Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.2.1. Film-Forming Solution
2.2.2. PVA/PAA Composite Film
2.3. Emulsion Stability
2.3.1. Centrifugal Stability
2.3.2. Laser Scanning Turbidimetry
2.4. Physical Property of the Film
2.4.1. Fourier Transform Infrared (FTIR)
2.4.2. X-ray Diffraction (XRD) Analysis
2.4.3. Surface and Cross-Section Microstructure
2.4.4. Confocal Laser Scanning Microscopy (CLSM)
2.4.5. Water Absorption and Solubility
2.5. Barrier Property of the Film
2.5.1. Water Vapor Permeability (WVP)
2.5.2. Oxygen Permeability
2.5.3. Oil Permeability
2.6. Mechanical Property of the Film
2.7. Statistical Analysis
3. Results and Discussion
3.1. Emulsion Stability
3.2. FTIR
3.3. Crystallinity of the Film
3.4. Surface and Cross-Section Microstructure of the Film
3.5. CLSM Observation
3.6. Water Absorption and Solubility of the Film
3.7. Barrier Properties of the Film
3.8. Mechanical Property of the Film
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 2016, 53, 326–336. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Tang, X.; Alavi, S.; Faubion, J. Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J. Agric. Food Chem. 2011, 59, 12384–12395. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Tănase, E.E.; Popa, M.E.; Râpă, M.; Popa, O. Preparation and characterization of biopolymer blends based on polyvinyl alcohol and starch. Rom. Biotech. Lett. 2015, 20, 10307. [Google Scholar]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym. Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef]
- Grande, R.; Pessan, L.A.; Carvalho, A.J. Ternary melt blends of poly (lactic acid)/poly (vinyl alcohol)-chitosan. Ind. Crop. Prod. 2015, 72, 159–165. [Google Scholar] [CrossRef]
- Jayakumar, A.; Heera, K.; Sumi, T.; Joseph, M.; Mathew, S.; Praveen, G.; Nair, I.; Radhakrishnan, E. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 2019, 136, 395–403. [Google Scholar] [CrossRef]
- Jeong, J.-O.; Baik, J.; An, S.-J.; Jeong, S.-I.; Lee, J.-Y.; Lim, Y.-M.; Park, J.-S. Development and characterization of cross-linked poly (acrylic acid) hydrogel containing drug by radiation-based techniques. Preprints 2018, 2018010028. [Google Scholar] [CrossRef]
- Kim, H.J.; Charoensri, K.; Ko, J.A.; Park, H.J. Effects of layered double hydroxides on poly (vinyl alcohol)/poly (acrylic acid) films for green food packaging applications. Prog. Org. Coat. 2022, 163, 106634. [Google Scholar] [CrossRef]
- Lim, M.; Kim, D.; Seo, J. Enhanced oxygen-barrier and water-resistance properties of poly (vinyl alcohol) blended with poly (acrylic acid) for packaging applications. Polym. Int. 2016, 65, 400–406. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Caceres, C.A.; Ribeiro, H.L.; de Abreu, R.F.; Cunha, A.P.; Azeredo, H.M. Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocolloids 2014, 38, 147–151. [Google Scholar] [CrossRef]
- Gunawan, E.R.; Basri, M.; Rahman, M.B.A.; Salleh, A.B.; Rahman, R.N.Z.A. Study on response surface methodology (RSM) of lipase-catalyzed synthesis of palm-based wax ester. Enzyme Microb. Technol. 2005, 37, 739–744. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, S.Y.; Park, H.J. Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocolloids 2018, 84, 58–67. [Google Scholar] [CrossRef]
- Syahida, S.N.; Ismail-Fitry, M.R.; Ainun, Z.M.A.; Hanani, Z.A.N. Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag. Shelf Life 2020, 23, 100437. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Kong, L.; Hou, H. Effects of preparation conditions on the properties of agar/maltodextrin-beeswax pseudo-bilayer films. Carbohydr. Polym. 2020, 236, 116029. [Google Scholar] [CrossRef] [PubMed]
- Asua, J.M. Challenges and opportunities in continuous production of emulsion polymers: A review. Macromol. React. Eng. 2016, 10, 311–323. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, T.-E.; Jang, H.W.; Chun, Y.G.; Kim, B.-K. Physical and turbidimetric properties of cholecalciferol-and menaquinone-loaded lipid nanocarriers emulsified with polysorbate 80 and soy lecithin. Food Chem. 2021, 348, 129099. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, I.Y.; Chun, Y.G.; Kim, B.-K. Formulation and characterization of β-caryophellene-loaded lipid nanocarriers with different carrier lipids for food processing applications. LWT-Food Sci. Technol. 2021, 149, 111805. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, B.-K.; Lee, M.H. Improving curcumin retention in oil-in-water emulsions coated by chitosan and their disperse stability exposed to thermal treatments. J. Food Eng. 2022, 319, 110918. [Google Scholar] [CrossRef]
- Choudhury, S.; Ray, S.K. Synthesis of polymer nanoparticles based highly selective membranes by mini-emulsion polymerization for dehydration of 1, 4 dioxane and recovery of ethanol from water by pervaporation. J. Membr. Sci. 2021, 617, 118646. [Google Scholar] [CrossRef]
- Chern, C. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 2006, 31, 443–486. [Google Scholar] [CrossRef]
- Rocha-Botello, G.; Olvera-Guillen, R.; Herrera-Ordonez, J.; Cruz-Soto, M.; Victoria-Valenzuela, D. Unexpected secondary nucleation in poly (vinyl acetate) nanoparticle synthesis by ab initio batch emulsion polymerization using poly (vinyl alcohol) as surfactant. Macromol. React. Eng. 2019, 13, 1900024. [Google Scholar] [CrossRef]
- Lee, X.Y.; Chu, C.C.; Hasan, Z.A.B.A.; Chua, S.K.; Nyam, K.L. Novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, and kenaf seed oil. J. Am. Oil Chem. Soc. 2019, 96, 201–211. [Google Scholar] [CrossRef]
- Li, H.; Li, F.; Wu, X.; Wu, W. Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocolloids 2021, 121, 107006. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Shao, G.; Qu, D.; Zhao, H.; Yang, L.; Zhu, L.; He, Y.; Liu, H.; Zhu, D. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids 2020, 101, 105490. [Google Scholar] [CrossRef]
- Collins, S.; York, D.W.; Kazmi, S.; Mohammed, A.K. Formation of wax walled microcapsules via double emulsion using cross membrane emulsification at elevated temperatures. J. Food Eng. 2020, 269, 109739. [Google Scholar] [CrossRef]
- Mesic, B.; Cairns, M.; Järnstrom, L.; Le Guen, M.J.; Parr, R. Film formation and barrier performance of latex based coating: Impact of drying temperature in a flexographic process. Prog. Org. Coat. 2019, 129, 43–51. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Frantini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac. J. Trop. Med. 2016, 9, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Svečnjak, L.; Baranović, G.; Vinceković, M.; Prđun, S.; Bubalo, D.; Gajger, I.T. An approach for routine analytical detection of beeswax adulteration using FTIR-ATR spectroscopy. J. Apic. Sci. 2015, 59, 37–49. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, J.A.; Ko, J.A.; Park, H.J. Preparation and characterization of composites based on polylactic acid and beeswax with improved water vapor barrier properties. J. Food Sci. 2015, 80, E2471–E2477. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, Y.; Mija, A.; Burr, A.; Darque-Ceretti, E.; Felder, E.; Sbirrazzuoli, N. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochim. Acta 2011, 521, 90–97. [Google Scholar] [CrossRef]
- Shi, W.-J.; Tang, C.-H.; Yin, S.-W.; Yin, Y.; Yang, X.-Q.; Wu, L.-Y.; Zhao, Z.-G. Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocolloids 2016, 52, 253–264. [Google Scholar] [CrossRef]
- Pereda, M.; Aranguren, M.I.; Marcovich, N.E. Caseinate films modified with tung oil. Food Hydrocolloids 2010, 24, 800–808. [Google Scholar] [CrossRef]
- Fasihi, H.; Fazilati, M.; Hashemi, M.; Noshirvani, N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr. Polym. 2017, 167, 79–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Simpson, B.K.; Dumont, M.-J. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Biosci. 2018, 26, 88–95. [Google Scholar] [CrossRef]
- Han, J.; Seo, G.; Park, I.; Kim, G.; Lee, D. Physical and mechanical properties of pea starch edible films containing beeswax emulsions. J. Food Sci. 2006, 71, E290–E296. [Google Scholar] [CrossRef]
- Cao, L.; Ge, T.; Meng, F.; Xu, S.; Li, J.; Wang, L. An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker. Food Hydrocolloids 2020, 98, 105251. [Google Scholar] [CrossRef]
- Dang, C.; Yin, Y.; Xu, M.; Pu, J. Hydrophobic noncrystalline porous starch (NCPS): Dispersed silver nanoparticle suspension as an antibacterial coating for packaging paper. BioResources 2018, 13, 192–207. [Google Scholar] [CrossRef]
- Park, J.-Y.; Hwang, K.-J.; Yoon, S.-D.; Lee, J.-H.; Lee, I.-H. Influence of glyoxal on preparation of poly (vinyl alcohol)/poly (acrylic acid) blend film. J. Nanosci. Nanotechnol. 2015, 15, 5955–5958. [Google Scholar] [CrossRef] [PubMed]
- Fasihi, H.; Noshirvani, N.; Hashemi, M.; Fazilati, M.; Salavati, H.; Coma, V. Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packag. Shelf Life 2019, 19, 147–154. [Google Scholar] [CrossRef]
- Saurabh, C.K.; Gupta, S.; Variyar, P.S.; Sharma, A. Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind. Crops Prod. 2016, 89, 109–118. [Google Scholar] [CrossRef]
% Beeswax | Water Absorption (%) | Solubility (%) | Water Vapor Permeability 10−10 (g Pa−1 s−1 m−1) | Oxygen Permeability (cc m−1 day−1 atm−1) | Oil Permeability (g mm m−2 day−1) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|---|
0 | 11.91 ± 0.11 a | 23.98 ± 0.23 a | 3.20 ± 0.21 a | 1.15 ± 0.49 a | 0.177 ± 0.011 a | 19.71 ± 1.39 a | 274.27 ± 15.57 bc |
1 | 11.51 ± 0.19 a | 21.14 ± 1.12 b | 3.04 ± 0.3 a | 1.15 ± 0.07 a | 0.161 ± 0.002 ab | 18.91 ± 1.66 ab | 301.0 ± 10.01 ab |
5 | 11.40 ± 0.48 a | 16.84 ± 0.05 c | 2.41 ± 0.14 b | 2.6 ± 0.14 b | 0.156 ± 0.002 ab | 17.51 ± 0.54 b | 323.33 ± 3.55 a |
10 | 10.30 ± 0.1 b | 11.67 ± 0.1 d | 2.24 ± 0.12 b | 2.7 ± 0.28 b | 0.129 ± 0.028 bc | 14.39 ± 0.36 c | 247.10 ± 44.66 c |
15 | 10.13 ± 0.6 b | 9.67 ± 0.08 e | 1.61 ± 0.13 c | 3.3 ± 0.28 bc | 0.083 ± 0.0029 d | 6.90 ± 0.98 d | 98.90 ± 10.35 d |
20 | 8.98 ± 0.61 c | 7.90 ± 0.03 f | 1.64 ± 0.13 c | 3.75 ± 0.21 c | 0.096 ± 0.041 cd | 6.73 ± 0.79 d | 97.34 ± 8.21 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, W.S.; Kim, M.H.; Park, H.J.; Lee, M.H. Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content. Polymers 2024, 16, 310. https://doi.org/10.3390/polym16030310
Lim WS, Kim MH, Park HJ, Lee MH. Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content. Polymers. 2024; 16(3):310. https://doi.org/10.3390/polym16030310
Chicago/Turabian StyleLim, Woo Su, Min Ha Kim, Hyun Jin Park, and Min Hyeock Lee. 2024. "Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content" Polymers 16, no. 3: 310. https://doi.org/10.3390/polym16030310
APA StyleLim, W. S., Kim, M. H., Park, H. J., & Lee, M. H. (2024). Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content. Polymers, 16(3), 310. https://doi.org/10.3390/polym16030310