Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies
Abstract
:1. Introduction
2. 3D Printing in Dentistry
3. Advantages of 3D Printing
4. 3D Printing Methods in Dentistry
5. Applications of 3D Printing in Dentistry
6. Aligners
7. Required Properties of the 3D Printed Aligners
7.1. Mechanical Properties
7.1.1. Elasticity and Force Delivery
Thickness
Resilience and Elasticity
Force Delivery
7.1.2. Resiliency
7.1.3. Viscoelasticity
7.1.4. Stress Relaxation
7.1.5. Toughness
- Resistance to fracture: Aligners face diverse challenges—biting forces, repeated handling, and occasional mishaps—without succumbing to cracks or fractures. Ma et al. [93] suggest a minimum flexural strength of 50 MPa and a fracture toughness exceeding 1 MPa·m1/2 as benchmarks for adequate resilience.
- Resistance to deformation: Maintaining predictable shape and consistent force delivery throughout treatment is crucial. Duran et al. [94] propose a modulus of elasticity between 1500 and 2500 MPa, striking a balance between effectiveness and patient comfort.
- Resistance to fatigue: The repetitive insertion and removal cycles can induce fatigue cracking. Gold et al. [95] emphasize the need for materials with intrinsic fatigue resistance to prevent premature failure and ensure extended aligner performance.
- Resistance to wear: Friction and abrasion within the oral environment can compromise aligner fit and efficacy. Weir [96] underlines the importance of materials with low wear rates and smooth surfaces for optimal long-term function.
7.1.6. Application of Finite Element Analysis and Prediction
7.2. Fitting and Accuracy
7.3. Stability in Clinical Applications
7.3.1. Mechanical Properties
7.3.2. Thermal Properties
7.3.3. Chemical Resistance
7.4. Optical Properties
7.5. Biocompatibility
7.5.1. Material Selection
7.5.2. Washing and Post-Curing
7.5.3. Antimicrobial Properties
8. Current Challenges of the 3D Printed Aligners
8.1. Workflows
8.2. Surface Roughness
8.3. Properties of Aligners
8.4. Accuracy
8.5. Cost Effectiveness
8.6. Tooth Movement Effectiveness
8.7. Hygiene
9. Future Direction of the 3D Printing Aligners
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D Printing and Digital Processing Techniques in Dentistry: A Review of Literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Farjana, H.N. Modern Facile Dentistry: Boon to Mankind. Int. J. Appl. Res. 2019, 5, 226–229. [Google Scholar]
- Habib, A.A.I.; Sheikh, N.A. 3D Printing Review in Numerous Applications for Dentistry. J. Inst. Eng. Ser. C 2022, 103, 991–1000. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef]
- Vasamsetty, P.; Pss, T.; Kukkala, D.; Singamshetty, M.; Gajula, S. 3D Printing in Dentistry–Exploring the New Horizons. Mater. Today Proc. 2020, 26, 838–841. [Google Scholar] [CrossRef]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjić, K.; Müller, A.S.; Agis, H. 3D Printing—Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef]
- Pillai, S.; Upadhyay, A.; Khayambashi, P.; Farooq, I.; Sabri, H.; Tarar, M.; Lee, K.T.; Harb, I.; Zhou, S.; Wang, Y.; et al. Dental 3D-Printing: Transferring Art from the Laboratories to the Clinics. Polymers 2021, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Bakdach, W.M.M.; Haiba, M.; Hadad, R. Changes in Surface Morphology, Chemical and Mechanical Properties of Clear Aligners during Intraoral Usage: A Systematic Review and Meta-Analysis. Int. Orthod. 2022, 20, 100610. [Google Scholar] [CrossRef] [PubMed]
- Maspero, C.; Tartaglia, G.M. 3D Printing of Clear Orthodontic Aligners: Where We Are and Where We Are Going. Materials 2020, 13, 5204. [Google Scholar] [CrossRef] [PubMed]
- Andjela, L.; Abdurahmanovich, V.M.; Vladimirovna, S.N.; Mikhailovna, G.I.; Yurievich, D.D.; Alekseevna, M.Y. A Review on Vat Photopolymerization 3D-Printing Processes for Dental Application. Dent. Mater. 2022, 38, e284–e296. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, Y.-M.; Lai, Y.-L.; Lee, S.-Y. Mechanical Properties, Accuracy, and Cytotoxicity of UV-Polymerized 3D Printing Resins Composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef]
- Ling, L.; Taremi, N.; Malyala, R. A Novel Low-Shrinkage Resin for 3D Printing. J. Dent. 2022, 118, 103957. [Google Scholar] [CrossRef]
- Hata, K.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Development of Dental Poly (Methyl Methacrylate)-Based Resin for Stereolithography Additive Manufacturing. Polymers 2021, 13, 4435. [Google Scholar] [CrossRef]
- Wang, L.; Ni, X. The Effect of the Inorganic Nanomaterials on the UV-Absorption, Rheological and Mechanical Properties of the Rapid Prototyping Epoxy-Based Composites. Polym. Bull. 2017, 74, 2063–2079. [Google Scholar] [CrossRef]
- Tiskaya, M.; Shahid, S.; Gillam, D.; Hill, R. The Use of Bioactive Glass (BAG) in Dental Composites: A Critical Review. Dent. Mater. 2021, 37, 296–310. [Google Scholar] [CrossRef]
- Thurzo, A.; Urbanová, W.; Novák, B.; Waczulíková, I.; Varga, I. Utilization of a 3D Printed Orthodontic Distalizer for Tooth-Borne Hybrid Treatment in Class II Unilateral Malocclusions. Materials 2022, 15, 1740. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, H.; Heger, S.M.; Stocker, T.; Baumert, U.; Wichelhaus, A.; Hoffmann, L. Accuracy of 3D Tooth Movements in the Fabrication of Manual Setup Models for Aligner Therapy. Materials 2022, 15, 3853. [Google Scholar] [CrossRef] [PubMed]
- Venezia, P.; Ronsivalle, V.; Rustico, L.; Barbato, E.; Leonardi, R.; Lo Giudice, A. Accuracy of Orthodontic Models Prototyped for Clear Aligners Therapy: A 3D Imaging Analysis Comparing Different Market Segments 3D Printing Protocols. J. Dent. 2022, 124, 104212. [Google Scholar] [CrossRef]
- Cousley, R.R. Introducing 3D Printing in Your Orthodontic Practice. J. Orthod. 2020, 47, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Shannon, T.; Groth, C. Be Your Own Manufacturer: 3D Printing Intraoral Appliances. Semin. Orthod. 2021, 27, 184–188. [Google Scholar] [CrossRef]
- Im, C.-H.; Park, J.-M.; Kim, J.-H.; Kang, Y.J.; Kim, J.-H. Assessment of Compatibility between Various Intraoral Scanners and 3D Printers through an Accuracy Analysis of 3D Printed Models. Materials 2020, 13, 4419. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current Status and Applications of Additive Manufacturing in Dentistry: A Literature-Based Review. J. Oral Biol. Craniofac. Res. 2019, 9, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Hasan, N.; Fauziya; Gupta, A.; Nadaf, A.; Ahmad, L.; Aqil, M.; Kesharwani, P. Review on 3D Printing in Dentistry: Conventional to Personalized Dental Care. J. Biomater. Sci. Polym. Ed. 2022, 33, 2292–2323. [Google Scholar] [CrossRef] [PubMed]
- Macrì, M.; Murmura, G.; Varvara, G.; Traini, T.; Festa, F. Clinical Performances and Biological Features of Clear Aligners Materials in Orthodontics. Front. Mater. 2022, 9, 819121. [Google Scholar] [CrossRef]
- Barone, S.; Paoli, A.; Razionale, A.V.; Savignano, R. Computational Design and Engineering of Polymeric Orthodontic Aligners. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2839. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Tuli, A.; Jain, A. 3D Printed Material Application in Orthodontics. Mater. Today Proc. 2020, 28, 1635–1642. [Google Scholar] [CrossRef]
- Monzón, M.; Ortega, Z.; Hernández, A.; Paz, R.; Ortega, F. Anisotropy of Photopolymer Parts Made by Digital Light Processing. Materials 2017, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Simoneti, D.M.; Pereira-Cenci, T.; Dos Santos, M.B.F. Comparison of Material Properties and Biofilm Formation in Interim Single Crowns Obtained by 3D Printing and Conventional Methods. J. Prosthet. Dent. 2022, 127, 168–172. [Google Scholar] [CrossRef]
- Park, S.-M.; Park, J.-M.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Materials 2020, 13, 3970. [Google Scholar] [CrossRef]
- Nahoum, H.I. The Vacuum Formed Dental Contour Appliance. N. Y. State Dent. J. 1964, 9, 385–390. [Google Scholar]
- Yassir, Y.A.; Nabbat, S.A.; McIntyre, G.T.; Bearn, D.R. Clinical Effectiveness of Clear Aligner Treatment Compared to Fixed Appliance Treatment: An Overview of Systematic Reviews. Clin. Oral Investig. 2022, 26, 2353–2370. [Google Scholar] [CrossRef]
- Sehrawat, S.; Kumar, A.; Prabhakar, M.; Nindra, J. The Expanding Domains of 3D Printing Pertaining to the Speciality of Orthodontics. Mater. Today Proc. 2022, 50, 1611–1618. [Google Scholar] [CrossRef]
- Dalaie, K.; Fatemi, S.M.; Ghaffari, S. Dynamic Mechanical and Thermal Properties of Clear Aligners after Thermoforming and Aging. Prog. Orthod. 2021, 22, 15. [Google Scholar] [CrossRef]
- Zinelis, S.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Eliades, T. Comparative Analysis of Mechanical Properties of Orthodontic Aligners Produced by Different Contemporary 3D Printers. Orthod. Craniofac. Res. 2022, 25, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Bichu, Y.M.; Alwafi, A.; Liu, X.; Andrews, J.; Ludwig, B.; Bichu, A.Y.; Zou, B. Advances in Orthodontic Clear Aligner Materials. Bioact. Mater. 2023, 22, 384–403. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Nahar, P.; Ali, M.H. Current Perspectives of 3d Printing in Dental Applications. Braz. Dent. Sci. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Seo, J.-H.; Kim, M.-S.; Lee, J.-H.; Eghan-Acquah, E.; Jeong, Y.-H.; Hong, M.-H.; Kim, B.; Lee, S.-J. Biomechanical Efficacy and Effectiveness of Orthodontic Treatment with Transparent Aligners in Mild Crowding Dentition—A Finite Element Analysis. Materials 2022, 15, 3118. [Google Scholar] [CrossRef]
- Akdeniz, B.S.; Aykaç, V.; Turgut, M.; Çetin, S. Digital Dental Models in Orthodontics: A Review. J. Exp. Clin. Med. 2022, 39, 250–255. [Google Scholar] [CrossRef]
- Panayi, N.C. In-House Customization of Lingual Orthodontic Brackets Using Ubrackets Computer-Aided Design Orthodontic Software. AJO-DO Clin. Companion 2022, 2, 325–334. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Gizani, S.; Tsolakis, A.I.; Panayi, N. Three-Dimensional-Printed Customized Orthodontic and Pedodontic Appliances: A Critical Review of a New Era for Treatment. Children 2022, 9, 1107. [Google Scholar] [CrossRef]
- Edelmann, A.; English, J.D.; Chen, S.J.; Kasper, F.K. Analysis of the Thickness of 3-Dimensional-Printed Orthodontic Aligners. Am. J. Orthod. Dentofac. Orthop. 2020, 158, e91–e98. [Google Scholar] [CrossRef] [PubMed]
- Hartshorne, J.; Wertheimer, M.B. Emerging Insights and New Developments in Clear Aligner Therapy: A Review of the Literature. AJO-DO Clin. Companion 2022, 2, 311–324. [Google Scholar] [CrossRef]
- Lombardo, L.; Palone, M.; Carlucci, A.; Siciliani, G. Clear Aligner Hybrid Approach: A Case Report. J. World Fed. Orthod. 2020, 9, 32–43. [Google Scholar] [CrossRef]
- Wheeler, T.T. Orthodontic Clear Aligner Treatment. Semin. Orthod. 2017, 23, 83–89. [Google Scholar] [CrossRef]
- Shetty, S.K.; Wilson, C.; Kumar, Y.M.; Madhur, V.K. Orthodontic Treatment with Clear Aligners. Sch. J. Dent. Sci. 2021, 8, 230–233. [Google Scholar] [CrossRef]
- Upadhyay, M.; Arqub, S.A. Biomechanics of Clear Aligners: Hidden Truths & First Principles. J. World Fed. Orthod. 2022, 11, 12–21. [Google Scholar] [PubMed]
- Aljabaa, A.H. Clear Aligner Therapy––Narrative Review. J. Int. Oral Health 2020, 12, S1–S4. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Kwon, J.-S.; Jiang, H.B.; Cha, J.-Y.; Kim, K.-M. Effects of Thermoforming on the Physical and Mechanical Properties of Thermoplastic Materials for Transparent Orthodontic Aligners. Korean J. Orthod. 2018, 48, 316–325. [Google Scholar] [CrossRef]
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How Well Does Invisalign Work? A Prospective Clinical Study Evaluating the Efficacy of Tooth Movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef]
- Izhar, A.; Singh, G.; Goyal, V.; Singh, R.; Gupta, N.; Pahuja, P. Comparative Assessment of Clinical and Predicted Treatment Outcomes of Clear Aligner Treatment: An in Vivo Study. Turk. J. Orthod. 2019, 32, 229–235. [Google Scholar] [CrossRef]
- Tamburrino, F.; D’Antò, V.; Bucci, R.; Alessandri-Bonetti, G.; Barone, S.; Razionale, A.V. Mechanical Properties of Thermoplastic Polymers for Aligner Manufacturing: In Vitro Study. Dent. J. 2020, 8, 47. [Google Scholar] [CrossRef]
- Ryokawa, H.; Miyazaki, Y.; Fujishima, A.; Miyazaki, T.; Maki, K. The Mechanical Properties of Dental Thermoplastic Materials in a Simulated Intraoral Environment. Orthod. Waves 2006, 65, 64–72. [Google Scholar] [CrossRef]
- Kesling, H.D. The Philosophy of the Tooth Positioning Appliance. Am. J. Orthod. Oral Surg. 1945, 31, 297–304. [Google Scholar] [CrossRef]
- Sachdev, S.; Tantidhnazet, S.; Saengfai, N.N. Accuracy of Tooth Movement with In-House Clear Aligners. J. World Fed. Orthod. 2021, 10, 177–182. [Google Scholar] [CrossRef]
- Kesling, H.D. Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment. Am. J. Orthod. Oral Surg. 1946, 32, 285–293. [Google Scholar] [CrossRef]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Forces and Moments Generated by Removable Thermoplastic Aligners: Incisor Torque, Premolar Derotation, and Molar Distalization. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, J.; Al-Awadhi, E.A. Clear Aligners Generations and Orthodontic Tooth Movement. J. Orthod. 2016, 43, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Jackson, T. 3D Technologies for Precision in Orthodontics. Semin. Orthod. 2018, 24, 386–392. [Google Scholar] [CrossRef]
- Tartaglia, G.M.; Mapelli, A.; Maspero, C.; Santaniello, T.; Serafin, M.; Farronato, M.; Caprioglio, A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials 2021, 14, 1799. [Google Scholar] [CrossRef] [PubMed]
- Weir, T. Clear Aligners in Orthodontic Treatment. Aust. Dent. J. 2017, 62, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Panayi, N.C. Directly Printed Aligner: Aligning with the Future. Turk. J. Orthod. 2023, 36, 62–69. [Google Scholar] [CrossRef]
- Ryu, S.-J.; Choi, S.-H.; Cha, J.-Y.; Hwang, C.-J. Achievement of Anterior Teeth Arrangement Using a Single Stage of Clear Aligner. J. Korean Dent. Sci. 2021, 14, 90–100. [Google Scholar]
- Shah, M.J.; Kubavat, A.K.; Patel, K.V.; Prajapati, N.H. Fabrication of In-House Aligner-A Review. J. Contemp. Orthod. 2022, 6, 120–124. [Google Scholar] [CrossRef]
- Pugalendhi, A.; Ranganathan, R.; Chandrasekaran, M. Novel Fabrication Method for Clear and Hard Tooth Aligner through Additive Manufacturing Technology: A Pilot Study. Mater. Today Proc. 2020, 28, 551–555. [Google Scholar] [CrossRef]
- Caminiti, M.; Lou, T. Clear Aligner Orthognathic Splints. J. Oral Maxillofac. Surg. 2019, 77, 1071.e1–1071.e8. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, M.; Altieri, F.; Pandolfi, S.; Giansanti, M. The Combined Use of Computer-Guided, Minimally Invasive, Flapless Corticotomy and Clear Aligners as a Novel Approach to Moderate Crowding: A Case Report. Korean J. Orthod. 2017, 47, 130–141. [Google Scholar] [CrossRef]
- Lee, E.-H.; Ahn, J.-S.; Lim, Y.-J.; Kwon, H.-B.; Kim, M.-J. Effect of Post-Curing Time on the Color Stability and Related Properties of a Tooth-Colored 3D-Printed Resin Material. J. Mech. Behav. Biomed. Mater. 2022, 126, 104993. [Google Scholar] [CrossRef]
- Koenig, N.; Choi, J.-Y.; McCray, J.; Hayes, A.; Schneider, P.; KIm, K.B. Comparison of Dimensional Accuracy between Direct-Printed and Thermoformed Aligners. Korean J. Orthod. 2022, 52, 249–257. [Google Scholar] [CrossRef]
- Kenning, K.B.; Risinger, D.C.; English, J.D.; Cozad, B.E.; Harris, L.M.; Ontiveros, J.C.; Kasper, F.K. Evaluation of the Dimensional Accuracy of Thermoformed Appliances Taken from 3D Printed Models with Varied Shell Thicknesses: An in Vitro Study. Int. Orthod. 2021, 19, 137–146. [Google Scholar] [CrossRef]
- Panayi, N.; Cha, J.-Y.; Kim, K.B. 3D Printed Aligners: Material Science, Workflow and Clinical Applications. Semin. Orthod. 2023, 29, 25–33. [Google Scholar] [CrossRef]
- Zamani, N.S.M.; Ashari, A.; Ali, S.H.M.; Gan, K.B.; How, R.A.W.M.; Wahab, R.M.A.; Mohamed, A.M.F.S.; Sinnasamy, S.; Mokhtar, M.H.H. Distributed Force Measurement and Mapping Using Pressure-Sensitive Film and Image Processing for Active and Passive Aligners on Orthodontic Attachments. IEEE Access 2022, 10, 52853–52865. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.; Kim, H.-J.; Chung, C.J.; Choi, Y.J.; Kim, S.-J.; Cha, J.-Y. Thermo-Mechanical Properties of 3D Printed Photocurable Shape Memory Resin for Clear Aligners. Sci. Rep. 2022, 12, 6246. [Google Scholar] [CrossRef] [PubMed]
- Peels, J. Luxcreo. Available online: https://3dprint.com/299590/luxcreo-gets-fda-class-ii-510k-clearance-for-direct-3d-printed-dental-aligners/ (accessed on 25 December 2023).
- Goracci, C.; Juloski, J.; D’Amico, C.; Balestra, D.; Volpe, A.; Juloski, J.; Vichi, A. Clinically Relevant Properties of 3D Printable Materials for Intraoral Use in Orthodontics: A Critical Review of the Literature. Materials 2023, 16, 2166. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Kato, R.; Kakami, C.; Okamoto, H.; Mamada, K.; Maki, K. Development of Biocompatible Resins for 3D Printing of Direct Aligners. J. Photopolym. Sci. Technol. 2019, 32, 209–216. [Google Scholar] [CrossRef]
- ISO 20795-2:2013; Dentistry: Base Polymers—Part 2: Orthodontic Base Polymers. ISO: Geneva, Switzerland, 2013.
- Elshazly, T.M.; Keilig, L.; Alkabani, Y.; Ghoneima, A.; Abuzayda, M.; Talaat, W.; Talaat, S.; Bourauel, C.P. Potential Application of 4D Technology in Fabrication of Orthodontic Aligners. Front. Mater. 2022, 8, 794536. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, W.; Li, S. Force Changes Associated with Differential Activation of En-Masse Retraction and/or Intrusion with Clear Aligners. Korean J. Orthod. 2021, 51, 32–42. [Google Scholar] [CrossRef]
- Boyer, R.A.; Kasper, F.K.; English, J.D.; Jacob, H.B. Effect of Print Orientation on the Dimensional Accuracy of Orthodontic Aligners Printed 3-Dimensionally. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 732–742.e1. [Google Scholar] [CrossRef]
- Elshazly, T.M.; Keilig, L.; Salvatori, D.; Chavanne, P.; Aldesoki, M.; Bourauel, C. Effect of Trimming Line Design and Edge Extension of Orthodontic Aligners on Force Transmission: An in Vitro Study. J. Dent. 2022, 125, 104276. [Google Scholar] [CrossRef]
- Can, E.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Zinelis, S.; Eliades, G.; Eliades, T. In-House 3D-Printed Aligners: Effect of in Vivo Ageing on Mechanical Properties. Eur. J. Orthod. 2022, 44, 51–55. [Google Scholar] [CrossRef]
- Al Noor, H.S.S.; Al-Joubori, S.K. Retention of Different Orthodontic Aligners According to Their Thickness and the Presence of Attachments. Int. J. Med. Res. Health Sci. 2018, 7, 115–121. [Google Scholar]
- Ho, C.-T.; Huang, Y.-T.; Chao, C.-W.; Huang, T.-H.; Kao, C.-T. Effects of Different Aligner Materials and Attachments on Orthodontic Behavior. J. Dent. Sci. 2021, 16, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- JIS T6528:2019; Dental Orthodontic Base Resins. JIS: Tokyo, Japan, 2019.
- Thurzo, A.; Kočiš, F.; Novák, B.; Czako, L.; Varga, I. Three-Dimensional Modeling and 3D Printing of Biocompatible Orthodontic Power-Arm Design with Clinical Application. Appl. Sci. 2021, 11, 9693. [Google Scholar] [CrossRef]
- Ammann, R.; Tanner, C.; Schulz, G.; Osmani, B.; Nalabothu, P.; Töpper, T.; Müller, B. Three-Dimensional Analysis of Aligner Gaps and Thickness Distributions, Using Hard X-ray Tomography with Micrometer Resolution. J. Med. Imaging 2022, 9, 031509. [Google Scholar] [CrossRef]
- Kaur, H.; Khurelbaatar, T.; Mah, J.; Heo, G.; Major, P.W.; Romanyk, D.L. Investigating the Role of Aligner Material and Tooth Position on Orthodontic Aligner Biomechanics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 194–202. [Google Scholar] [CrossRef]
- McCarty, M.C.; Chen, S.J.; English, J.D.; Kasper, F. Effect of Print Orientation and Duration of Ultraviolet Curing on the Dimensional Accuracy of a 3-Dimensionally Printed Orthodontic Clear Aligner Design. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 889–897. [Google Scholar] [CrossRef]
- Sabbah, A.; Romanos, G.; Delgado-Ruiz, R. Impact of Layer Thickness and Storage Time on the Properties of 3d-Printed Dental Dies. Materials 2021, 14, 509. [Google Scholar] [CrossRef]
- Milovanović, A.; Sedmak, A.; Golubović, Z.; Zelić-Mihajlović, K.; Zurkić, A.; Trajković, I.; Milošević, M. The Effect of Time on Mechanical Properties of Biocompatible Photopolymer Resins Used for Fabrication of Clear Dental Aligners. J. Mech. Behav. Biomed. Mater. 2021, 119, 104494. [Google Scholar] [CrossRef]
- Juneja, M.; Jindal, P.; Bajaj, D.; Madhav, I.; Tuli, R. Methodology for Stress Measurement by Transparent Dental Aligners Using Strain Gauge. World J. Dent. 2011, 9, 13–18. [Google Scholar] [CrossRef]
- Ma, R.; Wang, F.; Zhang, F.; Wang, F.; Yan, W. Biocompatible and High-Performance Poly(l-Lactic Acid) Composites for Transparent, Flexible, and Tough Orthodontic Aligners. ACS Biomater. Sci. Eng. 2016, 2, 1009–1017. [Google Scholar]
- Duran, J.; Martín-Ibáñez, M.; Ruiz-Llopis, R.; Morant, A. Mechanical Properties of Digital Dental Materials: Biocompatibility and Functionality. Polymers 2022, 14, 5209. [Google Scholar]
- Gold, M.H.; Sarkar, N.; Vaidya, A.A. Fatigue Characterization of 3D Printed Polyurethanes for Orthodontic Aligner Applications. Polymers 2021, 13, 3305. [Google Scholar]
- Weir, M.D. Wear of Clear Aligner Materials. Angle Orthod. 2017, 87, 796–803. [Google Scholar]
- Murugan, S.S. Mechanical Properties of Materials: Definition, Testing and Application. Int. J. Mod. Stud. Mech. Eng. 2020, 6, 28–38. [Google Scholar]
- Astakhov, V.P. Mechanical Properties of Engineering Materials: Relevance in Design and Manufacturing. In Introduction to Mechanical Engineering; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Herzberger, J.; Sirrine, J.M.; Williams, C.B.; Long, T.E. Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog. Polym. Sci. 2019, 97, 101144. [Google Scholar] [CrossRef]
- Huang, X.; Peng, S.; Zheng, L.; Zhuo, D.; Wu, L.; Weng, Z. 3D Printing of High Viscosity UV-Curable Resin for Highly Stretchable and Resilient Elastomer. Adv. Mater. 2023, 35, 2304430. [Google Scholar] [CrossRef]
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Ni, J.; Ling, H.; Zhang, S.; Wang, Z.; Peng, Z.; Benyshek, C.; Zan, R.; Miri, A.K.; Li, Z.; Zhang, X.; et al. Three-Dimensional Printing of Metals for Biomedical Applications. Mater. Today Bio 2019, 3, 100024. [Google Scholar] [CrossRef]
- Kim, W.-H.; Hong, K.; Lim, D.; Lee, J.-H.; Jung, Y.J.; Kim, B. Optimal Position of Attachment for Removable Thermoplastic Aligner on the Lower Canine Using Finite Element Analysis. Materials 2020, 13, 3369. [Google Scholar] [CrossRef]
- Jindal, P.; Worcester, F.; Siena, F.L.; Forbes, C.; Juneja, M.; Breedon, P. Mechanical Behaviour of 3D Printed vs Thermoformed Clear Dental Aligner Materials under Non-Linear Compressive Loading Using FEM. J. Mech. Behav. Biomed. Mater. 2020, 112, 104045. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-1:2023; Accuracy (Trueness and Precision) of Measurement Methods and Results — Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 2023.
- ISO 12836:2015; Dentistry: Digitizing Devices for CAD/CAM Systems for Indirect Dental Restorations—Test Methods for Assessing Accuracy. ISO: Geneva, Switzerland, 2015.
- Williams, A.; Bencharit, S.; Yang, I.-H.; Stilianoudakis, S.C.; Carrico, C.K.; Tüfekçi, E. Effect of Print Angulation on the Accuracy and Precision of 3D-Printed Orthodontic Retainers. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 133–139. [Google Scholar] [CrossRef]
- Cianci, C.; Pappalettera, G.; Renna, G.; Casavola, C.; Laurenziello, M.; Pappalettere, C.; Ciavarella, D. Cyclic Compression Fatigue Behaviour of PET-G Tooth Aligners. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and Geometric Properties of Thermoformed and 3D Printed Clear Dental Aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z.; Chojnacka, K.; Kulbacka, J.; Mikulewicz, M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J. Funct. Biomater. 2022, 14, 13. [Google Scholar] [CrossRef]
- Storck, J.L.; Ehrmann, G.; Uthoff, J.; Diestelhorst, E.; Blachowicz, T.; Ehrmann, A. Investigating Inexpensive Polymeric 3D Printed Materials under Extreme Thermal Conditions. Mater. Futures 2022, 1, 015001. [Google Scholar] [CrossRef]
- Evans, A.G.; Faber, K.T. Crack-growth Resistance of Microcracking Brittle Materials. J. Am. Ceram. Soc. 1984, 67, 255–260. [Google Scholar] [CrossRef]
- Fernández-Francos, X.; Konuray, O.; Ramis, X.; Serra, À.; De la Flor, S. Enhancement of 3D-Printable Materials by Dual-Curing Procedures. Materials 2020, 14, 107. [Google Scholar] [CrossRef]
- Kwon, J.-S.; Kim, J.-Y.; Mangal, U.; Seo, J.-Y.; Lee, M.-J.; Jin, J.; Yu, J.-H.; Choi, S.-H. Durable Oral Biofilm Resistance of 3D-Printed Dental Base Polymers Containing Zwitterionic Materials. Int. J. Mol. Sci. 2021, 22, 417. [Google Scholar] [CrossRef]
- Busscher, H.J.; Rinastiti, M.; Siswomihardjo, W.; Van Der Mei, H.C. Biofilm Formation on Dental Restorative and Implant Materials. J. Dent. Res. 2010, 89, 657–665. [Google Scholar] [CrossRef]
- Rogers, H.B.; Zhou, L.T.; Kusuhara, A.; Zaniker, E.; Shafaie, S.; Owen, B.C.; Duncan, F.E.; Woodruff, T.K. Dental Resins Used in 3D Printing Technologies Release Ovo-Toxic Leachates. Chemosphere 2021, 270, 129003. [Google Scholar] [CrossRef]
- Willi, A.; Patcas, R.; Zervou, S.-K.; Panayi, N.; Schätzle, M.; Eliades, G.; Hiskia, A.; Eliades, T. Leaching from a 3D-Printed Aligner Resin. European Journal of Orthodontics. Eur. J. Orthod. 2023, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, G.; Zheng, Y.; Gao, J.; Fu, Y.; Wang, Q.; Huang, L.; Pan, X.; Ding, J. ‘Invisible’ Orthodontics by Polymeric ‘Clear’ Aligners Molded on 3D-Printed Personalized Dental Models. Regen. Biomater. 2022, 9, rbac007. [Google Scholar] [CrossRef]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- ISO 7405:2018; Dentistry: Evaluation of Biocompatibility of Medical Devices Used in Dentistry. ISO: Geneva, Switzerland, 2018.
- Scherer, I.; Janda, R.; Schilhaneck, P.; Staudenmayer, J. Biocompatibility of 3D Printing Materials for Dental Applications: A Systematic Review and Meta-Analysis. Clin. Res. Oral Dent. Care 2022, 11, 3–17. [Google Scholar]
- Costa, R.O.; Ribeiro, A.C.; Costa, M.F.; da Costa, J.P.; da Silva, E.S. Biocompatibility of 3D-Printed Resins for Occlusal Devices: A Systematic Review. Polymers 2023, 15, 1806. [Google Scholar]
- Li, W.; Zhang, X.; Yang, D.; Lin, X.; He, X. Cytotoxicity of 3D-Printed Orthodontic Aligners Using Different Post-Curing Procedures: An in Vitro Study. Angle Orthod. 2021, 91, 718–724. [Google Scholar]
- Burkhardt, F.; Spies, B.C.; Wesemann, C.; Schirmeister, C.G.; Licht, E.H.; Beuer, F.; Steinberg, T.; Pieralli, S. Cytotoxicity of Polymers Intended for the Extrusion-Based Additive Manufacturing of Surgical Guides. Sci. Rep. 2022, 12, 7391. [Google Scholar] [CrossRef]
- Jeng, J.H.; Wang, F.; Wu, S.I.; Chang, C.Y.; Liu, W.Y. Biocompatibility and Potential Cytotoxicity of 3D-Printed Dental Materials: A Review. Int. J. Mol. Sci. 2022, 23, 7209. [Google Scholar]
- Pratsinis, H.; Papageorgiou, S.N.; Panayi, N.; Iliadi, A.; Eliades, T.; Kletsas, D. Cytotoxicity and Estrogenicity of a Novel 3-Dimensional Printed Orthodontic Aligner. Am. J. Orthod. Dentofac. Orthop. 2022, 162, e116–e122. [Google Scholar] [CrossRef]
- Francisco, I.; Paula, A.B.; Ribeiro, M.; Marques, F.; Travassos, R.; Nunes, C.; Pereira, F.; Marto, C.M.; Carrilho, E.; Vale, F. The Biological Effects of 3D Resins Used in Orthodontics: A Systematic Review. Bioengineering 2022, 9, 15. [Google Scholar] [CrossRef]
- Ochiai, B.; Nakazawa, Y.; Matsumura, Y.; Kawai, T. Hydrolytic Degradation and Biomineralization of Amine-Cured Epoxy Resin Based on Glycidate. Polym. J. 2024, 1–9. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Bajaj, D.; Siena, F.L.; Breedon, P. Effects of Post-Curing Conditions on Mechanical Properties of 3D Printed Clear Dental Aligners. Rapid Prototyp. J. 2020, 26, 1337–1344. [Google Scholar] [CrossRef]
- FayyazAhamed, S.; Kumar, S.M.; Vijayakumar, R.K.; AprosKanna, A.S.; Indrapriyadharshini, K. Cytotoxic Evaluation of Directly 3D Printed Aligners and Invisalign. Eur. J. Mol. Clin. Med. 2020, 7, 2020. [Google Scholar]
- Grünheid, T.; Loh, C.; Larson, B.E. How Accurate Is Invisalign in Nonextraction Cases? Are Predicted Tooth Positions Achieved? Angle Orthod. 2017, 87, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, M. Considerations for Treatment of Patients Undergoing Orthognathic Surgery Using Clear Aligners. AJO-DO Clin. Companion 2022, 2, 229–239. [Google Scholar] [CrossRef]
- Valeri, C.; Aloisio, A.; Mummolo, S.; Quinzi, V. Performance of Rigid and Soft Transfer Templates Using Viscous and Fluid Resin-Based Composites in the Attachment Bonding Process of Clear Aligners. Int. J. Dent. 2022, 2022, 1637594. [Google Scholar] [CrossRef]
- Nicali, A.; Pradal, G.; Brandolini, G.; Mantelli, A.; Levi, M. Novel 3D Printing Method to Reinforce Implant-supported Denture Fiberglass as Material for Implant Prosthesis: A Pilot Study. Clin. Exp. Dent. Res. 2022, 8, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xia, Z.; Liu, Z.; Wang, Q.; Yue, Y.; Huang, J.; Su, B. Magnetic/Conductive/Elastic Multi-Material 3D-Printed Self-Powered Sensing Gloves for Underwater/Smoke Environmental Human-Computer Interaction. Chem. Eng. J. 2023, 463, 142388. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, R.; Sun, Z.; Liu, Q.; He, X.; Li, H.; Ye, H.; Yang, X.; Wei, X.; Li, Z.; et al. Centrifugal Multimaterial 3D Printing of Multifunctional Heterogeneous Objects. Nat. Commun. 2022, 13, 7931. [Google Scholar] [CrossRef]
- Leonardi, R. Digital Technologies: From Scientific to Clinical Applications in Orthodontic and Dental Communities. Appl. Sci. 2022, 12, 4977. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L. Significance of 4D Printing for Dentistry: Materials, Process, and Potentials. J. Oral Biol. Craniofac. Res. 2022, 12, 388–395. [Google Scholar] [CrossRef]
3D Printing Techniques | Materials | Advantages | Disadvantages | References |
---|---|---|---|---|
Fused Deposition Modeling (FDM) | - Low-melting point polymers | - Simple and low-cost printing - Short processing time - Clean printing process | - Low printing accuracy and precision - Poor surface finish parts - Supporting structure required | [17,31,32] |
Selective Laser Sintering/Melting (SLS/SLM) and Powder Bed Fusion (PBF) | - Metals - Ceramics - High-melting point polymers | - No requirement for supporting materials - Parts produced with high mechanical and physical properties | - Possibility for structural damage from a high-energy laser - Poor surface finish parts - High equipment cost - Shrinkage and warping products | [17,31,32] |
Polyjet | - Photopolymers - Waxes | - Ability to spray various materials simultaneously, generating a product with the desired color and mechanical properties - High precision and accuracy printing - Low printing layer thickness - Ability to produce complex geometrical shapes - Smooth surface finish | - Only suitable for a short-term usage - Expensive materials and equipment - High material consumption - Long printing duration - Not suitable for a large-scale production | [12,17,31,32,33,34] |
Stereolithography (SLA) | - Photopolymers - Ceramics | - High printing speed - High-temperature resistance - Ability to generate complicated geometric parts - High printing accuracy - Smooth surface finish | - High material consumption due to a requirement for supporting structures - High equipment cost - Lower printing precision than the DLP and polyjet method - Not suitable for a large-scale production - Post-processing required | [12,17,31,32,33,34,35] |
Digital Light Processing (DLP) | - Photopolymers - Ceramics | - High printing accuracy and precision - High printing speed - Suitable for generating complex geometrical parts - Consistence printing layer thickness - Smooth surface finish | - Supporting structure required - Post-processing required | [12,17,32,33,34,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narongdej, P.; Hassanpour, M.; Alterman, N.; Rawlins-Buchanan, F.; Barjasteh, E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers 2024, 16, 371. https://doi.org/10.3390/polym16030371
Narongdej P, Hassanpour M, Alterman N, Rawlins-Buchanan F, Barjasteh E. Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers. 2024; 16(3):371. https://doi.org/10.3390/polym16030371
Chicago/Turabian StyleNarongdej, Poom, Mana Hassanpour, Nicolas Alterman, Frederick Rawlins-Buchanan, and Ehsan Barjasteh. 2024. "Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies" Polymers 16, no. 3: 371. https://doi.org/10.3390/polym16030371
APA StyleNarongdej, P., Hassanpour, M., Alterman, N., Rawlins-Buchanan, F., & Barjasteh, E. (2024). Advancements in Clear Aligner Fabrication: A Comprehensive Review of Direct-3D Printing Technologies. Polymers, 16(3), 371. https://doi.org/10.3390/polym16030371