Thermo-Responsive and Electroconductive Nano Au-PNiPAAm Hydrogel Nanocomposites: Influence of Synthesis Method and Nanoparticle Shape on Physicochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Synthesis of Gold Nanospheres and Gold Nanorods
2.3. Synthesis of PNiPAAm Hydrogel
2.4. Synthesis of Nano Au-PNiPAAm Hydrogel Nanocomposites
2.5. Methods of Characterization
3. Results and Discussion
3.1. Synthesis and Optical Features of Nano Au-PNiPAAm Hydrogel Nanocomposites
3.1.1. γ-Irradiation-Induced In Situ Synthesis—Method I
3.1.2. Chemical Method of Synthesis—Method II
3.1.3. The Efficiency of the Chosen γ-Irradiation Method for the Crosslinking Process
3.2. Morphological Properties of the Nanoparticles and Polymer Network
3.3. Physicochemical Characterization
3.4. XRD Analysis
3.5. FTIR Spectroscopy
3.6. Thermo-Switchable Electrical Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spasojević, J.; Radosavljević, A.; Krstić, J.; Jovanović, D.; Spasojević, V.; Kalagasidis-Krušić, M.; Kačarević-Popović, Z. Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur. Polym. J. 2015, 69, 168–185. [Google Scholar] [CrossRef]
- Milašinović, N.; Kalagasidis-Krušic, M.; Knežević-Jugović, Z.; Filipović, J. Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. Int. J. Pharmaceut. 2010, 383, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev. 2002, 43, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gheysoori, P.; Paydayesh, A.; Jafari, M.; Peidayesh, H. Thermoresponsive nanocomposite hydrogels based on Gelatin/poly(N–isopropylacrylamide) (PNIPAM) for controlled drug delivery. Eur. Pol. J. 2023, 186, 111846. [Google Scholar] [CrossRef]
- Alarcon, C.H.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.J.; Xu, F. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Mater. 2019, 11, 64. [Google Scholar] [CrossRef]
- Hou, Y.; Matthews, A.; Smitherman, A.; Bulick, A.; Hahn, M.; Hou, H.; Han, A.; Grunlan, M. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 2008, 29, 3175–3184. [Google Scholar] [CrossRef]
- Han, F.; Armstrong, T.; Andres-Arroyo, A.; Bennett, D.; Soeriyadi, A.; Chamazketi, A.A.; Bakthavathsalam, P.; Tilley, R.D.; Gooding, J.J.; Reece, P.J. Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 2020, 12, 1680–1687. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, Y.; Zhao, X.; Du, T.; Zhu, J.; Xie, Y.; Wu, F.; Wang, Y.; Guan, M. Poly(N-Isopropylacrylamide) Based Electrically Conductive Hydrogels and Their Applications. Gels 2022, 8, 280. [Google Scholar] [CrossRef]
- Hao, F.; Wang, L.; Chen, B.; Qiu, L.; Nie, J.; Ma, G. Bifunctional Smart Hydrogel Dressing with Strain Sensitivity and NIR-Responsive Performance. ACS Appl. Mater. Inter. 2021, 13, 46938–46950. [Google Scholar] [CrossRef]
- Zhang, C.L.; Cao, F.H.; Wang, J.L.; Yu, Z.L.; Ge, J.; Lu, Y.; Wang, Z.H.; Yu, S.H. A Highly Stimuli-Responsive Au Nanorods/Poly(N-isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch. ACS Appl. Mater. Interfaces 2017, 9, 24857–24863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.; Lao, J.; Gao, H.; Yu, J. Hydrogels for flexible electronics. ASC Nano 2023, 17, 9681–9693. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.; Lyu, Q. A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels 2023, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Gaharwar, A.; Peppas, N.A.; Khademhosseini, A. Nanocomposite Hydrogels for Biomedical Applications. Biotechnol. Bioeng. 2014, 111, 441–453. [Google Scholar] [CrossRef]
- Schexnailder, P.; Schmidt, G. Nanocomposite polymer hydrogels. Colloid. Polym. Sci. 2009, 287, 1–11. [Google Scholar] [CrossRef]
- Krklješ, A.; Nedeljković, J.; Kačarević-Popović, Z. Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym. Bull. 2007, 58, 271–279. [Google Scholar] [CrossRef]
- Aktürk, A.; Taygun, M.E.; Güler, F.K.; Goller, G.; Küçükbayrak, S. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids Surf. A 2014, 562, 255–262. [Google Scholar] [CrossRef]
- Krstić, J.; Spasojević, J.; Radosavljević, A.; Perić-Grujić, A.; Djurić, M.; Kačarević-Popović, Z.; Popović, S. In Vitro Silver Ion Release Kinetics from Nanosilver/Poly(vinyl alcohol) Hydrogels Synthesized by Gamma Irradiation. J. Appl. Polym. Sci. 2014, 131, 40321. [Google Scholar] [CrossRef]
- Spasojević, J.; Milošević, M.; Vidičević-Novaković, S.; Tasić, J.; Milovanović, P.; Djurić, M.; Ranković, D.; Kaačarević-Popović, Z.; Radosavljević, A. Multifunctional Ag-Poly(N-isopropylacrylamide/itaconic Acid) Hydrogel Nanocomposites Prepared by Gamma Irradiation for Potential Application as Topical Treatment Dressings. Polymers 2024, 16, 3211. [Google Scholar] [CrossRef]
- Biswal, J.; Ramnani, S.P.; Tewari, R.; Dey, G.K.; Sabharwal, S. Short aspect ratio gold nanorods prepared using gamma radiation in the presence of cetyltrimethyl ammonium bromide (CTAB) as a directing agent. Radiat. Phys. Chem. 2010, 79, 441–445. [Google Scholar] [CrossRef]
- Babu, A.T.; Antony, R. Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J. Environ. Chem. Eng. 2019, 7, 102840. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- Bogdanović, U.; Vodnik, V.; Ahrenkiel, S.P.; Stoiljković, M.; Ćirić-Marjanović, G.; Nedeljković, J. Interfacial synthesis and characterization of gold/polyaniline nanocomposites. Synthetic Met. 2014, 195, 122–131. [Google Scholar] [CrossRef]
- Milikić, J.; Stamenović, U.; Vodnik, V.; Ahrenkiel, S.P.; Šljukić, B. Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells. Electrochim. Acta 2019, 328, 135115. [Google Scholar] [CrossRef]
- Chapiro, A. Radiation Chemistry of Polymeric Systems; Interscience Publishers: New York, NY, USA; John Wiley and Sons: New York, NY, USA, 1962; p. 686. [Google Scholar]
- Caykara, T. Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. J. Appl. Polym. Sci. 2004, 92, 763–769. [Google Scholar] [CrossRef]
- Safrany, A.; Wojnarovits, L. First steps in radiation-induced hydrogel synthesis: Radical formation and oligomerization in dilute aqueous N-isopropylacrylamide solutions. Radiat. Phys. Chem. 2003, 67, 707–715. [Google Scholar] [CrossRef]
- Kumar, M.; Panda, A.; Sabharwal, S. Reactions of N-isopropylacrylamide with some reducing and oxidizing radicals in aqueous solutions: A pulse radiolysis study. Radiat. Phys. Chem. 2000, 59, 287–293. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Kowandy, C.; Dupont, L.; Coqueret, X. Evidence of chitosan-mediated reduction of Au(III) to Au(0) nanoparticles under electron beam by using OH• and e−aq scavengers. Chem. Commun. 2015, 51, 4017–4020. [Google Scholar] [CrossRef]
- Henglein, A.; Meisel, D. Radiolytic Control of the Size of Colloidal Gold Nanoparticles. Langmuir 1998, 14, 7392–7396. [Google Scholar] [CrossRef]
- Zhu, C.H.; Hai, Z.B.; Cui, C.H.; Li, H.H.; Chen, J.F.; Yu, S.H. In Situ Controlled Synthesis of Thermosensitive Poly(N-isopropylacrylamide)/Au Nanocomposite Hydrogels by Gamma Radiation for Catalytic Application. Small 2012, 8, 930–936. [Google Scholar] [CrossRef]
- Nikolić, N.; Spasojević, J.; Radosavljević, A.; Milošević, M.; Barudžija, T.; Rakočević, L.; Kačarević-Popović, Z. Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation. Radiat. Phys. Chem. 2023, 202, 110564. [Google Scholar] [CrossRef]
- Lee, K.P.; Gopalan, A.I.; Santhosh, P.; Lee, S.H.; Nho, Y.C. Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Compos. Sci. Technol. 2007, 67, 811–816. [Google Scholar] [CrossRef]
- Li, X.D.; Chen, T.P.; Liu, Y.; Leong, K.C. Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: A study of the aggregation effect. Opt. Express 2014, 22, 5124–5132. [Google Scholar] [CrossRef]
- Gezgin, S.Y.; Kepceoğlu, A.; Gündoğdu, Y.; Zongo, S.; Zawadzka, A.; Kiliç, H.S.; Sahraoui, B. Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies. Nanomaterials 2020, 10, 1071. [Google Scholar] [CrossRef] [PubMed]
- Mie, G. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
- Veenas, C.L.; Nissamudeen, K.M.; Smitha, S.L.; Biju, V.; Gopchandran, K.G. Off-axis PLD: A novel technique for plasmonic engineering of silver nanoparticles. J. Optoelectron. Adv. Mater. 2009, 11, 114–122. [Google Scholar]
- Zheng, J.; Clogston, J.D.; Patri, A.K.; Dobrovolskaia, M.A.; McNeil, S.E. Sterilization of Silver Nanoparticles Using Standard Gamma Irradiation Procedure Affects Particle Integrity and Biocompatibility. J. Nanomed. Nanotechnol. 2011, 2011 (Suppl. S5), 001. [Google Scholar] [CrossRef]
- Zheng, J.; Clogston, J.D.; Patri, A.K.; McNeil, S.E.; Dobrovolskaia, M.A. Sterilization Case Study 2: Effects of Sterilization Techniques on Silver Nanoparticles. In Handbook of Immunological Properties of Engineered Nanomaterials, 2nd ed.; Dobrovolskaia, M.A., McNeil, S.E., Eds.; World Scientific Publishing Co., Inc.: Hackensack, NJ, USA, 2016; Chapter 5; pp. 93–108. [Google Scholar] [CrossRef]
- Asnag, G.M.; Oraby, A.H.; Abdelghany, A.M. Effect of gamma-irradiation on the structural, optical and electrical properties of PEO/starch blend containing different concentrations of gold nanoparticles. Radiat. Eff. Defects Solids 2019, 174, 579–595. [Google Scholar] [CrossRef]
- Eid, M.; Araby, E. Bactericidal effect of poly (acrylamid/itaconic acid)-silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 2013, 171, 469–487. [Google Scholar] [CrossRef]
- Milosavljević, N.; Milašinović, N.; Popović, I.; Filipović, J.; Kalagasidis Krušic, M. Preparation and characterization of pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polym. Int. 2011, 60, 443–452. [Google Scholar] [CrossRef]
- Can, H.K.; Denizli, B.K.; Kavlak, S.; Guner, A. Preparation and swelling studies of biocompatible hydrogel systems by using gamma radiation-induced polymerization. Radiat. Phys. Chem. 2005, 72, 483–488. [Google Scholar] [CrossRef]
- Tasdelen, B.; Kayaman-Apohan, N.; Guven, O.; Baysal, B. Swelling and Diffusion Studies of Poly(N-isopropylacrylamide/itaconic acid) Copolymeric Hydrogels in Water and Aqueous Solutions of Drugs. J. Appl. Polym. Sci. 2003, 91, 911–915. [Google Scholar] [CrossRef]
- Olejniczak, M.; Piechocki, K.; Kozanecki, M.; Koynov, K.; Adamus, A.; Wach, R.A. The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J. Mater. Chem. B 2016, 4, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Radinović, K.; Milikić, J.; Stamenović, U.; Vodnik, V.; Otoničar, M.; Škapin, S.; Šljukić, B. Tailoring gold-conducting polymer nanocomposites for sensors applications: Proof of concept for As(III) sensing in aqueous media. Synth. Met. 2021, 278, 116834. [Google Scholar] [CrossRef]
- Dueramae, I.; Tanaka, F.; Shinyashiki, N.; Yagihara, S.; Kita, R. UV-Crosslinked Poly(N-isopropylacrylamide) Interpenetrated into Chitosan Structure with Enhancement of Mechanical Properties Implemented as Anti-Fouling Materials. Gels 2024, 10, 20. [Google Scholar] [CrossRef]
- Safo, I.A.; Werheid, M.; Dosche, C.; Oezaslan, M. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 2019, 1, 3095–3106. [Google Scholar] [CrossRef]
- Maheswari, B.; Jagadeesh Babu, P.E.; Agarwal, M. Role of N-vinyl-2-pyrrolidinone on the thermoresponsive behavior of PNIPAm hydrogel and its release kinetics using dye and vitamin-B12 as model drug. J. Biomat. Sci. Polym. Ed. 2013, 25, 269–286. [Google Scholar] [CrossRef]
- Spasojević, J.; Radosavljević, A.; Krstić, J.; Mitrić, M.; Popović, M.; Rakocević, Z.; Kalagasidis-Krušić, M.; Kačarević-Popović, Z. Structural Characteristics and Bonding Environment of Ag Nanoparticles Synthesized by Gamma Irradiation Within Thermo-Responsive poly(N-isopropylacrylamide) Hydrogel. Polym. Compos. 2015, 38, 1014–1026. [Google Scholar] [CrossRef]
- Kaklamani, G.; Kazaryan, D.; Bowen, J.; Iacovella, F.; Anastasiadis, S.H.; Deligeorgis, G. On the electrical conductivity of alginate hydrogels. Regen. Biomater. 2018, 5, 193–301. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 2021, 1, 41. [Google Scholar] [CrossRef]
- Mišković-Stanković, V.; Jevremović, I.; Jung, I.; Rhee, K.Y. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon 2014, 75, 335–344. [Google Scholar] [CrossRef]
- Ciarleglio, G.; Toto, E.; Santonicola, M.G. Conductive and Thermo-Responsive Composite Hydrogels with Poly(N-isopropylacrylamide) and Carbon Nanotubes Fabricated by Two-Step Photopolymerization. Polymers 2023, 15, 1022. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, M.A.K.; Mady, M.M.; Ghannam, M.M. Dielectric constant, electrical conductivity and relaxation time measurements of different gold nanoparticle sizes. Int. J. Phys. Sci. 2011, 6, 5487–5491. [Google Scholar] [CrossRef]
- Curry, F.; Lim, T.; Fontaine, N.S.; Adkins, M.D.; Zhang, H. Highly conductive thermoresponsive silver nanowire PNIPAM nanocomposite for reversible electrical switch. Soft Matter 2022, 18, 7171. [Google Scholar] [CrossRef]
c(NPs) × 104 (mol/dm3) | SDeq | n | D × 107 (cm2/s) | Kd × 103 (1/min) | VPTT (°C) | |
---|---|---|---|---|---|---|
PNiPAAm hydrogel | 0 | 12.6 ± 0.31 | 0.51 ± 0.01 | 1.5 ± 0.030 | 5.1 ± 0.15 | 30.1 ± 0.5 |
Method I | ||||||
AuNPs-PNiPAAm | 1.0 | 15.2 ± 0.38 | 0.59 ± 0.02 | 2.9 ± 0.033 | 11.8 ± 0.26 | 30.7 ± 0.7 |
2.5 | 15.1 ± 0.37 | 0.57 ± 0.01 | 3.1 ± 0.034 | 11.2 ± 0.25 | 30.9 ± 0.6 | |
AuNRs-PNiPAAm | 1.0 | 12.9 ± 0.33 | 0.56 ± 0.01 | 2.2 ± 0.027 | 5.0 ± 0.17 | 30.1 ± 0.5 |
2.5 | 13.1 ± 0.32 | 0.54 ± 0.01 | 1.8 ± 0.022 | 5.9 ± 0.19 | 30.2 ± 0.5 | |
Method II | ||||||
AuNP-PNiPAAm | 1.0 | 19.0 ± 0.48 | 0.58 ± 0.01 | 3.14 ± 0.028 | 12.1 ± 0.25 | 31.0 ± 0.7 |
2.5 | 18.5 ± 0.49 | 0.61 ± 0.02 | 5.81 ± 0.039 | 10.7 ± 0.27 | 31.1 ± 0.6 | |
AuNRs-PNiPAAm | 1.0 | 20.1 ± 0.57 | 0.64 ± 0.02 | 7.73 ± 0.049 | 11.9 ± 0.25 | 32.5 ± 0.8 |
2.5 | 25.8 ± 0.65 | 0.69 ± 0.02 | 8.44 ± 0.053 | 12.3 ± 0.28 | 32.6 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radojković, N.; Spasojević, J.; Kačarević-Popović, Z.; Stamenović, U.; Vodnik, V.; Roglić, G.; Radosavljević, A. Thermo-Responsive and Electroconductive Nano Au-PNiPAAm Hydrogel Nanocomposites: Influence of Synthesis Method and Nanoparticle Shape on Physicochemical Properties. Polymers 2024, 16, 3416. https://doi.org/10.3390/polym16233416
Radojković N, Spasojević J, Kačarević-Popović Z, Stamenović U, Vodnik V, Roglić G, Radosavljević A. Thermo-Responsive and Electroconductive Nano Au-PNiPAAm Hydrogel Nanocomposites: Influence of Synthesis Method and Nanoparticle Shape on Physicochemical Properties. Polymers. 2024; 16(23):3416. https://doi.org/10.3390/polym16233416
Chicago/Turabian StyleRadojković, Nikolina, Jelena Spasojević, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić, and Aleksandra Radosavljević. 2024. "Thermo-Responsive and Electroconductive Nano Au-PNiPAAm Hydrogel Nanocomposites: Influence of Synthesis Method and Nanoparticle Shape on Physicochemical Properties" Polymers 16, no. 23: 3416. https://doi.org/10.3390/polym16233416
APA StyleRadojković, N., Spasojević, J., Kačarević-Popović, Z., Stamenović, U., Vodnik, V., Roglić, G., & Radosavljević, A. (2024). Thermo-Responsive and Electroconductive Nano Au-PNiPAAm Hydrogel Nanocomposites: Influence of Synthesis Method and Nanoparticle Shape on Physicochemical Properties. Polymers, 16(23), 3416. https://doi.org/10.3390/polym16233416