When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Spectroscopy Equipment and Studies
2.2.2. Sedimentation Velocity Experiments
2.2.3. Cyclic Voltammetry
2.3. Synthesis of Cobaltocenium-Containing Polysiloxanes
3. Results and Discussion
3.1. Synthesis and Characterization of Cobaltocenium-Containing Polysiloxanes
3.2. “Gelation” and Redox Properties of Cobaltocenium-Containing Polysiloxanes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gracia, R.; Mecerreyes, D. Polymers with Redox Properties: Materials for Batteries, Biosensors and More. Polym. Chem. 2013, 4, 2206. [Google Scholar] [CrossRef]
- Zhao, C.; Park, J.; Root, S.E.; Bao, Z. Skin-Inspired Soft Bioelectronic Materials, Devices and Systems. Nat. Rev. Bioeng. 2024, 2, 671–690. [Google Scholar] [CrossRef]
- Deriabin, K.V.; Islamova, R.M. Ferrocenyl-Containing Oligosiloxanes and Polysiloxanes: Synthesis, Properties, and Application. Polym. Sci. Ser. C 2022, 64, 95–109. [Google Scholar] [CrossRef]
- Mark, J.E.; Schaefer, D.W.; Lin, G. The Polysiloxanes; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-518173-9. [Google Scholar]
- Yilgör, E.; Yilgör, I. Silicone Containing Copolymers: Synthesis, Properties and Applications. Prog. Polym. Sci. 2014, 39, 1165–1195. [Google Scholar] [CrossRef]
- Rashevskii, A.A.; Deriabin, K.V.; Parshina, E.K.; Islamova, R.M. Self-Healing Redox-Active Coatings Based on Ferrocenyl-Containing Polysiloxanes. Coatings 2023, 13, 1282. [Google Scholar] [CrossRef]
- Deriabin, K.V.; Vereshchagin, A.A.; Kirichenko, S.O.; Rashevskii, A.A.; Levin, O.V.; Islamova, R.M. Self-Cross-Linkable Ferrocenyl-Containing Polysiloxanes as Flexible Electrochromic Materials. Mater. Today Chem. 2023, 29, 101399. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Lee, J.M.; Shin, W. Electrochemical Properties of Ferrocene Modified Polysiloxane/Chitosan Nanocomposite and Its Application to Glucose Sensor. Electrochim. Acta 2009, 54, 6508–6514. [Google Scholar] [CrossRef]
- Cazacu, M.; Vlad, A.; Marcu, M.; Racles, C.; Airinei, A.; Munteanu, G. New Organometallic Polymers by Polycondensation of Ferrocene and Siloxane Derivatives. Macromolecules 2006, 39, 3786–3793. [Google Scholar] [CrossRef]
- Islamova, R.M. Iron Compounds in Controlled Radical Polymerization: Ferrocenes, (Clathro)Chelates, and Porphyrins. Russ. J. Gen. Chem. 2016, 86, 125–143. [Google Scholar] [CrossRef]
- Yu, G.; Suzaki, Y.; Abe, T.; Osakada, K. Introduction of Ferrocene-Containing [2]Rotaxanes onto Siloxane, Silsesquioxane and Polysiloxanes via Click Chemistry. Dalton Trans. 2013, 42, 1476–1482. [Google Scholar] [CrossRef]
- Martínez-Montero, I.; Bruña, S.; González-Vadillo, A.M.; Cuadrado, I. Thiol–Ene Chemistry of Vinylferrocene: A Simple and Versatile Access Route to Novel Electroactive Sulfur- and Ferrocene-Containing Model Compounds and Polysiloxanes. Macromolecules 2014, 47, 1301–1315. [Google Scholar] [CrossRef]
- Inagaki, T.; Lee, H.S.; Skotheim, T.A.; Okamoto, Y. Syntheses and Electrochemical Properties of Siloxane Polymers Containing Ferrocene and Dimethylferrocene. J. Chem. Soc. Chem. Commun. 1989, 16, 1181–1183. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Zhang, L.; Qiu, G.; Astruc, D.; Gu, H. Metallomacromolecules Containing Cobalt Sandwich Complexes: Synthesis and Functional Materials Properties. Coord. Chem. Rev. 2017, 337, 34–79. [Google Scholar] [CrossRef]
- Kocheva, A.N.; Deriabin, K.V.; Volkov, A.I.; Levin, O.V.; Islamova, R.M. Cobaltocenium-Containing Polysiloxanes: Catalytic Synthesis, Structure, and Properties. ACS Appl. Polym. Mater. 2024, 6, 12112–12122. [Google Scholar] [CrossRef]
- Connelly, N.G.; Geiger, W.E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. [Google Scholar] [CrossRef]
- Baldaguez Medina, P.; Ardila Contreras, V.; Hartmann, F.; Schmitt, D.; Klimek, A.; Elbert, J.; Gallei, M.; Su, X. Investigating the Electrochemically Driven Capture and Release of Long-Chain PFAS by Redox Metallopolymer Sorbents. ACS Appl. Mater. Interfaces 2023, 15, 22112–22122. [Google Scholar] [CrossRef]
- Liu, X.; Rapakousiou, A.; Deraedt, C.; Ciganda, R.; Wang, Y.; Ruiz, J.; Gu, H.; Astruc, D. Multiple Applications of Polymers Containing Electron-Reservoir Metal-Sandwich Complexes. Chem. Commun. 2020, 56, 11374–11385. [Google Scholar] [CrossRef]
- Li, H.; Yang, P.; Hwang, J.; Pageni, P.; Decho, A.W.; Tang, C. Antifouling and Antimicrobial Cobaltocenium-Containing Metallopolymer Double-Network Hydrogels. Biomater. Transl. 2022, 3, 162–171. [Google Scholar] [CrossRef]
- Yang, P.; Luo, Y.; Kurnaz, L.B.; Bam, M.; Yang, X.; Decho, A.W.; Nagarkatti, M.; Tang, C. Biodegradable Polycaprolactone Metallopolymer–Antibiotic Bioconjugates Containing Phenylboronic Acid and Cobaltocenium for Antimicrobial Application. Biomater. Sci. 2021, 9, 7237–7246. [Google Scholar] [CrossRef]
- Cuadrado, I.; Casado, C.M.; Lobete, F.; Alonso, B.; González, B.; Losada, J.; Amador, U. Preparation and Redox Properties of Novel Polymerizable Pyrrole- and Allyl-Functionalized Cobaltocenium Monomers and Siloxane-Based Cobaltocenium Polymers. Organometallics 1999, 18, 4960–4969. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Zhu, M.; Liu, X.; Chao, D. Oligoaniline-Functionalized Polysiloxane/Prussian Blue Composite towards Bifunctional Electrochromic Supercapacitors. New J. Chem. 2020, 44, 8138–8147. [Google Scholar] [CrossRef]
- Pionteck, J.; Wypych, G. Handbook of Antistatics, 2nd ed.; ChemTec Publishing: Toronto, ON, Canada, 2016; ISBN 978-1-895198-95-9. [Google Scholar]
- Tan, Y.J.; Susanto, G.J.; Anwar Ali, H.P.; Tee, B.C.K. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. Adv. Mater. 2021, 33, 2002800. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, X.; Zhang, X.; Liu, S.; Zhong, F.; Zhang, J.; Zhang, Q.; Yan, Y. Metallo-Polyelectrolyte-Based Waterborne Polyurethanes as Robust HCl Corrosion Inhibitor Mediated by Inter/Intramolecular Hydrogen Bond. ACS Appl. Polym. Mater. 2022, 4, 3844–3854. [Google Scholar] [CrossRef]
- Liu, S.; Yan, J.; Shi, J.; Li, X.; Zhang, J.; Wang, X.; Cai, N.; Fang, Q.; Zhang, Q.; Yan, Y. Rational Design of Cobaltocenium-Containing Polythioether Type Metallo-Polyelectrolytes as HCl Corrosion Inhibitors for Mild Steel. Polym. Chem. 2023, 14, 330–342. [Google Scholar] [CrossRef]
- Wei, J.; Ren, L.; Tang, C.; Su, Z. Electric-Stimulus-Responsive Multilayer Films Based on a Cobaltocenium-Containing Polymer. Polym. Chem. 2014, 5, 6480–6488. [Google Scholar] [CrossRef]
- Beladi-Mousavi, S.M.; Sadaf, S.; Hennecke, A.; Klein, J.; Mahmood, A.M.; Rüttiger, C.; Gallei, M.; Fu, F.; Fouquet, E.; Ruiz, J.; et al. The Metallocene Battery: Ultrafast Electron Transfer Self Exchange Rate Accompanied by a Harmonic Height Breathing. Angew. Chem. Int. Ed. 2021, 60, 13554–13558. [Google Scholar] [CrossRef]
- Escorihuela, J.; Lledós, A.; Ujaque, G. Anti-Markovnikov Intermolecular Hydroamination of Alkenes and Alkynes: A Mechanistic View. Chem. Rev. 2023, 123, 9139–9203. [Google Scholar] [CrossRef]
- Wang, Y.; Rapakousiou, A.; Ruiz, J.; Astruc, D. Metalation of Polyamine Dendrimers with Ethynylcobalticenium for the Construction of Mono- and Heterobimetallic Polycationic Metallodendrimers. Chem. Eur. J. 2014, 20, 11176–11186. [Google Scholar] [CrossRef]
- Wang, Y.; Rapakousiou, A.; Latouche, C.; Daran, J.-C.; Singh, A.; Ledoux-Rak, I.; Ruiz, J.; Saillard, J.-Y.; Astruc, D. Mild Uncatalyzed Hydroamination of an Electrophilic Alkyne, Ethynylcobalticinium. Chem. Commun. 2013, 49, 5862. [Google Scholar] [CrossRef]
- Vanicek, S.; Kopacka, H.; Wurst, K.; Müller, T.; Schottenberger, H.; Bildstein, B. Chemoselective, Practical Synthesis of Cobaltocenium Carboxylic Acid Hexafluorophosphate. Organometallics 2014, 33, 1152–1156. [Google Scholar] [CrossRef]
- Brown, P.H.; Schuck, P. Macromolecular Size-and-Shape Distributions by Sedimentation Velocity Analytical Ultracentrifugation. Biophys. J. 2006, 90, 4651–4661. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Ferreira, P.M.T.; Monteiro, L.S. Synthesis and Reactivity of a 1,4-Dihydropyrazine Derivative. Tetrahedron 2004, 60, 8489–8496. [Google Scholar] [CrossRef]
- Menia, D.; Pittracher, M.; Kopacka, H.; Wurst, K.; Neururer, F.R.; Leitner, D.; Hohloch, S.; Podewitz, M.; Bildstein, B. Curious Case of Cobaltocenium Carbaldehyde. Organometallics 2023, 42, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Perevyazko, I.; Gubarev, A.S.; Pavlov, G.M. Analytical Ultracentrifugation and Combined Molecular Hydrodynamic Approaches for Polymer Characterization. In Molecular Characterization of Polymers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 223–259. ISBN 978-0-12-819768-4. [Google Scholar]
- Feuerstein, A.; Boßmann, B.; Rittner, T.; Leiner, R.; Janka, O.; Gallei, M.; Schäfer, A. Polycobaltoceniumylmethylene—A Water-Soluble Polyelectrolyte Prepared by Ring-Opening Transmetalation Polymerization. ACS Macro Lett. 2023, 12, 1019–1024. [Google Scholar] [CrossRef]
Abbreviations of (Poly)siloxanes | Mass of Used Amino-Containing (Poly)siloxane, g | Used solvents | Characteristics ** | |||
---|---|---|---|---|---|---|
Cobaltocenium- Containing (Poly)siloxane | Used Amino- Containing (Poly)siloxane | CH3CN/CH2Cl2 Ratio, V/V | Volume, * mL | Mn | Number of –[SiO]– Units | |
Cc-APTMDS | APTMDS | 0.03 | 1:0 | 1.5 | 965 | 1 |
Cc-APDMS850 | APDMS850 | 0.12 | 1:1 | 1.5 | 1630 | 9 |
Cc-APDMS5000 | APDMS5000 | 0.70 | 1:4 | 3.5 | 5850 | 65 |
Cc-APDMS25000 | APDMS25000 | 3.50 | 21.0 | 23,150 | 335 | |
P(Cc-AMS-co-DMS) | P(AMS-co-DMS) | 1.05 | 5.5 | 7930 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocheva, A.N.; Deriabin, K.V.; Perevyazko, I.; Bokach, N.A.; Boyarskiy, V.P.; Islamova, R.M. When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination. Polymers 2024, 16, 2887. https://doi.org/10.3390/polym16202887
Kocheva AN, Deriabin KV, Perevyazko I, Bokach NA, Boyarskiy VP, Islamova RM. When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination. Polymers. 2024; 16(20):2887. https://doi.org/10.3390/polym16202887
Chicago/Turabian StyleKocheva, Anastasia N., Konstantin V. Deriabin, Igor Perevyazko, Nadezhda A. Bokach, Vadim P. Boyarskiy, and Regina M. Islamova. 2024. "When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination" Polymers 16, no. 20: 2887. https://doi.org/10.3390/polym16202887
APA StyleKocheva, A. N., Deriabin, K. V., Perevyazko, I., Bokach, N. A., Boyarskiy, V. P., & Islamova, R. M. (2024). When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination. Polymers, 16(20), 2887. https://doi.org/10.3390/polym16202887