Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of the Polymers
2.3. Gel Permeation Chromatography (GPC)
2.4. Fourier Transform Infrared (FTIR)
2.5. 1H Nuclear Magnetic Resonance (1H MMR)
2.6. Dynamic Light Scattering (DLS) Measurements
2.7. Zeta Potential
2.8. Surface Tension
2.9. Adsorption Amount on Cement
2.10. Fluidity Examination of Cement Slurry
2.11. Isothermal Calorimetry
2.12. Setting Time Test
2.13. Water Film Thickness (WFT)
2.14. Rheological Tests of Cement Paste
2.15. Compressive Strength
2.16. Concrete Performance
3. Results and Discussion
3.1. Structure Characterization of the PCEs
3.1.1. GPC
3.1.2. FT-IR
3.1.3. 1H NMR
3.2. Solution Conformation
3.3. Zeta Potential
3.4. Surface Tension
3.5. Adsorption Amount of PCEs on Cement
3.6. Fluidity and Fluidity Retention Abilities
3.7. Hydration Heat
3.8. Setting Time
3.9. WFT Results
3.10. Rheological Behavior of Cement Paste
3.11. Mortar Strength
3.12. Performances of the PCEs in Concrete
3.13. Working Mechanism of the PCEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sohail, M.G.; Kahraman, R.; Al Nuaimi, N.; Gencturk, B.; Alnahhal, W. Durability characteristics of high and ultra-high performance concretes. J. Build. Eng. 2021, 33, 101669. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Z.; Shi, C.; Wu, Z.; Zhang, C. Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. Engineering 2023, 22, 215–232. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Skalny, J.; Phillips, J.C.; Cahn, D.S. Low water to cement ratio concretes. Cem. Concr. Res. 1973, 3, 29–40. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, J.; Liu, Z.; Sun, Z.; Stephan, D. Influence of water to cement ratio on the compatibility of polycarboxylate superplasticizer with Portland cement. Constr. Build. Mater. 2022, 341, 127846. [Google Scholar] [CrossRef]
- Kheir, J.; Hilloulin, B.; Loukili, A.; De Belie, N. Chemical Shrinkage of Low Water to Cement (w/c) Ratio CEM I and CEM III Cement Pastes Incorporating Silica Fume and Filler. Materials 2021, 14, 1164. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, X.; Yu, X.; Yang, Y.; Ran, Q. Toward the viscosity reducing of cement paste: Optimization of the molecular weight of polycarboxylate superplasticizers. Constr. Build. Mater. 2020, 242, 117984. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yoo, D.-Y. Full-scale pumping tests of low-viscosity ultra-high-strength concrete. J. Build. Eng. 2021, 43, 102616. [Google Scholar] [CrossRef]
- Sha, S.; Wang, M.; Shi, C.; Xiao, Y. Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Constr. Build. Mater. 2020, 233, 117257. [Google Scholar] [CrossRef]
- Zhou, T.; Duan, H.; Li, Z.; Jin, Y.; Liu, H.; Pang, Y.; Lou, H.; Yang, D.; Qiu, X. Reconfiguring Molecular Conformation from Comb-Type to Y-Type for Improving Dispersion Performance of Polycarboxylate Superplasticizers. Macromolecules 2024, 57, 727–738. [Google Scholar] [CrossRef]
- Xin, H.; Guo, D. The Synthesis and Performance of a Novel Lignin Modified Salt-Resistant Branched High-Performance Water Reducer. Polymers 2024, 16, 204. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.W.; Jin, X.L.; Chen, Y.; Lu, M.; Wang, Y.R.; Yue, K.; Wen, T.; Tang, L.; Wu, Z.L.; Sun, T. Topology and Dynamic Regulations of Comb-like Polymers as Strong Adhesives. Macromolecules 2023, 56, 1514–1526. [Google Scholar] [CrossRef]
- Chen, X.; Wan, D.-w.; Jin, L.-z.; Qian, K.; Fu, F. Experimental studies and microstructure analysis for ultra high-performance reactive powder concrete. Constr. Build. Mater. 2019, 229, 116924. [Google Scholar] [CrossRef]
- Haach, V.G.; Vasconcelos, G.; Lourenço, P.B. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Constr. Build. Mater. 2011, 25, 2980–2987. [Google Scholar] [CrossRef]
- Yan, W.; Cui, W.; Qi, L. Effect of aggregate gradation and mortar rheology on static segregation of self-compacting concrete. Constr. Build. Mater. 2020, 259, 119816. [Google Scholar] [CrossRef]
- Long, G.; Wang, X.; Xie, Y. Very-high-performance concrete with ultrafine powders. Cem. Concr. Res. 2002, 32, 601–605. [Google Scholar] [CrossRef]
- Feng, N.; Feng, X.; Hao, T.; Xing, F.X. Effect of ultrafine mineral powder on the charge passed of the concrete. Cem. Concr. Res. 2002, 32, 623–627. [Google Scholar] [CrossRef]
- Gebremariam, A.T.; Vahidi, A.; Di Maio, F.; Moreno-Juez, J.; Vegas-Ramiro, I.; Łagosz, A.; Mróz, R.; Rem, P. Comprehensive study on the most sustainable concrete design made of recycled concrete, glass and mineral wool from C&D wastes. Constr. Build. Mater. 2021, 273, 121697. [Google Scholar]
- Huang, Z.; Yang, Y.; Ran, Q.; Liu, J. Preparing hyperbranched polycarboxylate superplasticizers possessing excellent viscosity-reducing performance through in situ redox initialized polymerization method. Cem. Concr. Compos. 2018, 93, 323–330. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Zhang, Q.; Han, F.; Sha, J.; Liu, J. Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio. Constr. Build. Mater. 2017, 149, 359–366. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.; Zhang, X.; Li, Z.; Wang, L.; Ouyang, B.; Liu, J. Performance of the Cement Grouting Material and Optimization of the Mix Proportion for the Free Section of the Prestressed Anchor Bar. Materials 2023, 16, 6819. [Google Scholar] [CrossRef] [PubMed]
- Üzer, E.; Plank, J. Impact of welan gum stabilizer on the dispersing performance of polycarboxylate superplasticizers. Cem. Concr. Res. 2016, 82, 100–106. [Google Scholar] [CrossRef]
- Kolawole, J.T.; Combrinck, R.; Boshoff, W.P. Measuring the thixotropy of conventional concrete: The influence of viscosity modifying agent, superplasticiser and water. Constr. Build. Mater. 2019, 225, 853–867. [Google Scholar] [CrossRef]
- Ma, B.; Peng, Y.; Tan, H.; Jian, S.; Zhi, Z.; Guo, Y.; Qi, H.; Zhang, T.; He, X. Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Constr. Build. Mater. 2018, 160, 341–350. [Google Scholar] [CrossRef]
- Bessaies-Bey, H.; Khayat, K.H.; Palacios, M.; Schmidt, W.; Roussel, N. Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology. Cem. Concr. Res. 2022, 152, 106646. [Google Scholar] [CrossRef]
- Chuang, P.-H.; Tseng, Y.-H.; Fang, Y.; Gui, M.; Ma, X.; Luo, J. Effect of Side Chain Length on Polycarboxylate Superplasticizer in Aqueous Solution: A Computational Study. Polymers 2019, 11, 346. [Google Scholar] [CrossRef]
- Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Gauckler, L. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J. Colloid Interface Sci. 2008, 323, 301–312. [Google Scholar] [CrossRef]
- Lange, A.; Hirata, T.; Plank, J. Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cem. Concr. Res. 2014, 60, 45–50. [Google Scholar] [CrossRef]
- Qian, S.; Yao, Y.; Wang, Z.; Cui, S.; Liu, X.; Jiang, H.; Guo, Z.; Lai, G.; Xu, Q.; Guan, J. Synthesis, characterization and working mechanism of a novel polycarboxylate superplasticizer for concrete possessing reduced viscosity. Constr. Build. Mater. 2018, 169, 452–461. [Google Scholar] [CrossRef]
- Ma, Y.; Jiao, D.; Sha, S.; Zhou, B.; Liu, Y.; Shi, C. Effect of anchoring groups of polycarboxylate ether superplasticizer on the adsorption and dispersion of cement paste containing montmorillonite. Cem. Concr. Compos. 2022, 134, 104737. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, X.; Xing, F.; Dong, B.; Wang, F. Working mechanism of post-acting polycarboxylate superplasticizers containing acrylate segments. J. Appl. Polym. Sci. 2017, 135, 45753. [Google Scholar] [CrossRef]
- Wen, X.-d.; Feng, L.; Hu, d.-y.; Wang, K.; Zhang, Z. Effect of side-chain length in polycarboxylic superplasticizer on the early-age performance of cement-based materials. Constr. Build. Mater. 2019, 211, 26–32. [Google Scholar] [CrossRef]
- Plank, J.; Sachsenhauser, B.; de Reese, J. Experimental determination of the thermodynamic parameters affecting the adsorption behaviour and dispersion effectiveness of PCE superplasticizers. Cem. Concr. Res. 2010, 40, 699–709. [Google Scholar] [CrossRef]
- Yang, H.; Li, M.; Pan, L.; Zhang, P.; Pashameah, R.A.; Abo-Dief, H.M.; Xu, S.; Lin, C.; Algadi, H.; Li, J.; et al. Absorption behavior of polycarboxylate superplasticizer with different molecular structures on montmorillonite. Environ. Res. 2023, 216, 114423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zheng, D.; Qiu, X.; Yang, D.; Fan, L.; Zheng, J. A novel branched claw-shape lignin-based polycarboxylate superplasticizer: Preparation, performance and mechanism. Cem. Concr. Res. 2019, 119, 89–101. [Google Scholar] [CrossRef]
- Zhong, D.; Liu, Q.; Zheng, D. Synthesis of lignin-grafted polycarboxylate superplasticizer and the dispersion performance in the cement paste. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 642, 128689. [Google Scholar] [CrossRef]
- GB/T 8077-2012; Methods for Testing Uniformity of Concrete Admixture. Standards Press of China: Beijing, China, 2012.
- GB/T 1346–2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. Standards Press of China: Beijing, China, 2011.
- Wong, H.H.C.; Kwan, A.K.H. Packing density of cementitious materials: Part 1—Measurement using a wet packing method. Mater. Struct. 2008, 41, 689–701. [Google Scholar] [CrossRef]
- Li, L.G.; Kwan, A.K.H. Effects of superplasticizer type on packing density, water film thickness and flowability of cementitious paste. Constr. Build. Mater. 2015, 86, 113–119. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, J.; Jiang, H.; Xing, J.; Sun, X.; Ma, Z. Flowability of ultrafine-tailings cemented paste backfill incorporating superplasticizer: Insight from water film thickness theory. Powder Technol. 2021, 381, 509–517. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. Effect of constituents on rheological properties of fresh concrete-A review. Cem. Concr. Compos. 2017, 83, 146–159. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, C.; Yuan, Q.; Zhu, D.; De Schutter, G. Effects of rotational shearing on rheological behavior of fresh mortar with short glass fiber. Constr. Build. Mater. 2019, 203, 314–321. [Google Scholar] [CrossRef]
- GB/T 17671-1999; Method of Testing Cements--Determinationof Strength. Standards Press of China: Beijing, China, 1999.
- GB 8076-2008; Concrete Admixtures. Standards Press of China: Beijing, China, 2008.
- JGJ/T 55-2011; Specification for Mix Proportion Design of Ordinary Concrete. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2011.
- Chomyn, C.; Plank, J. Impact of different synthesis methods on the dispersing effectiveness of isoprenol ether-based zwitterionic and anionic polycarboxylate (PCE) superplasticizers. Cem. Concr. Res. 2019, 119, 113–125. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Jiang, H.; Zheng, C.; Guo, Z. Synthesis, characterization and mechanism of polycarboxylate superplasticizer with slump retention capability. IOP Conf. Ser. Mater. Sci. Eng. 2017, 182, 012036. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Ren, X.; Yang, H.; Lin, S. Synthesis of polycarboxylic ether superplasticizers based on the high conversion of EPEG in a transition metal oxide heterogeneous catalytic system. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 643, 128780. [Google Scholar] [CrossRef]
- Lin, X.; Pang, H.; Wei, D.; Lu, M.; Liao, B. Effect of the cross-linker structure of cross-linked polycarboxylate superplasticizers on the behavior of cementitious mixtures. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 608, 125437. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Yan, D.; Ke, Y.; Ma, X.; Lai, J.; Liu, Y.; Li, G.; Zhang, X.; Lin, Z.; et al. Study on the Effect of Main Chain Molecular Structure on Adsorption, Dispersion, and Hydration of Polycarboxylate Superplasticizers. Materials 2023, 16, 4823. [Google Scholar] [CrossRef]
- Katsioti, M.; Tsakiridis, P.E.; Giannatos, P.; Tsibouki, Z.; Marinos, J. Characterization of various cement grinding aids and their impact on grindability and cement performance. Constr. Build. Mater. 2009, 23, 1954–1959. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Liu, M.; Yu, Y.; Guo, J. Synthesis, performance and working mechanism of a novel amphoteric polycarboxylate dispersant without chlorine ion. Constr. Build. Mater. 2020, 247, 118613. [Google Scholar] [CrossRef]
- Ma, B.; Li, C.; Lv, Y.; Tan, H.; Wang, H.; Qi, H.; Liu, X.; Yang, Q.; Chen, P. Preparation for polyacrylic acid modified by ester group in side chain and its application as viscosity enhancing agent in polycarboxylate superplasticizer system. Constr. Build. Mater. 2020, 233, 117272. [Google Scholar] [CrossRef]
- Feng, P.; Zhang, G.; Zhang, W.; Cui, H.; Xin, T. Comparison of ester-based slow-release polycarboxylate superplasticizers with their polycarboxylate counterparts. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 633, 127878. [Google Scholar] [CrossRef]
- Li, G.; Fang, Y.; Wu, C.; Guo, Y.; Ma, X. Molecular Behavior of Different Polycarboxylate Superplasticizers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 631, 022064. [Google Scholar] [CrossRef]
- Palma-Lemus, K.; Hamzehlou, S.; Froidevaux, V.; Boustingorry, P.; Leiza, J.R. Acidic Aqueous-Phase Copolymerization of AA and HPEG Macromonomer: Influence of Monomer Concentration on Reactivity Ratios. Ind. Eng. Chem. Res. 2023, 62, 18427–18437. [Google Scholar] [CrossRef]
- Ma, M.; Chen, H.; Zhang, W.; Feng, E.; Li, X.; Li, F.; Xu, S.; Li, Y. Novel poly(amino acid)-type superplasticizers with enhanced dispersing performance for Portland cement doped with clay impurities. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 634, 127953. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Yang, Y.; Shu, X.; Yan, H.; Ran, Q. Effect of hydrophobic groups on the adsorption conformation of modified polycarboxylate superplasticizer investigated by molecular dynamics simulation. Appl. Surf. Sci. 2017, 407, 8–15. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Shu, X.; Wang, Y.; Ran, Q.; Liu, J. Tailoring polycarboxylate architecture to improve the rheological properties of cement paste. J. Dispers. Sci. Technol. 2019, 40, 1567–1574. [Google Scholar] [CrossRef]
- Shu, X.; Zhao, H.; Wang, X.; Zhang, Q.; Yang, Y.; Ran, Q.; Liu, J. Effect of hydrophobic units of polycarboxylate superplasticizer on the flow behavior of cement paste. J. Dispers. Sci. Technol. 2017, 38, 256–264. [Google Scholar] [CrossRef]
- Plank, J.; Hirsch, C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem. Concr. Res. 2007, 37, 537–542. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhang, Y.; Zheng, J.; Guo, H.; Lu, M. Study on dispersion, adsorption and flow retaining behaviors of cement mortars with TPEG-type polyether kind polycarboxylate superplasticizers. Constr. Build. Mater. 2014, 64, 324–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X. Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem. Concr. Res. 2015, 69, 1–9. [Google Scholar] [CrossRef]
- Srinivasan, S.; Barbhuiya, S.A.; Charan, D.; Pandey, S.P. Characterising cement–superplasticiser interaction using zeta potential measurements. Constr. Build. Mater. 2010, 24, 2517–2521. [Google Scholar] [CrossRef]
- Ge, H.; Sun, Z.; Zheng, K.; Lu, Z.; Yang, H.; Zhang, T. Improvement of shrinkage reducing performance of polycarboxylate superplasticizer by butyl acrylate and its mechanism. J. Appl. Polym. Sci. 2023, 140, 54048. [Google Scholar] [CrossRef]
- Ma, Y.; Bai, J.; Shi, C.; Sha, S.; Zhou, B. Effect of PCEs with different structures on hydration and properties of cementitious materials with low water-to-binder ratio. Cem. Concr. Res. 2021, 142, 106343. [Google Scholar] [CrossRef]
- Lin, X.; Liao, B.; Zhang, J.; Li, S.; Huang, J.; Pang, H. Synthesis and characterization of high-performance cross-linked polycarboxylate superplasticizers. Constr. Build. Mater. 2019, 210, 162–171. [Google Scholar] [CrossRef]
- Sha, S.; Zhang, Y.; Ma, Y.; Liu, Y.; Shi, C. Effect of molecular structure of maleic anhydride, fumaric acid—Isopentenyl polyoxyethylene ether based polycarboxylate superplasticizer on its properties in cement pastes. Constr. Build. Mater. 2021, 308, 125143. [Google Scholar] [CrossRef]
- Yoshioka, K.; Sakai, E.; Daimon, M.; Kitahara, A. Role of Steric Hindrance in the Performance of Superplasticizers for Concrete. J. Am. Ceram. Soc. 2005, 80, 2667–2671. [Google Scholar] [CrossRef]
- Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197–207. [Google Scholar] [CrossRef]
- Dalas, F.; Nonat, A.; Pourchet, S.; Mosquet, M.; Rinaldi, D.; Sabio, S. Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cem. Concr. Res. 2015, 67, 21–30. [Google Scholar] [CrossRef]
- Li, S.; Pang, H.; Zhang, J.; Meng, Y.; Huang, J.; Lin, X.; Liao, B. Synthesis and performance of a novel amphoteric polycarboxylate superplasticizer with hydrolysable ester group. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 564, 78–88. [Google Scholar] [CrossRef]
- Abile, R.; Russo, A.; Limone, C.; Montagnaro, F. Impact of the charge density on the behaviour of polycarboxylate ethers as cement dispersants. Constr. Build. Mater. 2018, 180, 477–490. [Google Scholar] [CrossRef]
- Kong, F.-r.; Pan, L.-s.; Wang, C.-m.; Zhang, D.-l.; Xu, N. Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste. Constr. Build. Mater. 2016, 105, 545–553. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zheng, Y.; Cui, S.; Lan, M.; Li, H.; Zhu, J.; Liang, X. Preparation, Characterization and Performances of Powdered Polycarboxylate Superplasticizer with Bulk Polymerization. Materials 2014, 7, 6169–6183. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Sun, S.; Zhong, K.; Shao, Q.; Xu, H.; Huang, H.; Wei, J. Dispersion, fluidity retention and retardation effect of polyacrylate-based ether superplasticizer nanomicelles in Portland cement. Constr. Build. Mater. 2021, 290, 123149. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Sisomphon, K.; Ng, T.S.; Sun, D.J. Effect of superplasticizers on workability retention and initial setting time of cement pastes. Constr. Build. Mater. 2010, 24, 1700–1707. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, L.; Luo, Q.; Yu, K.; Connolly, D.P.; Qin, L.; Wang, L.; Wang, T. Impact of polycarboxylate superplasticizer dosage on controlled low strength material flowability and bleeding: Insights from water film thickness. Constr. Build. Mater. 2024, 447, 138145. [Google Scholar] [CrossRef]
- Ren, J.; Li, H.; Zhang, J.; Yan, S.; Zhu, H.; Xu, S.; Shi, S.; Mao, J. Effect of Salinity and Polycarboxylate Superplasticizer on Fresh Property of Seawater-Blended Cement. Polymers 2023, 15, 541. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.K.H.; Fung, W.W.S. Roles of water film thickness and SP dosage in rheology and cohesiveness of mortar. Cem. Concr. Compos. 2012, 34, 121–130. [Google Scholar] [CrossRef]
- Zhu, W.; Feng, Q.; Luo, Q.; Bai, X.; Lin, X.; Zhang, Z. Effects of PCE on the Dispersion of Cement Particles and Initial Hydration. Materials 2021, 14, 3195. [Google Scholar] [CrossRef]
- Puertas, F.; Santos, H.; Palacios, M.; Martínez-Ramírez, S. Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res. 2005, 17, 77–89. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Shui, L.; Wang, Y.; Gu, M.; Wang, X.; Wang, H.; Peng, L. Effects of PCEs with various carboxylic densities and functional groups on the fluidity and hydration performances of cement paste. Constr. Build. Mater. 2019, 202, 656–668. [Google Scholar] [CrossRef]
- Huang, J.; Xu, W.; Chen, H.; Xu, G. Elucidating how ionic adsorption controls the rheological behavior of quartz and cement-quartz paste. Constr. Build. Mater. 2021, 272, 121957. [Google Scholar] [CrossRef]
- Roussel, N.; Lemaître, A.; Flatt, R.J.; Coussot, P. Steady state flow of cement suspensions: A micromechanical state of the art. Cem. Concr. Res. 2010, 40, 77–84. [Google Scholar] [CrossRef]
- Cao, L.; Guo, J.; Tian, J.; Hu, M.; Guo, C.; Xu, Y.; Wang, M.; Fan, J. The ability of sodium metasilicate pentahydrate to adjust the compatibility between synthetic Fluid Loss Additives and Retarders applying in oil well cement. Constr. Build. Mater. 2018, 158, 835–846. [Google Scholar] [CrossRef]
- Ren, J.; Wang, X.; Xu, S.; Luo, Q.; Fang, Y.; Zhu, J.; Xing, F. Effects of polycarboxylate superplasticiser on hydration characteristics and hardened properties of cement blended with seawater. Constr. Build. Mater. 2021, 304, 124660. [Google Scholar] [CrossRef]
- Zhang, J.; An, X.; Nie, D. Effect of fine aggregate characteristics on the thresholds of self-compacting paste rheological properties. Constr. Build. Mater. 2016, 116, 355–365. [Google Scholar] [CrossRef]
Chemical Composition | wt.% | Mineral Composition | wt.% |
---|---|---|---|
SiO2 | 20.4 | C3S | 58.94 |
Al2O3 | 4.40 | C2S | 15.31 |
Fe2O3 | 3.27 | C3A | 6.71 |
CaO | 62.70 | C4AF | 11.58 |
MgO | 2.86 | ||
SO3 | 2.18 | ||
Na2Oeq | 0.59 | ||
f-CaO | 0.78 | ||
Loss | 1.75 | ||
Cl− | 0.018 |
Sample | HPEG (a) | AA (b) | SMAS (c) | MA (d) |
---|---|---|---|---|
PCE-MA0 | 1 | 4 | 0.04 | 0 |
PCE-MA0.5 | 1 | 4 | 0.04 | 0.5 |
PCE-MA1.5 | 1 | 4 | 0.04 | 1.5 |
PCE-MA2.0 | 1 | 4 | 0.04 | 2.0 |
PCE-MA2.5 | 1 | 4 | 0.04 | 2.5 |
Components | Cement | Sand | Gravel | Water | |
---|---|---|---|---|---|
(5–10 mm) | (10–20 mm) | ||||
Mass (kg/m3) | 500 | 808 | 182 | 730 | 180 |
Sample | Mn | Mw | PDI (Mw/Mn) | Rh (%) | |
---|---|---|---|---|---|
Peak1 | Peak2 | ||||
PCE-MA0 | 23,700 | 47,281 | 2052 | 1.99 | 81.9 |
PCE-MA0.5 | 22,929 | 48,992 | 2035 | 2.14 | 87.8 |
PCE-MA1.5 | 24,524 | 57,841 | 1950 | 2.36 | 89.3 |
PCE-MA2.0 | 24,926 | 55,174 | 1998 | 2.21 | 87.8 |
PCE-MA2.5 | 25,353 | 74,872 | 2026 | 2.95 | 92.4 |
Samples | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
K1 | Γ∞ | R2 | K2 | Γ∞ | R2 | |
PCE-MA0 | 0.443 | 0.375 | 0.931 | 3.755 | 0.377 | 0.999 |
PCE-MA0.5 | 0.749 | 0.414 | 0.855 | 2.928 | 0.421 | 0.999 |
PCE-MA1.5 | 0.740 | 0.400 | 0.380 | 0.995 | 0.414 | 0.999 |
PCE-MA2.0 | 1.758 | 0.360 | 0.982 | 1.492 | 0.361 | 0.999 |
PCE-MA2.5 | 1.628 | 0.349 | 0.979 | 1.604 | 0.350 | 0.999 |
Model | Sample | Formula | Parameter | ||||
---|---|---|---|---|---|---|---|
τ0/Pa | K/Pa·sn | n | μ/Pa⋅s | R2 | |||
Herschel-Bulkley model | PCE-MA0 | τ = τ0 + Kγn | 1.11 | 0.77 | 1.06 | 0.95 | 0.999 |
PCE-MA0.5 | 0.39 | 0.66 | 1.06 | 0.82 | 0.997 | ||
PCE-MA1.5 | 1.11 | 1.32 | 0.92 | 0.99 | 0.998 | ||
PCE-MA2.0 | 2.00 | 1.04 | 1.02 | 1.12 | 0.998 | ||
PCE-MA2.5 | 2.62 | 1.75 | 0.9 | 1.22 | 0.995 |
Sample | Dosage (%) | Slump/Slump Flow (mm) | T500 (s) | Efflux Time (s) | Air Content (%) |
---|---|---|---|---|---|
PCE-MA0 | 0.85 | 240/590 | 9.85 | 7.68 | 2.3 |
PCE-MA0.5 | 0.80 | 240/620 | 7.31 | 7.13 | 2.4 |
PCE-MA1.5 | 1.00 | 230/615 | 4.76 | 6.20 | 2.2 |
PCE-MA2.0 | 1.05 | 235/620 | 3.68 | 5.15 | 1.9 |
PCE-MA2.5 | 1.25 | 240/615 | 2.17 | 3.53 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhang, Z.; Chen, Y.; Ren, X.; Liu, Y.; Tao, J.; Liu, R.; Li, M.; Li, Z. Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems. Polymers 2024, 16, 3272. https://doi.org/10.3390/polym16233272
Xie Y, Zhang Z, Chen Y, Ren X, Liu Y, Tao J, Liu R, Li M, Li Z. Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems. Polymers. 2024; 16(23):3272. https://doi.org/10.3390/polym16233272
Chicago/Turabian StyleXie, Yuxiang, Zixuan Zhang, Yujie Chen, Xu Ren, Yuan Liu, Jia Tao, Runxia Liu, Min Li, and Ziwei Li. 2024. "Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems" Polymers 16, no. 23: 3272. https://doi.org/10.3390/polym16233272
APA StyleXie, Y., Zhang, Z., Chen, Y., Ren, X., Liu, Y., Tao, J., Liu, R., Li, M., & Li, Z. (2024). Effect of Density of Acrylic Acid Ester on Sulfonate-Modified Polycarboxylate Superplasticizers on Cementitious Systems. Polymers, 16(23), 3272. https://doi.org/10.3390/polym16233272