/10.3390/polym16030393
APA StyleDu, X., Zhao, S., Qu, Y., Jia, H., Xu, S., Zhang, M., & Geng, G. (2024). Preparation of Polyimide/Ionic Liquid Hybrid Membrane for CO2/CH4 Separation. Polymers, 16(3), 393. https://doi.org/10.3390/polym16030393