Advances in Smart-Response Hydrogels for Skin Wound Repair
Abstract
:1. Introduction
2. Microenvironment of Different Chronic Difficult-to-Heal Wounds and Therapeutic Measures
2.1. Bacterially Infected Wounds
2.2. Diabetic Foot Ulcer (DFU)
2.3. Burnt Wounds
3. Internal Stimulus-Responsive Hydrogels
3.1. pH-Responsive Hydrogels
3.2. ROS-Responsive Hydrogels
3.3. Enzyme-Responsive Hydrogels
3.4. Glucose Responsive Hydrogels
4. External Stimulus-Responsive Hydrogels
4.1. Temperature-Responsive Hydrogels
4.1.1. Thermoresponsive Hydrogels
4.1.2. Cold Responsive Hydrogels
4.2. Photoresponsive Hydrogels
4.2.1. UV-Responsive Hydrogels
4.2.2. Visible Light-Responsive Hydrogels
4.2.3. Infrared Light-Responsive Hydrogels
4.3. Electro Responsive Hydrogels
4.4. Magnetic Field Responsive Hydrogels
5. Multi-Responsive Hydrogels
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Firouz, B.; Faihs, L.; Slezak, P.; Tabrizi-Wizsy, N.G.; Schicho, K.; Winter, R.; Kamolz, L.P.; Dungel, P. Testing the effects of photobiomodulation on angiogenesis in a newly established CAM burn wound model. Sci. Rep. 2023, 13, 22985. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Ye, S.; Jeong, C.; Jeong, J.; Ye, Y.S.; Jeong, J.Y.; Kim, Y.J.; Lim, S.; Kim, T.H.; Kim, K.Y.; et al. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat. Commun. 2024, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; He, S.Q.; Ye, K.; Shao, X.Y.; Yang, Q.L.; Yang, G.S. Photopolymerizable, immunomodulatory hydrogels of gelatin methacryloyl and carboxymethyl chitosan as all-in-one strategic dressing for wound healing. Int. J. Biol. Macromol. 2023, 253, 127151. [Google Scholar] [CrossRef]
- Khoshmohabat, H.; Manochehry, S.; Esmaeili, D.; Mesgaranzade, M. Evaluation of a Natural Ointment on Wound Healing. Trauma Mon. 2023, 28, 935–942. [Google Scholar] [CrossRef]
- Yahia, E.A.; El-Sharkawey, A.E.; Bayoumi, M.M. Quantitative Evaluation of Diabetic Foot Wound Healing Using Hydrogel Nanosilver Based Dressing vs. Traditional Dressing: A Prospective Randomized Control Study. Pak. J. Med. Health Sci. 2021, 15, 1571–1574. [Google Scholar] [CrossRef]
- Zeng, Q.K.; Qian, Y.N.; Huang, Y.J.; Ding, F.; Qi, X.L.; Shen, J.L. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 2021, 6, 2647–2657. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Xia, S.; Gao, G. An environment-stable hydrogel with skin-matchable performance for human-machine interface. Sci. China Mater. 2021, 64, 2313–2324. [Google Scholar] [CrossRef]
- Liu, J.; He, S.; Liu, Z.; Wu, X.; Liu, J.; Shao, W. Novel multi-responsive soft actuator assembled with a graphene oxide nanoribbons doped strain hydrogel sensor with high sensitive and NIR-triggered performances. Sensor. Actuators B-Chem. 2023, 393, 134217. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Ou, R.; Yi, X.; Liu, T.; Liu, Z.; Wang, Q. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration. Chem. Eng. J. 2021, 426, 130722. [Google Scholar] [CrossRef]
- Wang, B.; Chi, H.; Hou, Y.; Wang, S.; Feng, S.; Lv, Y.; Li, Q.; Li, M. Enhancement of Pb(II) Adsorption and Antibacterial Performances of Sodium Alginate/Acrylic Acid Composite Hydrogel via Snowflake-like ZnO Modification. Polym. Technol. Mater. 2020, 59, 1010–1022. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Zhong, Y.; Lu, Z.; Wang, D. NIR regulated upconversion nanoparticles@metal-organic framework composite hydrogel dressing with catalase-like performance and enhanced antibacterial efficacy for accelerating wound healing. Int. J. Biol. Macromol. 2023, 235, 123683. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Hao, T.; Chen, Y.; Deng, Y.; Qi, X.; Zhou, C.; Liu, Y.; Guo, S.; Qin, J. Mussel-inspired tissue adhesive composite hydrogel with photothermal and antioxidant properties prepared from pectin for burn wound healing. Int. J. Biol. Macromol. 2024, 270, 132436. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, L.; Qi, W.; Yin, P.; Liao, X.; Luo, Y.; Ding, Y. Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing. Biomater. Adv. 2024, 159, 213838. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zeng, H.; Chen, Z.; Ge, Z.; Wang, B.; Liu, B.; Fan, Z. Sprayable methacrylic anhydride-modified gelatin hydrogel combined with bionic neutrophils nanoparticles for scar-free wound healing of diabetes mellitus. Int. J. Biol. Macromol. 2022, 202, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Long, L.; Cao, J.; Zhang, S.; Wang, Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 2021, 411, 128564. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, F.; Long, L.; Kong, Q.; Luo, R.; Wang, Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release 2020, 324, 204–217. [Google Scholar] [CrossRef]
- Jiang, Y.; Trotsyuk, A.A.; Niu, S.; Henn, D.; Chen, K.; Shih, C.-C.; Larson, M.R.; Mermin-Bunnell, A.M.; Mittal, S.; Lai, J.-C.; et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 2023, 41, 652–662. [Google Scholar] [CrossRef]
- Hao, F.; Wang, L.; Chen, B.; Qiu, L.; Nie, J.; Ma, G. Bifunctional Smart Hydrogel Dressing with Strain Sensitivity and NIR-Responsive Performance. ACS Appl. Mater. Interfaces 2021, 13, 46938–46950. [Google Scholar] [CrossRef]
- Azevedo, M.-M.; Lisboa, C.; Cobrado, L.; Pina-Vaz, C.; Rodrigues, A. Hard-to-heal wounds, biofilm and wound healing: An intricate interrelationship. Br. J. Nurs. 2020, 29, S6–S13. [Google Scholar] [CrossRef]
- Reggiardo, G.; Aghina, B.; Landi, F. Topical application of hyaluronic acid and amino acids in hard-to-heal wounds: A cost-effectiveness analysis. J. Wound Care 2024, 33, 210–219. [Google Scholar] [CrossRef]
- Jain, M.; Bhogar, K.; Baral, P.; Gaind, R. Evaluation of risk factors associated with hard-to-heal wound infection in a tertiary care hospital. J. Wound Care 2024, 33, 180–188. [Google Scholar] [PubMed]
- Stenlund, P.; Enstedt, L.; Gilljam, K.M.; Standoft, S.; Ahlinder, A.; Johnson, M.L.; Lund, H.; Fureby, A.M.; Berglin, M. Development of an All-Marine 3D Printed Bioactive Hydrogel Dressing for Treatment of Hard-to-Heal Wounds. Polymers 2023, 15, 2627. [Google Scholar] [CrossRef] [PubMed]
- Sabio, L.; González, A.; Ramírez-Rodríguez, G.B.; Gutiérrez-Fernández, J.; Bañuelo, O.; Olivares, M.; Gálvez, N.; Delgado-López, J.M.; Dominguez-Vera, J.M. Probiotic cellulose: Antibiotic-free biomaterials with enhanced antibacterial activity. Acta Biomater. 2021, 124, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.S.; Yang, Y.Q.; Lu, J.H.; Yuan, Z.H.; Zhang, Y.Z.; Yang, X.Y.; Huang, X.M.; Li, T.; Tian, X.H.; Xu, B.; et al. Injectable Carrier-Free Hydrogel Dressing with Anti-Multidrug- Resistant Staphylococcus aureus and Anti-Inflammatory Capabilities for Accelerated Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 43035–43049. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; You, Q.X.; Feng, X.Y.; Zheng, C.L.; Zeng, X.X.; Xu, H.Y. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions. J. Drug Deliv. Sci. Technol. 2023, 80, 104165. [Google Scholar] [CrossRef]
- Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023, 14, 1135614. [Google Scholar] [CrossRef]
- Chandrasekhar, D.; Joseph, C.M.; Parambil, J.C.; Murali, S.; Yahiya, M.; Shafeera, K. Superbugs: An invicible threat in post antibiotic era. Clin. Epidemiol. Glob. Health 2024, 28, 101499. [Google Scholar] [CrossRef]
- D’Souza, A.; Marshall, L.R.; Yoon, J.; Kulesha, A.; Edirisinghe, D.I.U.; Chandrasekaran, S.; Rathee, P.; Prabhakar, R.; Makhlynets, O.V. Peptide hydrogel with self-healing and redox-responsive properties. Nano Converg. 2022, 9, 184072. [Google Scholar] [CrossRef]
- Asumang, P.; Boakye, Y.D.; Agana, T.A.; Yakubu, J.; Entsie, P.; Akanwariwiak, W.G.; Adu, F.; Agyare, C. Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of Bridelia micrantha (Hochst.) Baill. Sci. Afr. 2021, 14, e00980. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Lakshminarayanan, R.; Chellappan, V.; Verma, N.K.; Chinnappan, A.; Neisiany, R.E.; Amuthavalli, K.; Poh, Z.S.; Wong, B.H.S.; Dubey, N.; et al. Electrospun Aligned PCL/Gelatin Scaffolds Mimicking the Skin ECM for Effective Antimicrobial Wound Dressings. Adv. Fiber Mater. 2023, 5, 235–251. [Google Scholar] [CrossRef]
- Hartman, E.; Wallblom, K.; van der Plas, M.J.A.; Petrlova, J.; Cai, J.; Saleh, K.; Kjellstrom, S.; Schmidtchen, A. Bioinformatic Analysis of the Wound Peptidome Reveals Potential Biomarkers and Antimicrobial Peptides. Front. Immunol. 2021, 11, 620707. [Google Scholar] [CrossRef] [PubMed]
- Jindal, K.; Chibber, C.; Sachan, R.; Purwar, R. Antimicrobial Adhesive Prepared by Incorporation of Arnebia nobilis into Silicone-Acrylate Copolymer for Potential Wound Care Application; Springer: Berlin/Heidelberg, Germany, 2023; pp. 85–93. [Google Scholar]
- Menack, M.J.; Thibodeaux, K.T.; Trabanco, C.; Sabolinski, M.L. Effectiveness of type I collagen matrix plus polyhexamethylene biguanide antimicrobial for the treatment of pressure injuries. Wounds Compend. Clin. Res. Pract. 2022, 34, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Narayanan, S.; Xu, C.; Eliasson Angelstig, S.; Grunler, J.; Zhao, A.; Di Toro, A.; Bernardi, L.; Mazzone, M.; Carmeliet, P.; et al. Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes. eLife 2022, 11, 70714. [Google Scholar] [CrossRef]
- Du, X.C.; Jia, B.Q.; Wang, W.J.; Zhang, C.M.; Liu, X.D.; Qu, Y.Y.; Zhao, M.W.; Li, W.F.; Yang, Y.M.; Li, Y.Q. pH-switchable nanozyme cascade catalysis: A strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J. Nanobiotechnol. 2022, 20, 125702. [Google Scholar] [CrossRef] [PubMed]
- Farhan, A.; Hassan, G.; Ali, S.H.L.; Yousaf, Z.; Shafique, K.; Faisal, A.; Bin Younis, B.; Mirza, S. Spontaneous NETosis in diabetes: A role of hyperglycemia mediated ROS and autophagy. Front. Med. 2023, 10, 1076690. [Google Scholar] [CrossRef]
- Fu, T.; Stupnitskaia, P.; Matoori, S. Next-Generation Diagnostic Wound Dressings for Diabetic Wounds. ACS Meas. Sci. Au 2022, 2, 377–384. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Li, S.; Zhang, X.; Guo, J.; Wang, B.; Jin, Y.; Zhang, J.; Yang, X.; Wang, E. Wound microenvironment self-adaptive all-in-one hydrogel for rapid healing of the diabetic wound. J. Mater. Chem. B 2024, 12, 2070–2082. [Google Scholar] [CrossRef]
- Luo, Z.; Fu, X.; Jiang, H.; Meng, W.; Jin, S.; Cai, Y.; Du, Z.; Song, P.; Chen, A.; Li, L.; et al. Multifunctional and immunoregulatory microenvironment-responsive hydrogel for whole course management of infected diabetic wounds. Chem. Eng. J. 2024, 497, 154924. [Google Scholar] [CrossRef]
- Cai, F.; Wang, P.; Yuan, M.; Chen, W.; Liu, Y. Hypoxic microenvironment promotes diabetic wound healing by polarizing macrophages to the M2 phenotype in vivo. J. Mol. Histol. 2024, 55, s10735. [Google Scholar] [CrossRef]
- Gourishetti, K.; Keni, R.; Nayak, P.G.; Jitta, S.R.; Bhaskaran, N.A.; Kumar, L.; Kumar, N.; Krishnadas, N.; Shenoy, R.R. Sesamol-Loaded PLGA Nanosuspension for Accelerating Wound Healing in Diabetic Foot Ulcer in Rats. Int. J. Nanomed. 2020, 15, 9265–9282. [Google Scholar] [CrossRef]
- Hong, C.C.; Tan, K.J.; Lahiri, A.; Nather, A. Use of a Definitive Cement Spacer for Simultaneous Bony and Soft Tissue Reconstruction of Mid- and Hindfoot Diabetic Neuroarthropathy: A Case Report. J. Foot Ankle Surg. 2015, 54, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz-Gospodarek, A.; Koziol, M.; Tobiasz, M.; Baj, J.; Radzikowska-Büchner, E.; Przekora, A. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int. J. Environ. Res. Public Health 2022, 19, 1338. [Google Scholar] [CrossRef] [PubMed]
- Eke, G.; Mangir, N.; Hasirci, N.; MacNeil, S.; Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 2017, 129, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, e2100475. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M. Advances in Skin Regeneration: Application of Electrospun Scaffolds. Adv. Healthc. Mater. 2015, 4, 1114–1133. [Google Scholar] [CrossRef]
- Phelan, H.A.; James, H.H.; Hickerson, W.L.; Cockerell, C.J.; Shupp, J.W.; Carter, J.E. Use of 816 Consecutive Burn Wound Biopsies to Inform a Histologic Algorithm for Burn Depth Categorization. J. Burn Care Res. 2021, 42, 1162–1167. [Google Scholar] [CrossRef]
- Guo, H.-F.; Ali, R.M.; Abd Hamid, R.; Chang, S.K.; Zainal, Z.; Khaza’ai, H. A new histological score grade for deep partial-thickness burn wound healing process. Int. J. Burn Trauma 2020, 10, 218–224. [Google Scholar]
- Lanham, J.S.; Nelson, N.K.; Hendren, B.; Jordan, T.S. Outpatient Burn Care: Prevention and Treatment. Am. Fam. Physician 2020, 101, 463–470. [Google Scholar]
- Liu, Y.J.; Wu, P.; An, G.; Fang, Q.; Zheng, J.; Wang, Y.B. Research advances on the techniques for diagnosing burn wound depth. Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi 2022, 38, 481–485. [Google Scholar] [CrossRef]
- Kamolz, L.-P.; Hecker, A. Molecular Mechanisms Related to Burns, Burn Wound Healing and Scarring. Int. J. Mol. Sci. 2023, 24, 8785. [Google Scholar] [CrossRef]
- Imam, R.A.; Amer, M.M. Potential therapeutic role of microvesicles derived from mesenchymal stem cells and platelet-rich plasma in murine burn wound healing: Scar regulation and antioxidant mechanism. Folia Morphol. 2023, 82, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, Y. Preparation and properties of pH-responsive shape memory composite hydrogels. New Chem. Mater. 2024, 52, 78–82. [Google Scholar]
- Yao, S.; Xiang, L.; Wang, L.; Gong, H.; Chen, F.; Cai, C. pH-responsive DNA hydrogels with ratiometric fluorescence for accurate detection of miRNA-21. Anal. Chim. Acta 2022, 1207, 339795. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Yu, H.; Wang, L.; Huang, Y.; Lu, H.; Zhou, H.; Liu, Q. Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 52643–52658. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Bi, Y.; He, P.; Wang, C.; Guo, W. Hierarchically Structured DNA-Based Hydrogels Exhibiting Enhanced Enzyme-Responsive and Mechanical Properties. Adv. Funct. Mater. 2020, 30, 2006305. [Google Scholar] [CrossRef]
- Fadeev, M.; Davidson-Rozenfeld, G.; Li, Z.; Willner, I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS Appl. Mater. Interfaces 2023, 15, 37011–37025. [Google Scholar] [CrossRef]
- Xiong, M.X.; Chen, Y.; Hu, H.J.; Cheng, H.; Li, W.X.; Tang, S.P.; Hu, X.L.; Lan, L.M.; Zhang, H.Y.; Jiang, G.B. Multifunctional pH-responsive hydrogel dressings based on carboxymethyl chitosan: Synthesis, characterization fostering the wound healing. Carbohydr. Polym. 2024, 341, 122345. [Google Scholar] [CrossRef]
- Yang, G.H.; Zhang, Z.K.; Liu, K.F.; Ji, X.X.; Fatehi, P.; Chen, J.C. A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. J. Nanobiotechnol. 2022, 20, 3125227. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhao, X.; Qiao, L.P.; Huang, Y.; Yang, Y.T.; Chu, D.K.; Guo, B.L. Multifunctional On-Demand Removability Hydrogel Dressing Based on in Situ Formed AgNPs, Silk Microfibers and Hydrazide Hyaluronic Acid for Burn Wound Healing. Adv. Healthc. Mater. 2024, 13, 2303157. [Google Scholar] [CrossRef]
- He, J.H.; Shi, M.T.; Liang, Y.P.; Guo, B.L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, R.L.; Chen, B.H.; Liu, X.L.; Jia, Q.; Wang, X.F.; Yang, Z.; Ning, P.B.; Wang, Z.L.; Yang, Y. Injectable Reactive Oxygen Species-Responsive Hydrogel Dressing with Sustained Nitric Oxide Release for Bacterial Ablation and Wound Healing. Adv. Funct. 2022, 32, 2202857. [Google Scholar] [CrossRef]
- Qu, M.Y.; Xu, W.Z.; Zhou, X.W.; Tang, F.; Chen, Q.; Zhang, X.; Bai, X.F.; Li, Z.Y.; Jiang, X.; Chen, Q.M. An ROS-Scavenging Treg-Recruiting Hydrogel Patch for Diabetic Wound Healing. Adv. Funct. 2024, 34, 2314500. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, J.; Li, Y.; Lv, X.J.; Zhou, H.T.; Wang, H.R.; Xu, Y.Y.; Wang, C.; Wang, J.; Liu, Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. Biomaterials 2020, 258, 120286. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.Q.; Hu, C.; Jiang, C.; Xia, J.C.; Ye, L.; Jin, Y.; Jiang, S.C.; Ji, Y.W.; Zhang, Z.D.; Song, H.H.; et al. Incorporating copper-based nanosheets into an injectable self-healing hydrogel enables superb repair of infected diabetic wound. Chem. Eng. J. 2023, 476, 146788. [Google Scholar] [CrossRef]
- Lan, B.Y.; Zhang, L.M.; Yang, L.Q.; Wu, J.F.; Li, N.; Pan, C.L.; Wang, X.Y.; Zeng, L.X.; Yan, L.; Yang, C.; et al. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J. Nanobiotechnol. 2021, 19, 01130. [Google Scholar] [CrossRef]
- Wu, L.Y.; Chen, Y.B.; Zeng, G.; Mao, N.; Li, N.; Li, L.L.; Xu, X.D.; Yan, L. Supramolecular peptide hydrogel doped with nanoparticles for local siRNA delivery and diabetic wound healing. Chem. Eng. J. 2023, 457, 141244. [Google Scholar] [CrossRef]
- Li, Y.; Song, W.; Kong, L.Z.; He, Y.H.; Li, H.Y. Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing. Small 2024, 20, 1309599. [Google Scholar] [CrossRef]
- Shao, Z.J.; Yin, T.Y.; Jiang, J.B.; He, Y.; Xiang, T.; Zhou, S.B. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 2023, 20, 561–573. [Google Scholar] [CrossRef]
- Liu, K.; Kang, Y.; Dong, X.Z.; Li, Q.Y.; Wang, Y.; Wu, X.P.; Yang, X.F.; Chen, Z.B.; Dai, H.L. A simple yet effective hydrogel dressing for advanced microenvironmental management of diabetic wounds with intrinsic regulation. Chem. Eng. J. 2023, 470, 143987. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Ning, X.Q.; Chen, Y.W.; Chang, H.X.; Lu, D.H.; Pei, D.T.; Geng, Z.J.; Zeng, Z.W.; Guo, C.P.; Huang, J.; et al. Dual Glucose/ROS-Sensitive Injectable Adhesive Self-Healing Hydrogel with Photothermal Antibacterial Activity and Modulation of Macrophage Polarization for Infected Diabetic Wound Healing. ACS Mater. Lett. 2023, 5, 3142–3155. [Google Scholar] [CrossRef]
- Jing, Y.X.; Huang, T.; Zhao, B.; Zhao, L.; Zhang, N.N.; Zhang, K.X.; Wang, K.K.; Wang, J.Y.; Hua, J.L.; Tu, Q. A ROS/glucose stimulated-responsive ADSCs-derived exosomes-release hydrogel system for diabetic wound healing. Chem. Eng. J. 2024, 487, 150561. [Google Scholar] [CrossRef]
- Liang, Y.P.; Li, M.; Yang, Y.T.; Qiao, L.P.; Xu, H.R.; Guo, B.L. pH/Glucose Dual Responsive Metformin Release Hydrogel Dressings with Adhesion and Self-Healing via Dual-Dynamic Bonding for Athletic Diabetic Foot Wound Healing. ACS Nano 2022, 16, 3194–3207. [Google Scholar] [CrossRef] [PubMed]
- Jaehoon, J.; Lee, S.; Chang, H.; Minn, K.-W. The pH Value Changes During Wound Healing Process. Arch. Plast. Surg. 2008, 35, 243–247. [Google Scholar]
- Li, Y.H.; Qu, X.Y.; Wang, Q.B.; Li, S.; Zhang, Q.; Zhang, X.M. Tannic acid and carboxymethyl chitosan-based multi-functional double-layered hydrogel with pH-stimulated response behavior for smart real-time infection monitoring and wound treatment. Int. J. Biol. Macromol. 2024, 261, 129042. [Google Scholar] [CrossRef]
- Xia, H.; Dong, Z.; Tang, Q.; Ding, R.J.; Bai, Y.M.; Zhou, K.; Wu, L.H.; Hao, L.L.; He, Y.Y.; Yang, J.; et al. Glycopeptide-Based Multifunctional Hydrogels Promote Diabetic Wound Healing through pH Regulation of Microenvironment. Adv. Funct. Mater. 2023, 33, 2215116. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Li, D.D.; Wang, J.X.; Yang, X.Z. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater. 2021, 130, 17–31. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119041. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.Q.; Zang, J.; Abdullah, A.A.I.; Li, Y.Y.; Dong, H.Q. Design Strategies and Applications of ROS-Responsive Phenylborate Ester-Based Nanomedicine. ACS Biomater. Sci. Eng. 2020, 6, 6510–6527. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Long, L.Y.; Hu, C.; Kong, Q.Q.; Wang, Y.B. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J. Control. Release 2022, 341, 147–165. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, J.; Zhao, M.; Luo, H.Q.; Lin, M.J.; Luo, Y.T.; Li, Y.; He, H.C.; Wu, J. Adhesive, injectable, and ROS-responsive hybrid polyvinyl alcohol (PVA) hydrogel co-delivers metformin and fibroblast growth factor 21 (FGF21) for enhanced diabetic wound repair. Front. Bioeng. Biotechnol. 2022, 10, 968078. [Google Scholar] [CrossRef]
- Kolipaka, T.; Pandey, G.; Abraham, N.; Srinivasarao, D.A.; Raghuvanshi, R.S.; Rajinikanth, P.S.; Tickoo, V.; Srivastava, S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr. Polym. 2024, 324, 121537. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Singh, P.; Sheikh, P.A.; Kumar, A.; Koul, V.; Bhattacharyya, J. Simultaneous regulation of AGE/RAGE signaling and MMP-9 expression by an immunomodulating hydrogel accelerates healing in diabetic wounds. Biomater. Adv. 2024, 163, 213937. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhan, A.Y.; Jiang, Y.G.; Liu, H.Z. A novel matrix metalloproteinases-cleavable hydrogel loading deferoxamine accelerates diabetic wound healing. Int. J. Biol. Macromol. 2022, 222, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Duan, Z.G.; Zhao, J.; Fu, R.Z.; Zhu, C.H.; Fan, D.D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact. Mater. 2022, 17, 494–519. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.W.; Choi, J.H.; Lee, Y.; Park, K.D. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. J. Tissue Eng. Regen. Med. 2015, 9, 1225–1232. [Google Scholar] [CrossRef]
- Auzely-Velty, R.; Hachet, E.; Catargi, B.; Ravaine, V.; Messager, L. Glucose Responsive Hydrogel Comprising PBA-Grafted Hyaluronic Acid (HA); US 09549987; World Intellectual Property Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Xu, R.; Zhang, D.D.; Tan, J.; Ge, N.J.; Liu, D.; Liu, J.Y.; Ouyang, L.P.; Zhu, H.Q.; Qiao, Y.Q.; Qiu, J.J.; et al. A multifunctional cascade bioreactor based on a layered double oxides composite hydrogel for synergetic tumor chemodynamic/starvation/photothermal therapy. Acta Biomater. 2022, 153, 494–504. [Google Scholar] [CrossRef]
- Xu, Z.J.; Liu, G.T.; Huang, J.; Wu, J. Novel Glucose-Responsive Antioxidant Hybrid Hydrogel for Enhanced Diabetic Wound Repair. ACS Appl. Mater. Interfaces 2022, 14, 7680–7689. [Google Scholar] [CrossRef]
- Yang, J.X.; Zeng, W.N.; Xu, P.; Fu, X.X.; Yu, X.J.; Chen, L.; Leng, F.; Yu, C.; Yang, Z.Y. Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater. 2022, 140, 206–218. [Google Scholar] [CrossRef]
- Yin, R.X.; Wang, K.M.; Du, S.; Chen, L.; Nie, J.; Zhang, W.J. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr. Polym. 2014, 103, 369–376. [Google Scholar] [CrossRef]
- Do, H.D.; Couillaud, B.M.; Doan, B.T.; Corvis, Y.; Mignet, N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv. Drug Deliv. Rev. 2019, 138, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Sun, Y.; Li, J.; Zheng, Y.; Zhou, Z.; Yang, J.; Pan, C.; Zheng, Z.; Chen, X.; Liu, W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew. Chem. Int. Ed. 2022, 61, e202117066. [Google Scholar] [CrossRef] [PubMed]
- Rybak, D.; Rinoldi, C.; Nakielski, P.; Du, J.; Haghighat Bayan, M.A.; Zargarian, S.S.; Pruchniewski, M.; Li, X.; Strojny-Cieslak, B.; Ding, B.; et al. Injectable and self-healable nano-architectured hydrogel for NIR-light responsive chemo- and photothermal bacterial eradication. J. Mater. Chem. B 2024, 12, 1905–1925. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, B.; Ouyang, L.; Wang, D.; Tan, J.; Qiao, Y.; Ge, S.; Ruan, J.; Zhuang, A.; Liu, X.; et al. A Novel Stimuli-Responsive Injectable Antibacterial Hydrogel to Achieve Synergetic Photothermal/Gene-Targeted Therapy towards Uveal Melanoma. Adv. Sci. 2021, 8, 2004721. [Google Scholar] [CrossRef]
- Long, Y.; Bai, M.; Liu, X.M.; Lu, W.Y.; Zhong, C.; Tian, S.; Xu, S.J.; Ma, Y.M.; Tian, Y.Q.; Zhang, H.; et al. A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing. Carbohydr. Polym. 2022, 297, 119974. [Google Scholar] [CrossRef]
- Chen, C.W.; Wang, Y.; Zhang, H.; Zhang, H.; Dong, W.L.; Sun, W.J.; Zhao, Y.J. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact. Mater. 2022, 15, 194–202. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, M.; Chen, M.; Niu, W.; Li, Y.N.; Wang, Y.D.; Luo, M.; Xie, C.X.; Leng, T.T.; Lei, B. Injectable antibacterial antiinflammatory molecular hybrid hydrogel dressing for rapid MDRB-infected wound repair and therapy. Chem. Eng. J. 2021, 409, 128140. [Google Scholar] [CrossRef]
- Banerjee, S.L.; Das, S.; Bhattacharya, K.; Kundu, M.; Mandal, M.; Singha, N.K. Ag NPs incorporated self-healable thermoresponsive hydrogel using precise structural “Interlocking” complex of polyelectrolyte BCPs: A potential new wound healing material. Chem. Eng. J. 2021, 405, 126436. [Google Scholar] [CrossRef]
- Li, Y.; Fu, R.Z.; Duan, Z.G.; Zhu, C.H.; Fan, D.D. Artificial Nonenzymatic Antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano 2022, 16, 7486–7502. [Google Scholar] [CrossRef]
- Liu, X.A.; Zhang, Y.J.; Liu, Y.J.; Hua, S.M.; Meng, F.J.; Ma, Q.L.; Kong, L.M.; Pan, S.H.; Che, Y.J. Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings. Int. J. Biol. Macromol. 2023, 240, 124365. [Google Scholar] [CrossRef]
- Song, S.N.; Zhao, X.L.; Yang, X.C.; Ding, Y.; Ren, F.D.; Pang, X.Y.; Li, B.; Hu, J.Y.; Chen, Y.Z.; Gao, W.W. Nanoarchitectonics of Bimetallic Cu-/Co-Doped Nitrogen-Carbon Nanozyme-Functionalized Hydrogel with NIR-Responsive Phototherapy for Synergistic Mitigation of Drug-Resistant Bacterial Infections. ACS Appl. Mater. Interfaces 2024, 16, 16011–16028. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.H.; Wang, X.C.; Yue, O.; Hou, M.D.; Zhang, H.J.; Beyer, S.; Blocki, A.M.; Wang, Q.; Gong, G.D.; Liu, X.H.; et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 2021, 276, 121026. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, Z.P.; Lyu, Y.; Yang, J.Y.; Lin, L.Z.; Bai, H.C.; Li, Y.J.; Feng, Y.Q.; Chen, Y. Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing. Int. J. Biol. Macromol. 2023, 230, 123231. [Google Scholar] [CrossRef]
- Du, S.; Suo, H.N.; Xie, G.; Lyu, Q.Q.; Mo, M.; Xie, Z.J.; Zhou, N.Y.; Zhang, L.B.; Tao, J.; Zhu, J.T. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
- Guo, H.S.; Bai, M.; Zhu, Y.N.; Liu, X.M.; Tian, S.; Long, Y.; Ma, Y.M.; Wen, C.Y.; Li, Q.S.; Yang, J.; et al. Pro-Healing Zwitterionic Skin Sensor Enables Multi-Indicator Distinction and Continuous Real-Time Monitoring. Adv. Funct. Mater. 2021, 31, 2106406. [Google Scholar] [CrossRef]
- Shou, Y.F.; Le, Z.C.; Cheng, H.S.; Liu, Q.M.; Ng, Y.Z.; Becker, D.L.; Li, X.L.; Liu, L.; Xue, C.C.; Yeo, N.J.Y.; et al. Mechano-Activated Cell Therapy for Accelerated Diabetic Wound Healing. Adv. Mater. 2023, 35, 2304638. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.Q.; Deng, D.W.; Gu, Y.Q.; Wang, H.; Zhong, Q.F. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small 2022, 18, 2104368. [Google Scholar] [CrossRef]
- Cai, Y.; Xin, L.Y.; Sun, P.; Li, H.; Liu, C.; Fang, L. Temperature-sensitive multifunctional intelligent responsive hydrogel based on carboxymethyl agarose and N-isopropylacrylamide: Controlled drug release and accelerated wound healing. Carbohydr. Polym. 2023, 322, 121327. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.L.; Lu, S.T.; Zhang, N.Y.; Zhang, H.J.; Zhang, J.; Zhang, J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther. 2022, 13, 010407. [Google Scholar] [CrossRef]
- Wang, T.Y.; Ma, B.; Hao, G.; Ding, Z.; Liu, P.; Zhang, Y.F.; Liu, J.F. Temperature-sensitive hydrogel loaded with minocycline hydrochloride complex for accelerating infected wound healing. J. Drug Deliv. Sci. Technol. 2023, 88, 104961. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Zhang, X.; Zhang, W.; Wang, M.H.; Yan, L.W.; Wang, K.F.; Han, L.; Lu, X. Infant Skin Friendly Adhesive Hydrogel Patch Activated at Body Temperature for Bioelectronics Securing and Diabetic Wound Healing. ACS Nano 2022, 16, 8662–8676. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huang, S.B.; Hu, Z.C.; Yang, W.; Lan, Y.; Zhu, J.Y.; Hancharou, A.; Guo, R.; Tang, B. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019, 100, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.Y.; Lei, X.X.; Hu, J.J.; Jiang, Y.L.; Li, Q.J.; Song, Y.T.; Zhang, Q.Y.; Li-Ling, J.; Xie, H.Q. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact. Mater. 2022, 16, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.C.; Wang, Y.X.; Wang, H.; Qiao, L.; Jiang, Y.Q.; Ma, G.L.; Zhang, W.W.; Hu, Z.G. Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing. Carbohydr. Polym. 2022, 278, 119000. [Google Scholar] [CrossRef]
- Zhang, W.J.; Bao, B.K.; Jiang, F.; Zhang, Y.Q.; Zhou, R.J.; Lu, Y.Z.; Lin, S.H.; Lin, Q.N.; Jiang, X.Q.; Zhu, L.Y. Promoting Oral Mucosal Wound Healing with a Hydrogel Adhesive Based on a Phototriggered S-Nitrosylation Coupling Reaction. Adv. Mater. 2021, 33, 2105667. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Li, Y.; Zhang, X.; Zhang, R.; Hu, Y.; Boyer, C.; Xu, F.J. Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J. Control. Release 2020, 323, 24–35. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Eglin, D.; Alini, M.; Richards, G.R.; Qin, L.; Lai, Y.X. Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review. Engineering 2021, 7, 966–978. [Google Scholar] [CrossRef]
- Bourbour, S.; Darbandi, A.; Bostanghadiri, N.; Ghanavati, R.; Taheri, B.; Bahador, A. Effects of Antimicrobial Photosensitizers of Photodynamic Therapy (PDT) to Treat Periodontitis. Curr. Pharm. Biotechnol. 2024, 25, 1209–1229. [Google Scholar] [CrossRef]
- Guo, Y.C.; Wang, Y.; Zhao, X.H.; Li, X.; Wang, Q.; Zhong, W.; Mequanint, K.; Zhan, R.X.; Xing, M.; Luo, G.X. Snake extract-laden hemostatic bioadhesive gel cross-linked by visible light. Sci. Adv. 2021, 7, abf9635. [Google Scholar] [CrossRef]
- Mao, C.Y.; Xiang, Y.M.; Liu, X.M.; Cui, Z.D.; Yang, X.J.; Li, Z.Y.; Zhu, S.L.; Zheng, Y.F.; Yeung, K.W.K.; Wu, S.L. Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS Nano 2018, 12, 1747–1759. [Google Scholar] [CrossRef]
- Mai, B.J.; Jia, M.Q.; Liu, S.P.; Sheng, Z.H.; Li, M.; Gao, Y.R.; Wang, X.B.; Liu, Q.H.; Wang, P. Smart Hydrogel-Based DVDMS/bFGF Nanohybrids for Antibacterial Phototherapy with Multiple Damaging Sites and Accelerated Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 10156–10169. [Google Scholar] [CrossRef] [PubMed]
- Shahshahani, S.; Shahgholi, M.; Karimipour, A. The thermal performance and mechanical stability of methacrylic acid porous hydrogels in an aqueous medium at different initial temperatures and hydrogel volume fraction using the molecular dynamics simulation. J. Mol. Liq. 2023, 382, 122001. [Google Scholar] [CrossRef]
- Dong, R.N.; Guo, B.L. Smart wound dressings for wound healing. Nano Today 2021, 41, 101290. [Google Scholar] [CrossRef]
- Huang, S.S.; Liu, H.L.; Liao, K.D.; Hu, Q.Q.; Guo, R.; Deng, K.X. Functionalized GO Nanovehicles with Nitric Oxide Release and Photothermal Activity-Based Hydrogels for Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 45536–45537. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, Y.P.; Huang, Y.; He, J.H.; Han, Y.; Guo, B.L. Physical Double-Network Hydrogel Adhesives with Rapid Shape Adaptability, Fast Self-Healing, Antioxidant and NIR/pH Stimulus-Responsiveness for Multidrug-Resistant Bacterial Infection and Removable Wound Dressing. Adv. Funct. Mater. 2020, 30, 1910748. [Google Scholar] [CrossRef]
- Sheng, L.L.; Zhang, Z.W.B.; Zhang, Y.; Wang, E.D.; Ma, B.; Xu, Q.; Ma, L.L.; Zhang, M.; Pei, G.; Chang, J. A novel “hot spring”-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials 2021, 264, 120823. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhu, X.L.; Guo, H.M.; Huang, H.L.; Huang, S.H.; Huang, S.S.; Xue, W.; Zhu, P.; Guo, R. Nitric oxide released injectable hydrogel combined with synergistic photothermal therapy for antibacterial and accelerated wound healing. Appl. Mater. Today 2020, 20, 100781. [Google Scholar] [CrossRef]
- Liu, P.; Jin, K.; Zong, Y.G.; He, M.; Lu, C.F.; Li, H.Y.; Wang, Y.Y.; Li, C.Y. Ionic liquid functionalized injectable and conductive hyaluronic acid hydrogels for the efficient repair of diabetic wounds under electrical stimulation. Biomater. Sci. 2022, 10, 1795–1802. [Google Scholar] [CrossRef]
- Lei, H.; Fan, D.D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, W.J.; Zhou, Q.; Ran, F. Integrating supercapacitor with sodium hyaluronate based hydrogel as a novel All-In-One wound Dressing: Self-Powered electronic stimulation. Chem. Eng. J. 2023, 452, 139491. [Google Scholar] [CrossRef]
- Salimiyan, N.; Gholami, M.; Sedghi, R. Preparation of degradable, biocompatible, conductive and multifunctional chitosan/thiol-functionalized graphene nanocomposite hydrogel via click chemistry for human motion sensing. Chem. Eng. J. 2023, 471, 144648. [Google Scholar] [CrossRef]
- Yang, Y.T.; Xu, H.R.; Li, M.; Li, Z.L.; Zhang, H.L.; Guo, B.L.; Zhang, J. Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 41726–41741. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, H.; Son, D.; Shin, M. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics. Gels 2023, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, Y.; Wang, A.; Tian, S.; Li, Q.; Bai, S. Polyaniline Functionalized Peptide Self-Assembled Conductive Hydrogel for 3D Cell Culture. Gels 2022, 8, 372. [Google Scholar] [CrossRef]
- Zhan, T.Y.; Wang, S.; Guo, Z.Y.; Hu, Y.F. Preparation and application of a stretchable, conductive and temperature-sensitive dual-network nanocomposite hydrogel. J. Macromol. Sci. Part A 2022, 59, 72–82. [Google Scholar] [CrossRef]
- Li, Z.G.; Li, Y.Z.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Control. Release 2021, 335, 541–556. [Google Scholar] [CrossRef]
- Pires, F.; Silva, J.C.; Ferreira, F.C.; Portugal, C.A.M. Heparinized Acellular Hydrogels for Magnetically Induced Wound Healing Applications. ACS Appl. Mater. Interfaces 2024, 16, 9908–9924. [Google Scholar] [CrossRef]
- Fragal, E.H.; Fragal, V.H.; Silva, E.P.; Paulino, A.T.; da Silva, E.C.; Mauricio, M.R.; Silva, R.; Rubira, A.F.; Muniz, E.C. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. Carbohydr. Polym. 2022, 292, 15. [Google Scholar] [CrossRef]
- Forouzandehdel, S.; Forouzandehdel, S.; Rami, M.R. Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery. Carbohydr. Res. 2020, 487, 107889. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, P.; Wu, B.; Liu, Y.Q.; Hu, C. Advances in the Research and Application of Smart-Responsive Hydrogels in Disease Treatment. Gels 2023, 9, 662. [Google Scholar] [CrossRef]
- Gao, D.Q.; Zhang, Y.D.; Bowers, D.T.; Liu, W.J.; Ma, M.L. Functional hydrogels for diabetic wound management. APL Bioeng. 2021, 5, 031503. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Wen, M.Y.; Li, N.; Zhang, L.B.; Xue, Y.M.; Shang, L. Marine-Derived Nanozyme-Crosslinked Self-Adaptive Hydrogels for Programmed Regulating the Regeneration Process. Adv. Funct. Mater. 2024, 34, 2405257. [Google Scholar] [CrossRef]
- Zha, K.K.; Xiong, Y.; Zhang, W.Q.; Tan, M.J.; Hu, W.X.; Lin, Z.; Cheng, P.; Lu, L.; Cai, K.Y.; Mi, B.B.; et al. Waste to Wealth: Near-Infrared/pH Dual-Responsive Copper-Humic Acid Hydrogel Films for Bacteria-Infected Cutaneous Wound Healing. ACS Nano 2023, 17, 17199–17216. [Google Scholar] [CrossRef] [PubMed]
Stimulation | Hydrogel | Crosslink | Animal Model | Ref. |
---|---|---|---|---|
pH | CMCS/PVP/TA multifunctional hydrogel | Hydroge-bonding, electrostatic interactions | Mouse whole-skin defect model | [58] |
PVA–borax/resveratrol grafted cellulose nanofiber hydrogel | Dynamic borate bonding, hydrogen bonding | Aureus-infected female KM mouse model | [59] | |
in situ Ag NP–silk microfiber–hydrazide hyaluronic acid hydrogel | Dynamic acyl hydrazone bonds, metal chelation | Mouse back burn model | [60] | |
Pluronic F127/carbon nanotubes/N-carboxyethyl chitosan hydrogel | Dynamic Schiff base bonds, Π–Π covalency, hydrophobic interactions | Mouse whole-skin wound infection model | [61] | |
ROS | SPBA/L-Arg/PVA hydrogel | Hydrogen bonding | Mouse whole-layer skin defect model | [62] |
NHS-TK-NH (ROS cleavable joint)/RSG-CCL22 hydrogel | Amide bond, carbon-carbon covalent | Mouse whole-layer diabetic wound model | [63] | |
Polyvinyl alcohol–TPA (ROS response connector) hydrogel | Phenylboronic acid ester bond | Bacteria-infected diabetic mouse wound model | [64] | |
Copper-tannic acid (CuTA) nanosheet–GelMA hydrogel | Free radical polymerization, hydrogen bonding, borate bonding | Rat diabetic wound model | [65] | |
Enzyme | Pluronic F-127–methylcellulose hydrogels loaded with GT/siMMP9 | Hydrogen bonding | Rat diabetic wound model | [66] |
supramolecular peptide hydrogels doped with nanoparticles | Self-assembly, electrostatic interactions | Rat diabetic wound model | [67] | |
Injectable and microporous fibrous gel particles containing bioglass and siRNAs | Photocrosslinking | Rat diabetic wound model | [68] | |
Phenylboronic acid-grafted quaternized chitosan/polyvinyl alcohol hydrogels | Boronate bonds | Rat diabetic wound model | [69] | |
Glucose | Lipoic acid-modified chitosan injectable hydrogel | Photocrosslinking, amide reaction | Diabetic wound model in mice | [70] |
Ag NPs/phenylboronic acid grafted onto hyaluronic acid–glycol chitosan hydrogels | Dynamic borate bonding | Bacterially infected diabetic rat wound model | [71] | |
Phenylboronic acid-modified linseed gum–polyvinyl alcohol hydrogels loaded with PMX, L-ascorbic acid, CA | Dynamic borate bonds, hydrogen bonds | Whole-layer wound healing model of dorsal skin defects in type I diabetic male Kunming mice | [72] | |
Polyethylene glycol copolymerized (glycerol sebacate)/dihydrocaffeic acid and l-arginine-copolymerized chitosan hydrogel | Schiff base bonds, phenyl borate bonds | Whole-layer model of foot skin defect wound healing in type II diabetic SD rats | [73] |
Stimulation | Hydrogel | Crosslink | Animal Model | Ref. |
---|---|---|---|---|
Temperature | Amphiphilic ion-based carboxymethyl cellulose hydrogels | Hydrogen bonding | Staphylococcus aureus-infected mouse wound model | [97] |
VEGF-loaded N-acryloylglycinamide/1-vinyl-1,2,4-triazole/ PNIPAM polymer hydrogels | Hydrogen-bonding, non-covalent interactions | Rat diabetic wound model | [98] | |
Poly(citrate-glycol-siloxane)-based molecular hybridized hydrogels | Hydrogen bonding | MRSA-infected mouse wound model | [99] | |
Multilayered micellar polyarc complex hydrogels loaded with Ag NPs | Ionic interactions, Steglich esterification reactions | Rat total skin defect model | [100] | |
Photo | DA-grafted hyaluronic acid–PDA-coated Ti3C2/MXene nanosheets for injectable hydrogels | Oxidative coupling, amide bonds | Diabetic mouse whole-layer skin defect model | [101] |
Polydopamine-coated cellulose nanocrystals/phenylazo-capped Pluronic F127-quaternized chitosan-grafted cyclodextrin hydrogels | Schiff base bonding, hydrogen bonding | Rat total skin defect model | [102] | |
Bimetallic CuCo-doped nitrogen–carbon nano-enzyme functionalized hydrogels | Fenton reaction, oxidative coupling | MRSA mouse wound infection model | [103] | |
Gelatin-based smart three-dimensional hydrogels | Amide bonds, hydrogen bonds, electrostatic interactions and aromatic π–π interactions | Rat total skin defect model | [104] | |
Electric | Odium alginate oxide-carboxymethyl chitosan injectable hydrogel | Dynamic imine bonding, in situ photoreduction | New Zealand white rabbit whole-skin defect model | [105] |
Polypyrrole-F127 composite hydrogel | Electrochemical crosslinking | Mouse whole-layer skin defect model | [106] | |
Sensor hydrogel based on amphiphilic ionic thermal glucose-sensitized skin-like sensitization | π–π interactions, hydrogen bonding | Diabetic mouse whole-skin defect model | [107] | |
Magnetic | Poly(ethylene glycol) diacrylate-based hydrogels loaded with RGD and TMP | Alkene reaction | Diabetic mouse whole-layer skin defect model | [108] |
MXene-encapsulated MNP-based dual-network hydrogels | Covalent crosslinking, ionic crosslinking | Infected diabetic rat whole-layer skin defect model | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Wang, H.; Wang, C.; Xing, Y.; Liu, S.; Feng, L.; Zhang, X.; Chen, J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers 2024, 16, 2818. https://doi.org/10.3390/polym16192818
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers. 2024; 16(19):2818. https://doi.org/10.3390/polym16192818
Chicago/Turabian StyleFan, Yinuo, Han Wang, Chunxiao Wang, Yuanhao Xing, Shuying Liu, Linhan Feng, Xinyu Zhang, and Jingdi Chen. 2024. "Advances in Smart-Response Hydrogels for Skin Wound Repair" Polymers 16, no. 19: 2818. https://doi.org/10.3390/polym16192818
APA StyleFan, Y., Wang, H., Wang, C., Xing, Y., Liu, S., Feng, L., Zhang, X., & Chen, J. (2024). Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers, 16(19), 2818. https://doi.org/10.3390/polym16192818