Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Amylose Content
2.3. Film Elaboration
2.4. Film Characterization
2.4.1. Thickness
2.4.2. Mechanical Properties
2.4.3. Moisture Content (Xw)
2.4.4. Solubility in Water
2.4.5. Water Absorption Capacity
2.4.6. Water Contact Angle (CAw)
2.4.7. Barrier Properties
2.4.8. Optical Properties
2.5. Film Application as a Cherry Tomato Coating
2.6. Statistical Analysis
3. Results
3.1. Determination of Amylose Content
3.2. Mechanical Properties
3.3. Moisture Content
3.4. Solubility in Water
3.5. Water Absorption Capacity
3.6. Water Contact Angle (CAw)
3.7. Barrier Properties
3.8. Optical Properties
3.9. Film Application as a Cherry Tomato Coating
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.-M.; Dong, T.; Anderson, A.; et al. Sustainable Bioplastics Derived from Renewable Natural Resources for Food Packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Yin, Y.; Woo, M.W. Transitioning of Petroleum-Based Plastic Food Packaging to Sustainable Bio-Based Alternatives. Sustain. Food Technol. 2024, 2, 548–566. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Gupta, R.K.; Guha, P.; Srivastav, P.P. Natural Polymers in Bio-Degradable/Edible Film: A Review on Environmental Concerns, Cold Plasma Technology and Nanotechnology Application on Food Packaging- A Recent Trends. Food Chem. Adv. 2022, 1, 100135. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Panou, A.; Karabagias, I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings 2023, 13, 1176. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012, 5, 2058–2076. [Google Scholar] [CrossRef]
- Ghizdareanu, A.-I.; Banu, A.; Pasarin, D.; Ionita (Afilipoaei), A.; Nicolae, C.-A.; Gabor, A.R.; Pătroi, D. Enhancing the Mechanical Properties of Corn Starch Films for Sustainable Food Packaging by Optimizing Enzymatic Hydrolysis. Polymers 2023, 15, 1899. [Google Scholar] [CrossRef]
- Bertoft, E.; Blennow, A. Chapter 3—Structure of Potato Starch. In Advances in Potato Chemistry and Technology, 2nd ed.; Singh, J., Kaur, L., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 57–73. ISBN 978-0-12-800002-1. [Google Scholar]
- de Moraes, J.O.; Scheibe, A.S.; Sereno, A.; Laurindo, J.B. Scale-up of the Production of Cassava Starch Based Films Using Tape-Casting. J. Food Eng. 2013, 119, 800–808. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Mechanical and Thermal Properties of Yam Starch Films. Food Hydrocoll. 2005, 19, 157–164. [Google Scholar] [CrossRef]
- Ciaramitaro, V.; Piacenza, E.; Meo, P.L.; Librici, C.; Calvino, M.M.; Conte, P.; Lazzara, G.; Chillura Martino, D.F. From Micro to Macro: Physical-Chemical Characterization of Wheat Starch-Based Films Modified with PEG200, Sodium Citrate, or Citric Acid. Int. J. Biol. Macromol. 2023, 253, 127225. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers 2023, 15, 63. [Google Scholar] [CrossRef]
- Jiang, T.; Duan, Q.; Zhu, J.; Liu, H.; Yu, L. Starch-Based Biodegradable Materials: Challenges and Opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of Carboxymethyl Cellulose Concentration on Physical Properties of Biodegradable Cassava Starch-Based Films. Chem. Cent. J. 2011, 5, 6. [Google Scholar] [CrossRef]
- Tavares, K.M.; de Campos, A.; Mitsuyuki, M.C.; Luchesi, B.R.; Marconcini, J.M. Corn and Cassava Starch with Carboxymethyl Cellulose Films and Its Mechanical and Hydrophobic Properties. Carbohydr. Polym. 2019, 223, 115055. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, C.; Wang, X.; Xiong, L.; Sun, Q. Physicochemical Properties of Starch Nanocomposite Films Enhanced by Self-Assembled Potato Starch Nanoparticles. LWT—Food Sci. Technol. 2016, 69, 251–257. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of Starch Type on the Physico-Chemical Properties of Edible Films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Żołek-Tryznowska, Z.; Kałuża, A. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance. Materials 2021, 14, 1146. [Google Scholar] [CrossRef]
- Baneshi, M.; Aryee, A.N.A.; English, M.; Mkandawire, M. Designing Plant-Based Smart Food Packaging Solutions for Prolonging Consumable Life of Perishable Foods. Food Chem. Adv. 2024, 5, 100769. [Google Scholar] [CrossRef]
- Wahab, Y.A.; Al-Ani, L.A.; Khalil, I.; Schmidt, S.; Tran, N.N.; Escribà-Gelonch, M.; Woo, M.W.; Davey, K.; Gras, S.; Hessel, V.; et al. Nanomaterials: A Critical Review of Impact on Food Quality Control and Packaging. Food Control 2024, 163, 110466. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.K.; Misra, M. Sustainable Biodegradable Coatings for Food Packaging: Challenges and Opportunities. Green Chem. 2024, 26, 4934–4974. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Youssef, A.M. Eco-Friendly Biodegradable Nanocomposite Materials and Their Recent Use in Food Packaging Applications: A Review. Sustain. Food Technol. 2023, 1, 215–227. [Google Scholar] [CrossRef]
- Sowbhagya, C.M.; Bhattacharya, K.R. Simplified Determination of Amylose in Milled Rice. Starch—Stärke 1979, 31, 159–163. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ASTM E96-95; Standard Test Method for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Hutchings, J.B. Food Colour and Appearance in Perspective. In Food Colour and Appearance; Hutchings, J.B., Ed.; Springer: Boston, MA, USA, 1994; pp. 1–29. ISBN 978-1-4615-2123-5. [Google Scholar]
- ASTM D523-14; Standard Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Rivera Leiva, A.F.; Hernández-Fernández, J.; Ortega Toro, R. Active Films Based on Starch and Wheat Gluten (Triticum Vulgare) for Shelf-Life Extension of Carrots. Polymers 2022, 14, 5077. [Google Scholar] [CrossRef]
- Domene-López, D.; García-Quesada, J.C.; Martin-Gullon, I.; Montalbán, M.G. Influence of Starch Composition and Molecular Weight on Physicochemical Properties of Biodegradable Films. Polymers 2019, 11, 1084. [Google Scholar] [CrossRef]
- Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose:Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. [Google Scholar] [CrossRef]
- Brain Wilfer, P.; Giridaran, G.; Jeya Jeevahan, J.; Britto Joseph, G.; Senthil Kumar, G.; Thykattuserry, N.J. Effect of Starch Type on the Film Properties of Native Starch Based Edible Films. 3rd Int. Conf. Front. Automob. Mech. Eng. 2021, 44, 3903–3907. [Google Scholar] [CrossRef]
- Królikowska, K.; Pietrzyk, S.; Pustkowiak, H.; Wolak, K. The Effect of Cassava and Wheat Starches Complexation with Selected Fatty Acids on Their Functional Properties. J. Food Sci. Technol. 2022, 59, 1440–1449. [Google Scholar] [CrossRef]
- Sangroniz, A.; Zhu, J.-B.; Tang, X.; Etxeberria, A.; Chen, E.Y.-X.; Sardon, H. Packaging Materials with Desired Mechanical and Barrier Properties and Full Chemical Recyclability. Nat. Commun. 2019, 10, 3559. [Google Scholar] [CrossRef]
- HAWORTH, W.N. Molecular Structure of Cellulose and of Amylose. Nature 1932, 129, 365. [Google Scholar] [CrossRef]
- Versino, F.; Lopez, O.V.; Garcia, M.A.; Zaritzky, N.E. Starch-Based Films and Food Coatings: An Overview. Starch—Stärke 2016, 68, 1026–1037. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Castro Vidaurre, E.F.; Armada, M.; Gottifredi, J.C. Water Vapor Permeability of Edible Starch Based Films. J. Food Eng. 2007, 80, 972–978. [Google Scholar] [CrossRef]
- Ureña, M.; Phùng, T.T.-T.; Gerometta, M.; de Siqueira Oliveira, L.; Chanut, J.; Domenek, S.; Dole, P.; Roudaut, G.; Lagorce, A.; Karbowiak, T. Potential of Polysaccharides for Food Packaging Applications. Part 1/2: An Experimental Review of the Functional Properties of Polysaccharide Coatings. Food Hydrocoll. 2023, 144, 108955. [Google Scholar] [CrossRef]
- McKeen, L. (Ed.) Chapter2—Introduction to the Physical, Mechanical, and Thermal Properties of Plastics and Elastomers. In The Effect of Long Term Thermal Exposure on Plastics and Elastomers, 2nd ed.; William Andrew Publishing: Norwich, UK; New York, NY, USA, 2021; pp. 35–64. ISBN 978-0-323-85436-8. [Google Scholar]
- Lin, Y.; Bilotti, E.; Bastiaansen, C.W.M.; Peijs, T. Transparent Semi-Crystalline Polymeric Materials and Their Nanocomposites: A Review. Polym. Eng. Sci. 2020, 60, 2351–2376. [Google Scholar] [CrossRef]
- Pritchard, R. The Transparency of Crystalline Polymers. Polym. Eng. Sci. 1964, 4, 66–71. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, M.E.; Hernandez-Landaverde, M.A.; Delgado, J.M.; Ramirez-Gutierrez, C.F.; Ramirez-Cardona, M.; Millan-Malo, B.M.; Londoño-Restrepo, S.M. Crystalline Structures of the Main Components of Starch. Curr. Opin. Food Sci. 2021, 37, 107–111. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Zhang, J.; Cai, X.; Liu, Q.; Wei, C. Relationships between Transparency, Amylose Content, Starch Cavity, and Moisture of Brown Rice Kernels. J. Cereal Sci. 2019, 90, 102854. [Google Scholar] [CrossRef]
- Agarwal, S. Major Factors Affecting the Characteristics of Starch Based Biopolymer Films. Eur. Polym. J. 2021, 160, 110788. [Google Scholar] [CrossRef]
- Mali, S.; Karam, L.B.; Ramos, L.P.; Grossmann, M.V.E. Relationships among the Composition and Physicochemical Properties of Starches with the Characteristics of Their Films. J. Agric. Food Chem. 2004, 52, 7720–7725. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Bowyer, M.; Singh, S.P.; Scarlett, C.J.; Stathopoulos, C.E.; Vuong, Q.V. A Starch Edible Surface Coating Delays Banana Fruit Ripening. LWT 2019, 100, 341–347. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H.I. Edible Films and Coatings Based on Starch/Gelatin: Film Properties and Effect of Coatings on Quality of Refrigerated Red Crimson Grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Pellá, M.C.G.; Silva, O.A.; Pellá, M.G.; Beneton, A.G.; Caetano, J.; Simões, M.R.; Dragunski, D.C. Effect of Gelatin and Casein Additions on Starch Edible Biodegradable Films for Fruit Surface Coating. Food Chem. 2020, 309, 125764. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria Vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
Source | Amylose Content (%) |
---|---|
Corn starch | 25.1 ± 0.3 d |
Potato starch | 20.2 ± 0.4 b |
Cassava starch | 18.3 ± 0.2 a |
Yam starch | 23.1 ± 0.2 c |
Wheat starch | 28.2 ± 0.3 e |
Formulations | Thickness | Xw | Sw | Aw | CAw |
---|---|---|---|---|---|
Fc | 185 ± 5 a | 0.070 ± 0.005 c | 0.28 ± 0.02 bc | 0.75 ± 0.02 c | 57.8 ± 0.5 d |
Fp | 188 ± 8 a | 0.075 ± 0.002 c | 0.34 ± 0.02 ab | 0.83 ± 0.03 ab | 54.2 ± 0.5 b |
Fm | 190 ± 6 a | 0.090 ± 0.003 a | 0.36 ± 0.02 a | 0.86 ± 0.02 a | 51.1 ± 0.3 a |
Fy | 185 ± 4 a | 0.081 ± 0.003 b | 0.31 ± 0.03 b | 0.8 ± 0.03 b | 56.0 ± 0.5 c |
Fw | 192 ± 5 a | 0.060 ± 0.002 d | 0.25 ± 0.02 c | 0.73 ± 0.03 c | 58.5 ± 0.4 d |
Formulations | WVP × 10 (g∙mm∙m−2∙h−1∙KPa−1) | OP × 1013 (cm3∙m−1∙s−1∙Pa−1) |
---|---|---|
Fc | 4.4 ± 0.2 c | 0.65 ± 0.02 c |
Fp | 5.5 ± 0.4 ab | 0.82 ± 0.02 b |
Fm | 6.1 ± 0.5 a | 0.92 ± 0.03 a |
Fy | 5.2 ± 0.2 b | 0.80 ± 0.05 b |
Fw | 4.1 ± 0.3 c | 0.61 ± 0.02 c |
Formulations | Gloss at 60° | Ti at 450 (nm) |
---|---|---|
Fc | 23.0 ± 0.5 ab | 85.6 ± 2.0 ab |
Fp | 23.5 ± 0.3 a | 86.5 ± 3.0 ab |
Fm | 23.5 ± 0.4 a | 89.3 ± 3.0 a |
Fy | 24.0 ± 0.6 a | 86.0 ± 2.0 a |
Fw | 22.2 ± 0.5 b | 82.0 ± 2.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Lopez, K.J.; Villabona-Ortíz, Á.; Ortega-Toro, R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers 2024, 16, 2913. https://doi.org/10.3390/polym16202913
Figueroa-Lopez KJ, Villabona-Ortíz Á, Ortega-Toro R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers. 2024; 16(20):2913. https://doi.org/10.3390/polym16202913
Chicago/Turabian StyleFigueroa-Lopez, Kelly J., Ángel Villabona-Ortíz, and Rodrigo Ortega-Toro. 2024. "Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation" Polymers 16, no. 20: 2913. https://doi.org/10.3390/polym16202913
APA StyleFigueroa-Lopez, K. J., Villabona-Ortíz, Á., & Ortega-Toro, R. (2024). Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers, 16(20), 2913. https://doi.org/10.3390/polym16202913