Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Fabrication
2.2. UV Irradiation Surface Treatment
2.3. Single-Lap Shear Test
2.4. Failure Mode and Wettability in Specimens
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results and Discussion
3.1. Analysis of Surface Morphology
3.2. Adhesive Shear Strength
3.3. Wettability and Surface Free Energy Analysis
3.4. Analysis of FTIR Results
3.5. Failure Mode Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, M.K.; Srivastava, R.K. Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polym. Plast. Technol. 2016, 55, 626–642. [Google Scholar] [CrossRef]
- Cheon, J.; Kim, M. Impact resistance and interlaminar shear strength enhancement of carbon fiber reinforced thermoplastic composites by introducing MWCNT-anchored carbon fiber. Compos. Part B Eng. 2021, 217, 108872. [Google Scholar] [CrossRef]
- Du, H.Q.; Xian, G.J.; Tian, J.W.; Ma, Z.R.; Li, C.G.; Xin, M.Y.; Zhang, Y.F. Effect of fiber surface treatment with silane coupling agents and carbon nanotubes on mechanical properties of carbon fiber reinforced polyamide 6 composites. Polym. Compos. 2024, 1–17. [Google Scholar] [CrossRef]
- Xian, G.J.; Bai, Y.B.; Zhou, P.; Wang, J.Q.; Li, C.G.; Dong, S.C.; Guo, R.; Tian, J.W.; Li, J.H.; Zhong, J.; et al. Long-term properties evolution and life prediction of glass fiber reinforced thermoplastic bending bars exposed in concrete alkaline environment. J. Build. Eng. 2024, 91, 109641. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.W.; Kim, M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite. Polym. Compos. 2020, 41, 1190–1202. [Google Scholar] [CrossRef]
- Geng, D.X.; Liu, Y.H.; Shao, Z.Y.; Lu, Z.H.; Cai, J.; Li, X.; Jiang, X.G.; Zhang, D.Y. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Baldan, A. Adhesively-bonded joints in metallic alloys, polymers and composite materials: Mechanical and environmental durability performance. J. Mater. Sci. 2004, 39, 4729–4797. [Google Scholar] [CrossRef]
- Leone, C.; Genna, S. Effects of surface laser treatment on direct co-bonding strength of CFRP laminates. Compos. Struct. 2018, 194, 240–251. [Google Scholar] [CrossRef]
- Deng, S.Q.; Djukic, L.; Paton, R.; Ye, L. Thermoplastic-epoxy interactions and their potential applications in joining composite structures—A review. Compos. Part A Appl. Sci. Manuf. 2015, 68, 121–132. [Google Scholar] [CrossRef]
- Jang, J.S.; Yang, H.J. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 2000, 35, 2297–2303. [Google Scholar] [CrossRef]
- Kim, M.; Lim, J.W.; Lee, D.G. Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions. Compos. Struct. 2018, 189, 79–86. [Google Scholar] [CrossRef]
- Marieta, C.; Schulz, E.; Irusta, L.; Gabilondo, N.; Tercjak, A.; Mondragon, I. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Compos. Sci. Technol. 2005, 65, 2189–2197. [Google Scholar] [CrossRef]
- Hu, Y.S.; Yuan, B.Y.; Cheng, F.; Hu, X.Z. NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy. Compos. Part B Eng. 2019, 178, 107478. [Google Scholar] [CrossRef]
- Salim, M.S.; Ariawan, D.; Rasyid, M.F.A.; Thirmizir, M.Z.A.; Taib, R.M.; Ishak, Z.M. Effect of fibre surface treatment on interfacial and mechanical properties of non-woven kenaf fibre reinforced acrylic based polyester composites. Polym. Compos. 2019, 40, E214–E226. [Google Scholar] [CrossRef]
- Valandro, L.F.; Yoshiga, S.; de Melo, R.M.; Galhano, G.A.P.; Mallmann, A.; Marinho, C.P.; Bottino, M.A. Microtensile bond strength between a quartz fiber post and a resin cement: Effect of post surface conditioning. J. Adhes. Dent. 2006, 8, 105–111. [Google Scholar] [PubMed]
- Baklanov, M.R.; Gismatulin, A.A.; Naumov, S.; Perevalov, T.V.; Gritsenko, V.A.; Vishnevskiy, A.S.; Rakhimova, T.V.; Vorotilov, K.A. Comprehensive Review on the Impact of Chemical Composition, Plasma Treatment, and Vacuum Ultraviolet (VUV) Irradiation on the Electrical Properties of Organosilicate Films. Polymers 2024, 16, 2230. [Google Scholar] [CrossRef]
- Periasamy, K.; Kandare, E.; Das, R.; Darouie, M.; Khatibi, A.A. Interfacial Engineering Methods in Thermoplastic Composites: An Overview. Polymers 2023, 15, 415. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.G.; Hwang, S.H.; Park, M.; Park, J.K.; Park, Y.B.; Chae, H.G. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos. Part B Eng. 2019, 160, 436–445. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jung, U.; Choi, S.; Jung, Y.C.; Lee, H.S.; Kim, J. Effect of plasma gas and Ar incorporation on the shear strength between carbon fiber-reinforced thermoplastic polymer and Al. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106041. [Google Scholar] [CrossRef]
- Guo, W.J.; Lim, Y.C.; Ong, C.H.; Kumar, A.S. Atmospheric pressure plasma application on the adhesive bonding improvement of CFRP via surface configuration comparison. Polym. Compos. 2023. [Google Scholar] [CrossRef]
- Weiland, J.; Dittmar, H.; Beier, C.J.A.; Ramesh, C.; Marx, B.; Schiebahn, A.; Jaeschke, P.; Overmeyer, L.; Reisgen, U. Improvement of the adhesive bonding properties of an polyamide 6 injection molded fiber reinforced plastic component by laser beam pre-treatment. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 3243–3255. [Google Scholar] [CrossRef]
- Temesi, T.; Czigany, T. The effect of surface treatment on the shear properties of aluminium-polypropylene joints manufactured by laser beam. Polym. Test. 2023, 117, 107882. [Google Scholar] [CrossRef]
- Gao, M.A.; Kumar, V.; Schoenfeld, W.; Zin, N. UV-Ozone Oxide for Surface Clean, Passivation, and Tunneling Contact Applications of Silicon Solar Cells. IEEE J. Photovolt. 2023, 13, 385–390. [Google Scholar] [CrossRef]
- Mathieson, I.; Bradley, R.H. Improved adhesion to polymers by UV/ozone surface oxidation. Int. J. Adhes. Adhes. 1996, 16, 29–31. [Google Scholar] [CrossRef]
- Walzak, M.J.; Flynn, S.; Foerch, R.; Hill, J.M.; Karbashewski, E.; Lin, A.; Strobel, M. Uv and Ozone Treatment of Polypropylene and Poly(Ethylene-Terephthalate). J. Adhes. Sci. Technol. 1995, 9, 1229–1248. [Google Scholar] [CrossRef]
- Lin, J.T.; Lalevee, J.; Cheng, D.C. A Critical Review for Synergic Kinetics and Strategies for Enhanced Photopolymerizations for 3D-Printing and Additive Manufacturing. Polymers 2021, 13, 2325. [Google Scholar] [CrossRef]
- Shi, H.J.; Sinke, J.; Benedictus, R. Surface modification of PEEK by UV irradiation for direct co-curing with carbon fibre reinforced epoxy prepregs. Int. J. Adhes. Adhes. 2017, 73, 51–57. [Google Scholar] [CrossRef]
- Quan, D.; Alderliesten, R.; Dransfeld, C.; Tsakoniatis, I.; De Freitas, S.T.; Scarselli, G.; Murphy, N.; Ivankovic, A.; Benedictus, R. Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substrates. Compos. Sci. Technol. 2020, 199, 108358. [Google Scholar] [CrossRef]
- Sharp, K.A.; Honig, B. Electrostatic Interactions in Macromolecules—Theory and Applications. Annu. Rev. Biophys. Bio. 1990, 19, 301–332. [Google Scholar] [CrossRef]
- Peng, C.Z. Effect of coating resin for reinforcing carbon fibers on the interlaminar shear strength of PA6 composites. Compos. Interface 2019, 26, 183–191. [Google Scholar]
- Bittencourt, P.R.S.; Fernandes, D.M.; Silva, M.F.; Lima, M.K.; Hechenleitner, A.A.W.; Pineda, E.A.G. Lignin Modified by Formic Acid on the PA6 Films: Evaluation on the Morphology and Degradation by UV Radiation. Waste Biomass Valorization 2010, 1, 323–328. [Google Scholar] [CrossRef]
- Vig, J.R. Uv Ozone Cleaning of Surfaces. J. Vac. Sci. Technol. A 1985, 3, 1027–1034. [Google Scholar] [CrossRef]
- Nagata, T.; Oha, S.; Chikyow, T.; Wakayama, Y. Effect of UV-ozone treatment on electrical properties of PEDOT:PSS film. Org. Electron. 2011, 12, 279–284. [Google Scholar] [CrossRef]
- Ma, Y.N.; Zhou, T.; Su, G.H.; Li, Y.; Zhang, A.M. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: Projection moving-window 2D correlation FTIR spectroscopy and the enthalpy. Rsc Adv. 2016, 6, 87405–87415. [Google Scholar] [CrossRef]
- Ehlers, J.E.; Rondan, N.G.; Huynh, L.K.; Pham, H.; Marks, M.; Truong, T.N. Theoretical study on mechanisms of the epoxy-Amine curing reaction. Macromolecules 2007, 40, 4370–4377. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Mechanical and thermal properties of high volume-fraction carbon nanotube/epoxy composites, and property enhancement by UV ozone treatment of carbon nanotubes. Polym. Compos. 2023, 44, 7855–7864. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.D.; Pastor-Blas, M.M.; Martin-Martinez, J.M.; Walzak, M.J. Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber. Int. J. Adhes. Adhes. 2005, 25, 358–370. [Google Scholar] [CrossRef]
- Mahat, K.B.; Alarifi, I.; Alharbi, A.; Asmatulu, R. Effects of UV Light on Mechanical Properties of Carbon Fiber Reinforced PPS Thermoplastic Composites. Macromol. Symp. 2016, 365, 157–168. [Google Scholar] [CrossRef]
- Garcia, R.; Prabhakar, P. Bond interface design for single lap joints using polymeric additive manufacturing. Compos. Struct. 2017, 176, 547–555. [Google Scholar] [CrossRef]
- Rahman, N.M.; Sun, C.T. Strength calculation of composite single lap joints with Fiber-Tear-Failure. Compos. Part B Eng. 2014, 62, 249–255. [Google Scholar] [CrossRef]
Tensile Modulus | Tensile Strength | Poisson’s Ratio | ILSS | Melting Point | |
---|---|---|---|---|---|
PA6 based CFRTP | 120 GPa | 1800 MPa | 0.31 | 30 MPa | 220 °C |
Irradiation Distance | Irradiation Time (min) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 15 | 30 | 60 | 90 | 120 | 300 | ||
Total | 5 mm | 72 | 216 | 432 | 864 | 1296 | 1728 | 4320 |
15 mm | 18 | 54 | 108 | 216 | 324 | 432 | 1080 |
Lap Shear Strength with Aluminum | Curing Temperature | Glass Transition Temperature | |
---|---|---|---|
Epoxy film adhesive | 40 MPa | 120 °C | 78 °C |
Material | |||
---|---|---|---|
Distilled water | 72.8 | 21.8 | 51 |
Glycerol | 64 | 34 | 30 |
UVC185+254 | |||||||
---|---|---|---|---|---|---|---|
Irradiation time (min) | 0 | 5 | 15 | 30 | 60 | 90 | 120 |
(mJ/m2) | 0.40 | 0.30 | 0.16 | 0.92 | 0.12 | 0.14 | 3.9 |
(mJ/m2) | 22.6 | 78.6 | 87.1 | 106.6 | 100.9 | 104.6 | 128.4 |
(mJ/m2) | 23.0 | 78.9 | 87.3 | 107.5 | 101.0 | 104.7 | 132.3 |
UVC245 | |||||||
Irradiation time (min) | 0 | 60 | 120 | ||||
(mJ/m2) | 0.4 | 0.02 | 0.35 | ||||
(mJ/m2) | 22.6 | 30.3 | 45.4 | ||||
(mJ/m2) | 23.0 | 30.4 | 45.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, M.Y.; Yoon, S.H.; Kim, M. Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers. Polymers 2024, 16, 2864. https://doi.org/10.3390/polym16202864
Hwang MY, Yoon SH, Kim M. Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers. Polymers. 2024; 16(20):2864. https://doi.org/10.3390/polym16202864
Chicago/Turabian StyleHwang, Mun Young, Soon Ho Yoon, and Minkook Kim. 2024. "Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers" Polymers 16, no. 20: 2864. https://doi.org/10.3390/polym16202864
APA StyleHwang, M. Y., Yoon, S. H., & Kim, M. (2024). Ultraviolet Irradiation Surface Treatment to Enhance the Bonding Strength of Polyamide-Based Carbon Fiber-Reinforced Thermoplastic Polymers. Polymers, 16(20), 2864. https://doi.org/10.3390/polym16202864