Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sunscreen Samples
2.3. Physical Characterization
2.3.1. Micromorphological Characterization of the Co-Assembled Sunscreen Film
2.3.2. Fourier-Transform Infrared Spectroscopy and X-Ray Photoelectron Spectroscopy Measurements
2.3.3. Optical Profilometer and Contact Angle Measurements
2.4. Performance Measurement
2.4.1. Anti-Stretching Test
2.4.2. Anti-Migrating Test
2.4.3. Anti-Rubbing Test
2.4.4. In Vitro Sun Protection Value Test
3. Results and Discussion
3.1. Micromorphological Analysis of the Co-Assembled Sunscreen Film
3.2. Effect of the Co-Assembled Sunscreen Film on Anti-Stretching Property
3.3. Effect of the Co-Assembled Sunscreen Film on Anti-Migrating Property
3.4. Effect of the Co-Assembled Sunscreen Film on Anti-Rubbing Property
3.5. FTIR and XPS Analyses
3.6. Effect of Co-Assembled Sunscreen Film on In Vitro Sun Protection Values
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, A.; Zanoletti, A.; Kareem, K.Y.; Adelodun, B.; Kumar, P.; Ajibade, F.O.; Silva, L.F.O.; Phillips, A.J.; Kartheeswaran, T.; Bontempi, E.; et al. Skin protection from solar ultraviolet radiation using natural compounds: A review. Environ. Chem. Lett. 2024, 22, 273–295. [Google Scholar] [CrossRef]
- Byun, K.-A.; Lee, S.Y.; Oh, S.; Batsukh, S.; Jang, J.-W.; Lee, B.-J.; Rheu, K.-M.; Li, S.; Jeong, M.-S.; Son, K.H.; et al. Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress. Mar. Drugs 2024, 22, 421. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, D.; Wang, H.; Zhu, Y.; Bi, S.; Liu, Y.; Cheng, X.; Chen, X. Effect and mechanism of fish scale extract natural hydrogel on skin protection and cell damage repair after UV irradiation. Colloids Surf. B Biointerfaces 2023, 225, 113281. [Google Scholar] [CrossRef] [PubMed]
- Griffin, G.K.; Booth, C.A.G.; Togami, K.; Chung, S.S.; Ssozi, D.; Verga, J.A.; Bouyssou, J.M.; Lee, Y.S.; Shanmugam, V.; Hornick, J.L.; et al. Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 2023, 618, 834–841. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Lee, S.C.; Yoo, E.; Lee, S.H.; Won, K. Preparation and application of light-colored lignin nanoparticles for broad-spectrum sunscreens. Polymers 2020, 12, 699. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Dai, T.; Xu, P.; Wu, P.; Zou, Y.; Yang, P.; Hu, J.; Li, Y.; Cheng, Y. Skin pigmentation-inspired polydopamine sunscreens. Adv. Funct. Mater. 2018, 28, 1802127. [Google Scholar] [CrossRef]
- Girard, V.; Fragnières, L.; Chapuis, H.; Brosse, N.; Marchal-Heussler, L.; Canilho, N.; Parant, S.; Ziegler-Devin, I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro-to Nanoscale on the Performances of Next-Generation Sunscreen. Polymers 2024, 16, 1901. [Google Scholar] [CrossRef]
- Cardillo, D.; Sencadas, V.; Devers, T.; Islam, M.; Tehei, M.; Rosenfeld, A.; Boutard, T.; Rocher, E.; Barker, P.J.; Konstantinov, K. Attenuation of UV absorption by poly (lactic acid)-iron oxide nanocomposite particles and their potential application in sunscreens. Chem. Eng. J. 2021, 405, 126843. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, D.; Park, S.A.; Park, J.J.; Park, W.H. Hyaluronic acid/polyphenol sunscreens with broad-spectrum UV protection properties from tannic acid and quercetin. Int. J. Biol. Macromol. 2024, 257, 128585. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Li, T.; Wu, J.; Huang, J.; Jiang, J.; Chen, M.; Dong, W. Mussel-inspired anti-permeation hybrid sunscreen with reinforced UV-blocking and safety performance. Colloids Surf. A Physicochem. Eng. Aspects 2023, 676, 132140. [Google Scholar] [CrossRef]
- van Bodegraven, M.; Kröger, M.; Zamudio Díaz, D.F.; Lohan, S.B.; Moritz, R.K.; Möller, N.; Knoblich, C.; Vogelsang, A.; Milinic, Z.; Hallhuber, M.; et al. Redefine photoprotection: Sun protection beyond sunburn. Exp. Dermatol. 2024, 33, e15002. [Google Scholar] [CrossRef] [PubMed]
- Hayag, M.V.; Chartier, T.; DeVoursney, J.; Tie, C.; Machler, B.; Taylor, J. A high SPF sunscreen’s effects on UVB-induced immunosuppression of DNCB contact hypersensitivity. J. Dermatol. Sci. 1997, 16, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D.; Maitra, P.; Atillasoy, E.; Wu, M.-M.; Farberg, A.S.; Rigel, D.S. SPF 100+ sunscreen is more protective against sunburn than SPF 50+ in actual use: Results of a randomized, double-blind, split-face, natural sunlight exposure clinical trial. J. Am. Acad. Dermatol. 2018, 78, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen application, safety, and sun protection: The evidence. J. Cutan. Med. Surg. 2019, 23, 357–369. [Google Scholar] [CrossRef]
- Diffey, B.L. When should sunscreen be reapplied? J. Am. Acad. Dermatol. 2001, 45, 882–885. [Google Scholar] [CrossRef]
- Keshavarzi, F.; Knudsen, N.; Brewer, J.R.; Ebbesen, M.F.; Komjani, N.M.; Moghaddam, S.Z.; Jafarzadeh, S.; Thormann, E. In vitro skin model for characterization of sunscreen substantivity upon perspiration. Int. J. Cosmet. Sci. 2021, 43, 359–371. [Google Scholar] [CrossRef]
- Ou-Yang, H.; Jiang, L.I.; Meyer, K.; Wang, S.Q.; Farberg, A.S.; Rigel, D.S. Sun protection by beach umbrella vs sunscreen with a high sun protection factor: A randomized clinical trial. JAMA Dermatol. 2017, 153, 304–308. [Google Scholar] [CrossRef]
- Ruvolo, E.; Aeschliman, L.; Cole, C. Evaluation of sunscreen efficacy over time and re-application using hybrid diffuse reflectance spectroscopy. Photodermatol. Photoimmunol. Photomed. 2020, 36, 192–199. [Google Scholar] [CrossRef]
- Binks, B.P.; Fletcher, P.D.; Johnson, A.J.; Marinopoulos, I.; Crowther, J.M.; Thompson, M.A. Evaporation of particle-stabilized emulsion sunscreen films. ACS Appl. Mater. Interfaces 2016, 8, 21201–21213. [Google Scholar] [CrossRef]
- Giacomoni, P.U.; Teta, L.; Najdek, L. Sunscreens: The impervious path from theory to practice. Photochem. Photobiol. Sci. 2010, 9, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Van Tran, V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent trends of sunscreen cosmetic: An update review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Infante, V.H.P.; Campos, P.M.; Calixto, L.; Darvin, M.; Kröger, M.; Schanzer, S.; Lohan, S.; Lademann, J.; Meinke, M. Influence of physical–mechanical properties on SPF in sunscreen formulations on ex vivo and in vivo skin. Int. J. Pharm. 2021, 598, 120262. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, L.; Campos, P.M.B.G.M.; Zanin, R.B.; Favaro, L.N. Development of multifunctional sunscreens: Evaluation of physico-mechanical and film-forming properties. Int. J. Pharm. 2023, 635, 122705. [Google Scholar] [CrossRef] [PubMed]
- Binks, B.P.; Brown, J.; Fletcher, P.D.; Johnson, A.J.; Marinopoulos, I.; Crowther, J.M.; Thompson, M.A. Evaporation of sunscreen films: How the UV protection properties change. ACS Appl. Mater. Interfaces 2016, 8, 13270–13281. [Google Scholar] [CrossRef]
- Keshavarzi, F.; Knudsen, N.; Komjani, N.M.; Ebbesen, M.F.; Brewer, J.R.; Jafarzadeh, S.; Thormann, E. Enhancing the sweat resistance of sunscreens. Skin Res. Technol. 2022, 28, 225–235. [Google Scholar] [CrossRef]
- Sohn, M.; Herzog, B.; Osterwalder, U.; Imanidis, G. Calculation of the sun protection factor of sunscreens with different vehicles using measured film thickness distribution—Comparison with the SPF in vitro. J. Photochem. Photobiol. B Biol. 2016, 159, 74–81. [Google Scholar] [CrossRef]
- Tan, N.C.; Djordjevic, I.; Malley, J.A.; Kwang, A.L.; Ikhwan, S.; Šolić, I.; Singh, J.; Wicaksono, G.; Lim, S.; Steele, T.W. Sunlight activated film forming adhesive polymers. Biomater. Adv. 2021, 127, 112240. [Google Scholar] [CrossRef]
- Yu, S.; Lu, Y.; Guo, S.; Guo, T.; Takagi, A.; Kamkar, M.; Rojas, O.J. Lignin-Polylactide Reverse Emulsions for Water and UV-Resistant Composite Films. ACS Sustain. Chem. Eng. 2023, 11, 12503–12513. [Google Scholar] [CrossRef]
- Sohn, M.; Buehler, T.; Imanidis, G. Repartition of oil miscible and water soluble UV filters in an applied sunscreen film determined by confocal Raman microspectroscopy. Photochem. Photobiol. Sci. 2016, 15, 861–871. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Zhou, S. Comfortable skin sunscreens based on waterborne cross-linkable polydimethylsiloxane coatings. J. Mater. Chem. C 2020, 8, 17383–17394. [Google Scholar] [CrossRef]
- ISO 24443:2021; Cosmetics—Determination of sunscreen UVA photoprotection in vitro. ISO: Geneva, Switzerland, 2021.
- Zhang, Y.; Yang, K.; Liu, R.; Yao, J.; Yan, H. Superior tough, highly wear durable and self-lubricating epoxy composite co-enhanced by soft and hard nanomaterials. Chem. Eng. J. 2023, 460, 141773. [Google Scholar] [CrossRef]
- Yamawake, K.; Hayashi, M.; Nobukawa, S. Preparation of All Amorphous PMMA Resins Based on the Graft Architecture with a Flexible Main Chain for Simultaneous Enhancement of Thermal and Mechanical Toughness. Macromol. Chem. Phys. 2022, 223, 2200255. [Google Scholar] [CrossRef]
- Gilbert, E.N.; Hayes, B.S.; Seferis, J.C. Interlayer toughened unidirectional carbon prepreg systems: Effect of preformed particle morphology. Compos. Part A Appl. Sci. Manuf. 2003, 34, 245–252. [Google Scholar] [CrossRef]
- Yin, Y.; Yin, J.; Zhang, W.; Tian, H.; Hu, Z.; Ruan, M.; Xu, H.; Liu, L.; Yan, X.; Chen, D. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. J. Energy Inst. 2018, 91, 389–396. [Google Scholar] [CrossRef]
- Jakobsson, S. Determination of Si/Al ratios in semicrystalline aluminosilicates by FT-IR spectroscopy. Appl. Spectrosc. 2002, 56, 797–799. [Google Scholar] [CrossRef]
- Yusuf, M.O. Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Appl. Sci. 2023, 13, 3353. [Google Scholar] [CrossRef]
- Coxon, P.R.; Coto, M.; Juzeliunas, E.; Fray, D.J. The use of electro-deoxidation in molten salts to reduce the energy consumption of solar grade silicon and increase the output of PV solar cells. Prog. Nat. Sci. Mater. Int. 2015, 25, 583–590. [Google Scholar] [CrossRef]
- Kaur, A.; Chahal, P.; Hogan, T. Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron Device Lett. 2015, 37, 142–145. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, C.; Lin, X.; Chen, X.; Zhang, C.; Jiang, H.; Zhang, R.; Wei, F. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@ TiO2@C composite as anode material. Nano Energy 2020, 77, 105082. [Google Scholar] [CrossRef]
- Krishnan, P.; Liu, M.; Itty, P.A.; Liu, Z.; Rheinheimer, V.; Zhang, M.-H.; Monteiro, P.J.M.; Yu, L.E. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Sci. Rep. 2017, 7, 43298. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.-L.; Lau, K.-T.; Wong, T.; Cardona, F. Interfacial bonding characteristic of nanoclay/polymer composites. Appl. Surf. Sci. 2011, 258, 860–864. [Google Scholar] [CrossRef]
- Bagus, P.S.; Nelin, C.J.; Brundle, C.R. Chemical significance of x-ray photoelectron spectroscopy binding energy shifts: A Perspective. J. Vac. Sci. Technol. A 2023, 41, 068501. [Google Scholar] [CrossRef]
- Shin, H.; Kim, B.; Han, J.-G.; Lee, M.Y.; Park, J.K.; Cho, M. Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: A multiscale analysis. Compos. Sci. Technol. 2017, 145, 173–180. [Google Scholar] [CrossRef]
- Picu, C.R.; Krawczyk, K.K.; Wang, Z.; Pishvazadeh-Moghaddam, H.; Sieberer, M.; Lassnig, A.; Kern, W.; Hadar, A.; Constantinescu, D.M. Toughening in nanosilica-reinforced epoxy with tunable filler-matrix interface properties. Compos. Sci. Technol. 2019, 183, 107799. [Google Scholar] [CrossRef]
- Peres, D.D.; Sarruf, F.D.; de Oliveira, C.A.; Velasco, M.V.R.; Baby, A.R. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B Biol. 2018, 185, 46–49. [Google Scholar] [CrossRef]
- Meaudre, H.; Aubrun, O.; Boitte, J.; Douezan, S.; Josso, M.; Le Verge, D.; Renoux, P.; Rondepierre, G. New formulation technology to boost sun protection. Int. J. Cosmet. Sci. 2023, 45, 802–814. [Google Scholar] [CrossRef]
- Oshina, I.; Spigulis, J. Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations. J. Biomed. Opt. 2021, 26, 100901. [Google Scholar] [CrossRef]
Phase | Component | Content (%) |
---|---|---|
A | Water | To 100 |
Propanediol | 5 | |
1,2-Hexanediol | 0.4 | |
Citric acid | 0.01 | |
Sodium citrate | 0.15 | |
B | Polysiloxane-15 | 2 |
Trimethylsiloxysilicate | 3 | |
Vinyl dimethicone/methicone silsesquioxane crosspolymer | 2 | |
Ethylhexyl methoxycinnamate | 6 | |
Ethylhexyl salicylate | 3 | |
Octocrylene | 3 | |
Titanium dioxide | 4 | |
Zinc oxide | 7 | |
Cyclopentasiloxane | 9 | |
Dimethicone | 8 | |
PEG-9 Polydimethylsiloxyethyl dimethicone | 2.5 | |
PEG-10 Dimethicone | 1.5 | |
Tocopheryl acetate | 0.2 | |
C | Isododecane | 9 |
Alcohol | 8 | |
Phenoxyethanol | 0.36 | |
Ethylhexylglycerin | 0.04 |
Component | Content (%) | ||||
---|---|---|---|---|---|
CA | BC | NS | NH | NP | |
Polysiloxane-15 | 2 | / | / | 2 | 2 |
Trimethylsiloxysilicate | 3 | / | 3 | / | 3 |
VDSC | 2 | / | 2 | 2 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xu, H.; Liu, Y.; Fu, Q.; Zhang, P.; Zhou, J.; Dong, H.; Yan, X. Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection. Polymers 2024, 16, 3317. https://doi.org/10.3390/polym16233317
Chen Y, Xu H, Liu Y, Fu Q, Zhang P, Zhou J, Dong H, Yan X. Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection. Polymers. 2024; 16(23):3317. https://doi.org/10.3390/polym16233317
Chicago/Turabian StyleChen, Yuyan, Hanwen Xu, Yuhang Liu, Qiuting Fu, Pingling Zhang, Jie Zhou, Hongyu Dong, and Xiaodong Yan. 2024. "Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection" Polymers 16, no. 23: 3317. https://doi.org/10.3390/polym16233317
APA StyleChen, Y., Xu, H., Liu, Y., Fu, Q., Zhang, P., Zhou, J., Dong, H., & Yan, X. (2024). Structural Similarity-Induced Inter-Component Interaction in Silicone Polymer-Based Composite Sunscreen Film for Enhanced UV Protection. Polymers, 16(23), 3317. https://doi.org/10.3390/polym16233317