A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors
Abstract
:1. Introduction
1.1. Properties of Supercapacitors
1.1.1. Electrical Conductivity
1.1.2. Porosity
1.1.3. Elastic Properties
1.2. Effect of Different Parameters on Aerogels and Xerogels
1.2.1. Nitrogen Doping
1.2.2. Pyrolysis Temperature
1.2.3. Freeze Drying Temperature
1.2.4. pH
2. Synthesis of Carbon Aerogels/Xerogels for Capacitors
2.1. Chemical Approach
2.2. Synthesis on Zn Surface
2.3. Microwave (MW) Heating
2.4. Electrochemical Exfoliation Method
3. Aerogels
3.1. Aerogel Beads
3.2. Hybrid Carbon Based Aerogels
3.2.1. Metal Oxide Hybrid Aerogels
3.2.2. Polymer Hybrid Aerogels
3.3. Aerogels from Green Biomass
3.3.1. Cellulose-Based Aerogels
3.3.2. Fruit Biowaste
3.3.3. Lignin-Based Aerogel
3.4. Coal
4. Carbon Xerogels
4.1. Metal Organic Xerogels
4.2. Bio-Xerogels
5. Comparison of the Efficacy of Graphene Aerogel or Xerogel Electrode
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, J.R.; Simon, P. Materials science: Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed]
- Ta, Q.T.H.; Cho, E.; Sreedhar, A.; Noh, J.S. Mixed-dimensional, three-level hierarchical nanostructures of silver and zinc oxide for fast photocatalytic degradation of multiple dyes. J. Catal. 2019, 371, 1–9. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Acc. Chem. Res. 2013, 46, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Azaïs, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Peres, J.P.; Jehoulet, C.; Béguin, F. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 2007, 171, 1046–1053. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Tran, N.M.; Tri, N.N.; Sreedhar, A.; Noh, J.S. Highly surface-active Si-doped TiO2/Ti3C2Tx heterostructure for gas sensing and photodegradation of toxic matters. Chem. Eng. J. 2021, 425, 131437. [Google Scholar] [CrossRef]
- Ouyang, T.; Cheng, K.; Yang, F.; Zhou, L.; Zhu, K.; Ye, K.; Wang, G.; Cao, D. From biomass with irregular structures to 1D carbon nanobelts: A stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 2017, 5, 14551–14561. [Google Scholar] [CrossRef]
- Mulik, S.; Sotiriou-Leventis, C.; Churu, G.; Lu, H.; Leventis, N. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem. Mater. 2008, 20, 5035–5046. [Google Scholar] [CrossRef]
- Hamedi, M.; Karabulut, E.; Marais, A.; Herland, A.; Nyström, G. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem.—Int. Ed. 2013, 52, 12038–12042. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, T.; Jiang, M.; Duan, Y.; Zhang, J. Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 2015, 3, 19268–19272. [Google Scholar] [CrossRef]
- Al-Muhtaseb, S.A.; Ritter, J.A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 2003, 15, 101–114. [Google Scholar] [CrossRef]
- Wu, D.; Sun, Z.; Fu, R. Structure and adsorption properties of activated carbon aerogels. J. Appl. Polym. Sci. 2006, 99, 2263–2267. [Google Scholar] [CrossRef]
- Pekala, R.W. Low Density, Resorcinol-Formaldehyde Aerogels. U.S. Patent 4997804, 5 March 1991. [Google Scholar]
- Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375. [Google Scholar] [CrossRef]
- Ling, J.Q.Z.; Wang, G.; Dong, Q.; Qian, B.; Zhang, M.; Li, C. An ionic liquid template approach to graphene-carbon xerogel composites for supercapacitors with enhanced performance. J. Mater. Chem. A 2014, 2, 14329–14333. [Google Scholar] [CrossRef]
- Wilson, E.; Islam, M.F. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 2015, 7, 5612–5618. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Oh, Y.; Islam, M.F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566. [Google Scholar] [CrossRef]
- Kim, K.H.; Oh, Y.; Islam, M.F. Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Single-Walled Carbon Nanotube Aerogels. Adv. Funct. Mater 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, P.; Cheng, H.; Zhao, Y.; Zhang, Z.; Shi, G.; Qu, L. Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small 2016, 12, 3229–3234. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, X.; Lin, D.; Chen, W.; Xiong, G.; Yu, Y.; Fisher, T.S.; Li, H. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity. Adv. Mater. 2016, 28, 2229–2237. [Google Scholar] [CrossRef]
- Gao, H.L.; Zhu, Y.B.; Mao, L.B.; Wang, F.C.; Luo, X.S.; Liu, Y.Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920. [Google Scholar] [CrossRef]
- Lv, P.; Tang, X.; Zheng, R.; Ma, X.; Yu, K.; Wei, W. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode. Nanoscale Res. Lett. 2017, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yang, J.J.; Li, S.S.; Wang, Z.; Xiao, T.Y.; Qian, Y.H.; Yu, S.H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013, 2, 249–256. [Google Scholar] [CrossRef]
- Su, F.; Poh, C.K.; Chen, J.S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X.W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724. [Google Scholar] [CrossRef]
- Fan, X.; Lu, Y.; Xu, H.; Kong, X.; Wang, J. Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J. Mater. Chem. 2011, 21, 18753–18760. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Teng, H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40, 667–674. [Google Scholar] [CrossRef]
- Malkova, A.N.; Sipyagina, N.A.; Gozhikova, I.O.; Dobrovolsky, Y.A.; Konev, D.V.; Baranchikov, A.E.; Ivanova, O.S.; Ukshe, A.E.; Lermontov, S.A. Electrochemical properties of carbon aerogel electrodes: Dependence on synthesis temperature. Molecules 2019, 24, 3847. [Google Scholar] [CrossRef]
- Hao, P.; Zhao, Z.; Leng, Y.; Tian, J.; Sang, Y.; Boughton, R.I.; Wong, C.P.; Liu, H.; Yang, B. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 2015, 15, 9–23. [Google Scholar] [CrossRef]
- Kandasamy, A.; Ramasamy, T.; Samrin, A.; Narayanasamy, P.; Mohan, R.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mohandas, M. Hierarchical doped gelatin-derived carbon aerogels: Three levels of porosity for advanced supercapacitors. Nanomaterials 2020, 10, 1178. [Google Scholar] [CrossRef]
- Li, X.-F.; Lian, K.-Y.; Liu, L.; Wu, Y.; Qiu, Q.; Jiang, J.; Deng, M.; Luo, Y. Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Sci. Rep 2016, 6, 23495. [Google Scholar] [CrossRef]
- Quach, N.K.N.; Yang, W.D.; Chung, Z.J.; Tran, H.L. The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance. Adv. Mater. Sci. Eng. 2017, 2017, 8308612. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, R. Preparation of activated mesocarbon microbeads with high mesopore content. Fuel Process. Technol. 2003, 84, 95–103. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Tong, S.; Guo, S.; Pan, X. Porous carbon with tailored pore size for electric double layer capacitors application. Appl. Surf. Sci. 2012, 258, 6097–6102. [Google Scholar] [CrossRef]
- Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43, 1293–1302. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Y.; Bi, H.; Yin, K.; Wan, S.; Sun, L. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 2013, 3, 2117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.L.; Zhang, F.; Yang, X.; Long, G.; Wu, Y.; Zhang, T.; Leng, K.; Huang, Y.; Ma, Y.; Yu, A. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 2013, 3, 1408. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liang, H.; Hu, J.; Shu, J.; Zhang, L.; Fan, G.; Pan, D. Preparation of anisotropic polyimide aerogels for thermal protection with outstanding flexible resilience using the freeze-drying method. RSC Adv. 2024, 14, 8556–8566. [Google Scholar] [CrossRef] [PubMed]
- Gregg, S.J.; Sing, K.S.W.; Salzberg, H.W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114, 279C. [Google Scholar] [CrossRef]
- Kim, T.; Jung, G.; Yoo, S.; Suh, K.S.; Ruoff, R.S. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 2013, 7, 6899–6905. [Google Scholar] [CrossRef]
- Jung, S.M.; Mafra, D.L.; Lin, C.T.; Jung, H.Y.; Kong, J. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale 2015, 7, 4386–4393. [Google Scholar] [CrossRef]
- Alam, M.; Mirbagheri, S.A.; Ghaani, M.R. Multi-parameter optimization of the capacitance of Carbon Xerogel catalyzed by NaOH for application in supercapacitors and capacitive deionization systems. Heliyon 2019, 5, e01196. [Google Scholar] [CrossRef]
- Hong, J.Y.; Bak, B.M.; Wie, J.J.; Kong, J.; Park, H.S. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv. Funct. Mater. 2015, 25, 1053–1062. [Google Scholar] [CrossRef]
- Pham, H.D.; Pham, V.H.; Cuong, T.V.; Nguyen-Phan, T.D.; Chung, J.S.; Shin, E.W.; Kim, S. Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem. Commun. 2011, 47, 9672–9674. [Google Scholar] [CrossRef] [PubMed]
- Maiti, U.N.; Lim, J.; Lee, K.E.; Lee, W.J.; Kim, S.O. Three- Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors. Adv. Mater 2014, 26, 615–619. [Google Scholar] [CrossRef]
- Cai, X.; Gui, D.; Liu, J.; Tan, G.; Chen, W.; Xiong, W. Fast single mode microwave-assisted synthesis of porous carbon aerogel for supercapacitors. In Proceedings of the 16th International Conference on Electronic Packaging Technology, ICEPT 2015, Changsha, China, 11–14 August 2015; pp. 214–217. [Google Scholar] [CrossRef]
- Xu, F.; Zheng, G.; Wu, D.; Liang, Y.; Li, Z.; Fu, R. Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. Phys. Chem. Chem. Phys. 2010, 12, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Tan, G.; Deng, Z.; Liu, J.; Gui, D. Preparation of hierarchical porous carbon aerogels by microwave assisted sol-gel process for supercapacitors. Polymers 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Parvez, K.; Wu, Z.-S.; Li, R.; Liu, X.; Graf, R.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. [Google Scholar] [CrossRef]
- Van Aken, K.L.; Pérez, C.R.; Oh, Y.; Beidaghi, M.; Jeong, Y.J.; Islam, M.F.; Gogotsi, Y. High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 2015, 15, 662–669. [Google Scholar] [CrossRef]
- Li, D.; Feng, L.; Han, F.; Hao, S.; Wu, Q.; Gao, Y.; He, M. Bioinspired Cellular Single-Walled Carbon Nanotube Aerogels with Temperature-Invariant Elasticity and Fatigue Resistance for Potential Energy Dissipation. ACS Appl. Nano Mater. 2023, 6, 3012–3019. [Google Scholar] [CrossRef]
- Ouyang, A.; Cao, A.; Hu, S.; Li, Y.; Xu, R.; Wei, J.; Zhu, H.; Wu, D. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application. ACS Appl. Mater. Interfaces 2016, 8, 11179–11187. [Google Scholar] [CrossRef]
- Haque, A.; Wang, Z.; Chandra, S.; Dong, B.; Khan, L.; Hamlen, K.W. FUSION—An online method for multistream classification. In Proceedings of the CIKM ’17: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 919–928. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Zhu, X.; She, X.; Liu, T.; Zhang, H.; Komarneni, S.; Yang, D.; Yao, X. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4. Adv. Sci. 2017, 4, 1700345. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.Y.; Chen, C.H.; Chien, H.C.; Lu, S.Y.; Hu, C.C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, Z.; Jing, M.; Hou, H.; Yang, Y.; Zhang, Y.; Yang, X.; Song, W.; Jia, X.; Ji, X. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 2015, 3, 866–877. [Google Scholar] [CrossRef]
- Ghosh, D.; Lim, J.; Narayan, R.; Kim, S.O. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 22253–22260. [Google Scholar] [CrossRef]
- Gholipour-Ranjbar, H.; Ganjali, M.R.; Norouzi, P.; Naderi, H.R. Functionalized graphene aerogel with p-phenylenediamine and its composite with porous MnO2: Investigating the effect of functionalizing agent on supercapacitive performance. J. Mater. Sci. Mater. Electron. 2016, 27, 10163–10172. [Google Scholar] [CrossRef]
- Iamprasertkun, P.; Krittayavathananon, A.; Seubsai, A.; Chanlek, N.; Kidkhunthod, P.; Sangthong, W.; Maensiri, S.; Yimnirun, R.; Nilmoung, S.; Pannopard, P.; et al. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors. Sci. Rep. 2016, 6, 37560. [Google Scholar] [CrossRef]
- Srimuk, P.; Luanwuthi, S.; Krittayavathananon, A.; Sawangphruk, M. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 2015, 157, 69–77. [Google Scholar] [CrossRef]
- Qiu, X.; Xu, D.; Ma, L.; Wang, Y. Preparation of manganese oxide/graphene aerogel and its application as an advanced supercapacitor electrode material. Int. J. Electrochem. Sci. 2017, 12, 2173–2183. [Google Scholar] [CrossRef]
- Crane, M.J.; Lim, M.B.; Zhou, X.; Pauzauskie, P.J. Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes. Microsyst. Nanoeng. 2017, 3, 17032. [Google Scholar] [CrossRef]
- Bissett, M.A.; Kinloch, I.A.; Dryfe, R.A.W. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 17388–17398. [Google Scholar] [CrossRef]
- Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M. Supercapacitors: Properties and applications. J. Energy Storage 2018, 17, 224–227. [Google Scholar] [CrossRef]
- Gao, K.; Shao, Z.; Wu, X.; Wang, X.; Zhang, Y.; Wang, W.; Wang, F. Paper-based transparent flexible thin film supercapacitors. Nanoscale 2013, 5, 5307–5311. [Google Scholar] [CrossRef] [PubMed]
- Gigot, A.; Fontana, M.; Pirri, C.F.; Rivolo, P. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications. Materials 2018, 11, 57. [Google Scholar] [CrossRef]
- Zequine, C.; Ranaweera, C.K.; Wang, Z.; Singh, S.; Tripathi, P.; Srivastava, O.N.; Gupta, B.K.; Ramasamy, K.; Kahol, P.K.; Dvornic, P.R.; et al. High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 2016, 6, 31704. [Google Scholar] [CrossRef]
- Xu, X.; Ming, F.; Hong, J.; Wang, Z. Three-dimensional Bi2WO6/graphene aerogel electrode for high-performance supercapacitor. Adv. Mater. Lett. 2018, 9, 188–191. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, B.; Rui, X.; Shi, W.; Yan, Q.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem.—Int. Ed. 2014, 53, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, Y.; Wu, D.; Li, K.; Qin, Y.; Tao, Y.; Kong, Y. Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chem. Commun. 2019, 55, 1738–1741. [Google Scholar] [CrossRef]
- Lin, X.; Lou, H.; Lu, W.; Xu, F.; Fu, R.; Wu, D. High-performance organic electrolyte supercapacitors based on intrinsically powdery carbon aerogels. Chin. Chem. Lett. 2018, 29, 633–636. [Google Scholar] [CrossRef]
- Peng, L.; Guo, Q.; Ai, Z.; Zhao, Y.; Liu, Y.; Wei, D. Nitrogen doped carbons derived from graphene aerogel templated triazine-based conjugated microporous polymers for high-performance supercapacitors. Front. Chem. 2019, 7, 142. [Google Scholar] [CrossRef]
- Xiang, Z.; Wang, D.; Xue, Y.; Dai, L.; Chen, J.F.; Cao, D. PAF-derived nitrogen-doped 3D carbon materials for efficient energy conversion and storage. Sci. Rep. 2015, 5, 8307. [Google Scholar] [CrossRef]
- Nabil, K.; Abdelmonem, N.; Nogami, M.; Ismail, I. Preparation of composite monolith supercapacitor electrode made from textile-grade polyacrylonitrile fibers and phenolic resin. Materials 2020, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, B.; Gu, Y.; Xiong, Z.; Sun, J.; Zhao, X.S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414. [Google Scholar] [CrossRef]
- Gao, K.; Shao, Z.; Li, J.; Wang, X.; Peng, X.; Wang, W.; Wang, F. Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J. Mater. Chem. A 2013, 1, 63–67. [Google Scholar] [CrossRef]
- Zheng, Q.; Cai, Z.; Gong, S. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2014, 2, 3110–3118. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Cai, Z.; Ma, Z.; Gong, S. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3263–3271. [Google Scholar] [CrossRef]
- Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Wei, H.; Gu, H.; Guo, J.; Wei, S.; Guo, Z. Electropolymerized Polyaniline Nanocomposites from Multi-Walled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. J. Electrochem. Soc. 2013, 160, G3038–G3045. [Google Scholar] [CrossRef]
- Li, S.C.; Hu, B.C.; Ding, Y.W.; Liang, H.W.; Li, C.; Yu, Z.Y.; Wu, Z.Y.; Chen, W.S.; Yu, S.H. Wood-Derived Ultrathin Carbon Nanofiber Aerogels. Angew. Chem.—Int. Ed. 2018, 57, 7085–7090. [Google Scholar] [CrossRef]
- Wang, H.; Gong, Y.; Wang, Y. Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv. 2014, 4, 45753–45759. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q.; Li, Q.; Yu, H.; Liu, Y. Composite aerogels of carbon nanocellulose fibers and mixed-valent manganese oxides as renewable supercapacitor electrodes. Polymers 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yu, H.; Liu, Y.; Chen, W.; Wang, X.; Ouyang, M. Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 2013, 20, 149–157. [Google Scholar] [CrossRef]
- Islam, N.; Li, S.; Ren, G.; Zu, Y.; Warzywoda, J.; Wang, S.; Fan, Z. High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage. Nano Energy 2017, 40, 107–114. [Google Scholar] [CrossRef]
- Li, S.; Mou, T.; Ren, G.; Warzywoda, J.; Wei, Z.; Wang, B.; Fan, Z. Gel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 1650–1657. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Yi, X.; Liu, B.; Zhao, X.; Liu, X. High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel. Beilstein J. Nanotechnol. 2020, 11, 240–251. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhang, J.; Fan, H.L.; Liu, B.X.; Yi, X.B.; Wang, J.Q. ZIF-67 derived Co3O4/carbon aerogel composite for supercapacitor electrodes. New J. Chem. 2019, 43, 5666–5669. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Fu, Q.J.; Ning, X.; Chen, G.G.; Yao, C.L. Hydrothermal preparation of Phyllostachys pubescens—Nanocellulose/graphene aerogel as a simple device for supercapacitors. BioResources 2020, 15, 677–690. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, T.; He, X.; Chen, T.; Fan, L.; Gao, M.; Liu, P. Preparation and properties of cellulose nanofibril-graphene nanosheets/polyaniline composite conductive aerogels. BioResources 2020, 15, 1828–1843. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, Y.; Li, J.; Wang, L. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohydr. Polym. 2018, 199, 555–562. [Google Scholar] [CrossRef]
- Lee, K.; Shabnam, L.; Faisal, S.N.; Hoang, V.C.; Gomes, V.G. Aerogel from fruit biowaste produces ultracapacitors with high energy density and stability. J. Energy Storage 2020, 27, 101152. [Google Scholar] [CrossRef]
- Zhu, S.L.L.; Wang, Y.; Wang, Y.; You, L.; Shen, X. An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants oils. Microporous Mesoporous Mater. 2017, 241, 285–292. [Google Scholar] [CrossRef]
- Misnon, R.J.I.I.; Zain, N.K.M.; Aziz, R.A.; Vidyadharan, B. Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta 2015, 174, 78–86. [Google Scholar] [CrossRef]
- Wang, B.W.J.G.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon N. Y. 2018, 127, 85–92. [Google Scholar] [CrossRef]
- Hao, A.U.P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wang, C.P. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129. [Google Scholar] [CrossRef]
- Yang, B.S.; Kang, K.Y.; Jeong, M.J. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. J. Korean Phys. Soc. 2017, 71, 478–482. [Google Scholar] [CrossRef]
- Geng, S.; Wei, J.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage. ACS Appl. Mater. Interfaces 2020, 12, 7432–7441. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283. [Google Scholar] [CrossRef]
- Pan, Z.Z.; Nishihara, H.; Iwamura, S.; Sekiguchi, T.; Sato, A.; Isogai, A.; Kang, F.; Kyotani, T.; Yang, Q.H. Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths by Unidirectional Freeze-Drying. ACS Nano 2016, 10, 10689–10697. [Google Scholar] [CrossRef]
- Wei, J.; Geng, S.; Kumar, M.; Pitkänen, O.; Hietala, M.; Oksman, K. Investigation of Structure and Chemical Composition of Carbon Nanofibers Developed From Renewable Precursor. Front. Mater. 2019, 6, 334. [Google Scholar] [CrossRef]
- Bose, S.; Kuila, T.; Mishra, A.K.; Rajasekar, R.; Kim, N.H.; Lee, J.H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, L.; Wu, X.; Guo, N.; Guo, J.; Hou, S.; Tong, F.; Jia, D.; Zhang, H. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors. Sci. Rep. 2020, 10, 7022. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Ma, F.; Wu, G.; Dai, C.; Geng, W.; Song, S.; Wan, J. In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 2017, 321, 301–313. [Google Scholar] [CrossRef]
- Contreras, M.S.; Páez, C.A.; Zubizarreta, L.; Léonard, A.; Blacher, S.; Olivera-Fuentes, C.G.; Arenillas, A.; Pirard, J.P.; Job, N. A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 2010, 48, 3157–3168. [Google Scholar] [CrossRef]
- Calvo, E.G.; Lufrano, F.; Staiti, P.; Brigandì, A.; Arenillas, A.; Menéndez, J.A. Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources 2013, 241, 776–782. [Google Scholar] [CrossRef]
- Afify, H.; Abdelwahab, A.A.A.; Abdel-Samad, H.; Hassan, H. Cobalt doped carbon xerogels as efficient supercapacitor electrodes. Int. J. Dev. 2019, 8, 105–111. [Google Scholar] [CrossRef]
- Mahmood, A.; Zou, R.; Wang, Q.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148–2157. [Google Scholar] [CrossRef]
- Mahmood, A.; Xia, W.; Mahmood, N.; Wang, Q.; Zou, R. Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water. Sci. Rep. 2015, 5, 10556. [Google Scholar] [CrossRef]
- Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391. [Google Scholar] [CrossRef]
- Zapata-Benabithe, Z.; Diossa, G.; Castro, C.D.; Quintana, G. Activated Carbon Bio-xerogels as Electrodes for Super Capacitors Applications. Procedia Eng. 2016, 148, 18–24. [Google Scholar] [CrossRef]
- Lin, C.; Ritter, J.A. Effect of synthesis PH on the structure of carbon xerogels. Carbon 1997, 35, 1271–1278. [Google Scholar] [CrossRef]
- Grishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Celzard, A. Lignin-phenol-formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013, 168, 19–29. [Google Scholar] [CrossRef]
- Chen, F.; Li, J. Synthesis and structural characteristics of organic aerogels with different content of lignin. Adv. Mater. Res. 2010, 113–116, 1837–1840. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, D.W.; Jung, H.Y. Which is the most effective pristine graphene electrode for energy storage devices: Aerogel or xerogel? Nanoscale 2019, 11, 17563–17570. [Google Scholar] [CrossRef]
- Verma, Y.; Sharma, G.; Kumar, A.; Dhiman, P.; Stadler, F.J. Present State in the Development of Aerogel and Xerogel and their Applications for Wastewater Treatment: A Review. Curr. Green Chem. 2024, 11, 236–271. [Google Scholar] [CrossRef]
- Chen, L.; Deng, J.; Song, Y.; Hong, S.; Lian, H. Highly Stable Dispersion of Carbon Nanotubes in Deep Eutectic Solvent for the Preparation of CNT-Embedded Carbon Xerogels for Supercapacitors. ChemElectroChem 2019, 6, 5750–5758. [Google Scholar] [CrossRef]
- Canal-Rodríguez, M.; Arenillas, A.; Rey-Raap, N.; Ramos-Fernández, G.; Martín-Gullón, I.; Menéndez, J.A. Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon 2017, 118, 291–298. [Google Scholar] [CrossRef]
Aerogel/Xerogel | Electrolyte Solution | Specific Capacitance (F/g)/ Current Density (A/g) | Operating Conditions | Power Density/ Energy Density (Wh/kg) | Ref. |
---|---|---|---|---|---|
Durian carbon aerogel | KOH (0.5 M) | 591/1 | RT | 82.9 | [94] |
Jackfruit carbon aerogel | KOH (0.5 M) | 292/1 | RT | 40 | [94] |
NiMoO4@Co3O4/carbon aerogel | KOH (2 M) | 436/0.5 | RT | 208.8 | [89] |
Phyllostachys pubescences nanocellulose graphene aerogel | H2SO4 (1 M) | 125.5 | RT | - | [91] |
Lignin aerogels | KOH (6 M) | 124/0.2 | RT | 250 | [100] |
Cellulose nanofibrils/PANI aerogel | H2SO4 (1 M) | 375/0.2 | RT | - | [92] |
Coal based aerogel | KOH (6 M) | 260/1 | RT | 7.2 | [105] |
Gelatin based carbon aerogel | KOH (1 M) | 236/2 | RT | 20.88 | [29] |
CNT embedded carbon xerogel | KOH (6 M) | 160/0.1 | RT | - | [119] |
Nitrogen doped graphene aerogel | KOH (6 M) | 325 | RT | 12.95 | [72] |
Cellulose based aerogel. MnOx | Na2SO4 (1 M) | 269.7 | RT | 20 | [85] |
Graphene doped carbon xerogel | H2SO4 (1 M) | 98/16 | RT | 15 | [120] |
Activated carbon xerogels | KOH (6 M) | 270 | RT | - | [31] |
Graphene/polyaniline aerogel | H2SO4 (1 M) | 713 | RT | 6.4 | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, N.; Choi, H.W.; Tran, Q.N. A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors. Polymers 2024, 16, 2848. https://doi.org/10.3390/polym16192848
Tran N, Choi HW, Tran QN. A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors. Polymers. 2024; 16(19):2848. https://doi.org/10.3390/polym16192848
Chicago/Turabian StyleTran, Ngo, Hyung Wook Choi, and Quang Nhat Tran. 2024. "A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors" Polymers 16, no. 19: 2848. https://doi.org/10.3390/polym16192848
APA StyleTran, N., Choi, H. W., & Tran, Q. N. (2024). A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors. Polymers, 16(19), 2848. https://doi.org/10.3390/polym16192848