Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation and Reagents
2.2. FP and AXF Extraction
2.3. FP/AXF Mixed Hydrogel Formation
2.4. Phenolic Acid Content
2.5. Rheological Measurements
2.6. Microstructural Characterization
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of FP and AXF
3.2. Ferulic Acid, Dimer, and Trimer Content in Mixed Hydrogels
3.3. Rheological Characterization of Mixed Hydrogels
3.4. Microstructure of Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, P.; Rishabha, M. Sources of pectin, extraction and its applications in pharmaceutical industry—An overview. Indian J. Nat. Prod. Resour. 2011, 2, 10–18. Available online: https://www.researchgate.net/profile/Pranati-Srivastava/publication/280016869_Sources_of_pectin_extraction_and_its_applications_in_pharmaceutical_industry_-_An_overview/links/5923dee7aca27295a8aa779e/Sources-of-pectin-extraction-and-its-applications-in-p (accessed on 5 September 2024).
- Niño-Medina, G.; Carvajal-Millan, E.; Rascon-Chu, A.; Marquez-Escalante, J.; Guerrero, V.; Salas-Muñoz, E. Feruloylated arabinoxylans and arabinoxylan gels: Structure, sources and applications. Phytoch. Rev. 2010, 9, 111–121. [Google Scholar] [CrossRef]
- Saulnier, L.; Thibault, J. Ferulic acid and diferulic acids as components of sugar beet pectins and maize bran heteroxylans. J. Sci. Food Agric. 1999, 79, 396–402. [Google Scholar] [CrossRef]
- Niu, H.; Hou, K.; Chen, H.; Fu, X. A review of sugar beet pectin-stabilized emulsion: Extraction, structure, interfacial self-assembly and emulsion stability. Crit. Rev. Food Sci. Nutr. 2022, 64, 852–872. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.; Chau, H.; Cooke, P.; Hotchkiss, A. Global Structure of Microwave-assisted Flash-extracted Sugar Beet Pectin. J. Agric. Food Chem. 2008, 56, 1471–1478. [Google Scholar] [CrossRef]
- Ström, A.; Schuster, E.; Goh, S.M. Rheological characterization of acid pectin samples in the absence and presence of monovalent ions. Carbohydr. Polym. 2014, 113, 336–343. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Levigne, S.; Ralet, M.C.; Thibault, J.F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydr. Polym. 2002, 49, 145–153. [Google Scholar] [CrossRef]
- Yapo, B.; Wathelet, B.; Paquot, M. Comparison of alcohol precipitation and membrane filtration effects on sugar beet pulp pectin chemical features and surface properties. Food Hydrocoll. 2007, 21, 245–255. [Google Scholar] [CrossRef]
- Ohlmaier-Delgadillo, F.; Carvajal-Millan, E.; López-Franco, Y.L.; Islas-Osuna, M.A.; Micard, V.; Antoine-Assor, C.; Rascón-Chu, A. Ferulated Pectins and Ferulated Arabinoxylans Mixed Gel for Saccharomyces boulardii Entrapment in Electrosprayed Microbeads. Molecules 2021, 26, 2478. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Du, G.; Jing, W.; Li, J.; Yan, J.; Liu, Z. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr. Polym. 2015, 129, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Morales-Burgos, A.M.; Carvajal-Millan, E.; Lopez-Franco, Y.; Rascon-Chu, A.; Lizardi-Mendoza, J.; Sotelo-Cruz, N.; Brown-Bojorquez, F.; Burgara-Estrella, A.; Pedroza-Montero, M. Syneresis in Gels of Highly Ferulated Arabinoxylans: Characterization of Covalent Cross-Linking, Rheology, and Microstructure. Polymers 2017, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Vansteenkiste, E.; Babot, C.; Rouau, X.; Micard, V. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Peng, X.; Mu, T.; Zhang, M.; Sun, H.; Chen, J.; Yu, M. Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin. Food Hydrocoll. 2016, 60, 161–169. [Google Scholar] [CrossRef]
- Chen, H.M.; Fu, X.; Luo, Z.G. Effect of molecular structure on emulsifying properties of sugar beet pulp pectin. Food Hidrocoll. 2016, 54, 99–106. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H.; Valencia-Rivera, D.E.; Brown-Bojorquez, F.; Alday, E.; Velazquez, C. Arabinoxylan-Based Particles: In Vitro Antioxidant Capacity and Cytotoxicity on a Human Colon Cell Line. Medicina 2019, 55, 349. [Google Scholar] [CrossRef]
- Martinez-Lopez, A.L.; Carvajal-Millan, E.; Sotelo-Cruz, N.; Micard, V.; Rascon-Chu, A.; Lopez-Franco, Y.L.; Lizardi-Mendoza, J.; Canett-Romero, R. Enzymatically cross-linked arabinoxylan microspheres as oral insulin delivery system. Int. J. Biol. Macromol. 2019, 126, 952–959. [Google Scholar] [CrossRef]
- Ralet, M.-C.; André-Leroux, G.; Quéméner, B.; Thibault, J.-F. Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry 2005, 66, 2800–2814. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.L.; Sanchez-Villegas, J.A.; Lopez-Franco, Y.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Carvallo-Ruiz, T.; Rascon-Chu, A. Composition, Physicochemical Features, and Covalent Gelling Properties of Ferulated Pectin Extracted from Three Sugar Beet (Beta vulgaris L.) Cultivars Grown under Desertic Conditions. Agronomy 2020, 11, 40. [Google Scholar] [CrossRef]
- Ayala-Soto, F.E.; Serna-Saldivar, S.O.; Garcia-Lara, S.; Perez-Carrillo, E. Hydroxycinnamic Acids, Sugar Composition and Antioxidant Capacity of Arabinoxylans Extracted from Different Maize Fiber Sources. Food Hydrocoll. 2014, 35, 471–475. [Google Scholar] [CrossRef]
- Malunga, L.N.; Beta, T. Antioxidant Capacity of Water-Extractable Arabinoxylan from Commercial Barley, Wheat, and Wheat Fractions. Cereal Chem. 2015, 92, 29–36. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Carvajal-Millan, E.; Lizardi, J.; Rascon-Chu, A.; Marquez-Escalante, J.A.; Gardea, A.; Martinez-Lopez, A.L.; Guerrero, V. Maize processing waste water arabinoxylans: Gelling capability and cross-linking content. Food Chem. 2009, 115, 1286–1290. [Google Scholar] [CrossRef]
- Garcia-Conesa, M.T.; Plumb, G.W.; Kroon, P.A.; Wallace, G.; Williamson, G. Antioxidant properties of ferulic acid dimers. Redox Rep. 1997, 3, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Conesa, M.T.; Plumb, G.W.; Waldron, K.W.; Ralph, J.; Williamson, G. Ferulic Acid Dehydrodimers from Wheat Bran: Isolation, Purification and Antioxidant Properties of 8-O-4-diferulic Acid. Redox Rep. 1997, 3, 319–323. [Google Scholar] [CrossRef]
- Adelakun, O.E.; Kudanga, T.; Parker, A.; Green, I.R.; Roes-Hill, M.; Burton, S.G. Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J. Mol. Catal. B Enzym. 2012, 74, 29–35. [Google Scholar] [CrossRef]
- Rouau, X.; Cheynier, V.; Surget, A.; Gloux, D.; Barron, C.; Meudec, E.; Louis-Montero, J.; Criton, M. A dehydrotrimer of ferulic acid from maize bran. Phitochemistry 2003, 63, 899–903. [Google Scholar] [CrossRef]
- Bunzel, M.; Ralph, J.; Funk, C. Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur. Food Res. Technol. 2003, 217, 128–133. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Guigliarelli, B.; Belle, V.; Rouau, X.; Micard, V. Storage stability of laccase induced arabinoxylan gels. Carbohydr. Polym. 2005, 59, 181–188. [Google Scholar] [CrossRef]
- Waterstraat, M.; Bunzel, D.; Bunzel, M. Identification of 8-O-4/8-5(Cyclic)- and 8-8(Cyclic)/5-5-Coupled Dehydrotriferulic Acids, Naturally Occurring in Cell Wall of Mono and Dicotyledonous Plants. J. Agric. Food Chem. 2016, 64, 7244–7250. [Google Scholar] [CrossRef]
- Waterstraat, M.; Bunzel, M. A Multi-Step Chromatographic Approach to Purify Radically Generated Ferulate Oligomers Reveals Naturally Ocurring 5-5/8-8(Cyclic)-,8-8(Noncyclic)/8-O-4-, and 5-5/8-8(Noncyclic)-Coupled Dehydrotriferulic Acids. Front. Chem. 2018, 6, 190. [Google Scholar] [CrossRef] [PubMed]
- Ilyin, S.O. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers 2024, 16, 2458. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gan, J.; Ji, A.; Song, S.; Yin, L. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Funami, T.; Nakauma, M.; Ishihara, S.; Tanaka, R.; Inoue, T.; Phillips, G.O. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hidrocoll. 2011, 25, 221–229. [Google Scholar] [CrossRef]
- Schooneveld-Bergmans, M.E.F.; Dignum, M.J.W.; Grabber, J.H.; Beldman, G.; Voragen, A.G.J. Studies on the oxidative cross-linking of feruloylated arabinoxylans from wheat flour and wheat bran. Carbohydr. Polym. 1999, 38, 309–317. [Google Scholar] [CrossRef]
- Hou, J.J.; Guo, J.; Wang, J.M.; He, X.T.; Yuan, Y.; Yin, S.W.; Yang, X.Q. Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure. Food Hydrocoll. 2015, 50, 94–101. [Google Scholar] [CrossRef]
- Kyomugasho, C.; Christiaens, S.; Van de Walle, D.; Van Loey, A.M.; Dewettinck, K.; Hendrickx, M.E. Evaluation of cation-facilitated pectin-gel properties: Cryo-SEM visualization and rheological properties. Food Hydrocoll. 2016, 61, 172–182. [Google Scholar] [CrossRef]
Compound | Content |
---|---|
Galacturonic acid 1 | 55.0 ± 3 |
Rhamnose 1 | 6.3 ± 0.5 |
Arabinose 1 | 3.3 ± 0.4 |
Xylose 1 | 1.4 ± 0.2 |
Galactose 1 | 7.1 ± 0.5 |
Glucose 1 | 1.0 ± 0.01 |
Mannose 1 | 1.3 ± 0.2 |
Fucose 1 | 1.2 ± 0.1 |
Total neutral sugars 1 | 21.6 ± 0.9 |
Protein 1 | 10.3 ± 0.5 |
Ash 1 | 2.13 ± 0.06 |
DM 1 | 57.4 ± 4.1 |
DA 1 | 26.1 ± 2.4 |
Ferulic acid 2 | 5.5 ± 0.1 |
Diferulic acid 2 | 0.26 ± 0.03 |
FA | Di-FA | Tri-FA | FA Oxidized 1 | |
---|---|---|---|---|
(mg/g) | (%) | |||
Before gelation | 6.2 ± 0.3 | 0.34 ± 0.03 | 0.010 ± 0.002 | - |
After gelation | 3.7 ± 0.2 | 3.6 ± 0.3 | 0.66 ± 0.07 | 40 |
G’ (Pa) | G” (Pa) | Tan δ (G”/G’) | Density of Crosslinks (mol/cm3) × 10−7 | |
---|---|---|---|---|
AXF hydrogel (2.3%) | 1540 ± 280 b | 2.53 ± 0.26 a | 0.0021 ± 0.0007 a | 6.21 |
FP hydrogel (3%) | 425 ± 11 a | 4.64 ± 0.16 c | 0.012 ± 0.001 b | 1.71 |
FP/AXF (2.6%) mixed hydrogel | 768 ± 2 a | 3.30 ± 0.04 b | 0.00430 ± 0.00005 a | 3.10 |
(log additivity rule) [33] | 809 | 3.4 | 0.0050 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-Espinoza, C.; Rascón-Chu, A.; Micard, V.; Antoine-Assor, C.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Ohlmaier-Delgadillo, F.; Brown-Bojorquez, F. Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization. Polymers 2024, 16, 2939. https://doi.org/10.3390/polym16202939
Lara-Espinoza C, Rascón-Chu A, Micard V, Antoine-Assor C, Carvajal-Millan E, Troncoso-Rojas R, Ohlmaier-Delgadillo F, Brown-Bojorquez F. Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization. Polymers. 2024; 16(20):2939. https://doi.org/10.3390/polym16202939
Chicago/Turabian StyleLara-Espinoza, Claudia, Agustín Rascón-Chu, Valérie Micard, Carole Antoine-Assor, Elizabeth Carvajal-Millan, Rosalba Troncoso-Rojas, Federico Ohlmaier-Delgadillo, and Francisco Brown-Bojorquez. 2024. "Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization" Polymers 16, no. 20: 2939. https://doi.org/10.3390/polym16202939
APA StyleLara-Espinoza, C., Rascón-Chu, A., Micard, V., Antoine-Assor, C., Carvajal-Millan, E., Troncoso-Rojas, R., Ohlmaier-Delgadillo, F., & Brown-Bojorquez, F. (2024). Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization. Polymers, 16(20), 2939. https://doi.org/10.3390/polym16202939