Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polyethylene Sheets
2.3. Accelerated UV Weathering
2.4. Morphological Characterization
2.5. Tensile Test
2.6. ATR-FTIR and UV Spectroscopy
2.7. WAXD and DSC Characterization
2.8. Detection of Molecular Weight and Distribution
2.9. Fungal Incubation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Time Course of UV-Induced Photo-Degradation of Polyethylene Sheets
3.2. Effect of Thickness on the Photo-Degradation of Polyethylene Sheets
3.3. Effect of Pro-Oxidant Metals on the Photo-Degradation of Polyethylene Sheets
3.4. Effect of Foaming and Resin Types on the Photo-Degradation of Polyethylene Sheets
3.5. Detection of Chain Scission and Crosslinks in Photo-Oxidized Polyethylene Sheets
3.6. Fungal Attachment and Degradation of Photo-Oxidized Polyethylene Sheets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bodzay, B.; Bánhegyi, G. Polymer waste: Controlled breakdown or recycling? Int. J. Des. Sci. Technol. 2016, 22, 109. [Google Scholar]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, P.; Schartup, A.T.; Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl. Acad. Sci. USA 2021, 118, e2111530118. [Google Scholar] [CrossRef] [PubMed]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Fiorente, A.; D’Agostino, G.; Petrella, A.; Todaro, F.; Notarnicola, M. Recovery of Plastics from WEEE through Green Sink–Float Treatment. Materials 2024, 17, 3041. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Advancing Sustainable Materials Management: 2018 Fact Sheet. In Assessing Trends in Materials Generation and Management in the United States; Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Restrepo-Flórez, J.-M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Bahl, S.; Dolma, J.; Singh, J.J.; Sehgal, S. Biodegradation of plastics: A state of the art review. Mater. Today Proc. 2021, 39, 31–34. [Google Scholar] [CrossRef]
- Koutny, M.; Lemaire, J.; Delort, A.-M. Biodegradation of polyethylene films with prooxidant additives. Chemosphere 2006, 64, 1243–1252. [Google Scholar] [CrossRef]
- ASTM D6954-18; Standard Guide for Exposing and Testing Plastics That Degrade in the Environment by a Combination of Oxidation and Biodegradation. ASTM: West Conshohocken, PA, USA, 2021.
- Sen, S.K.; Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng. 2015, 3, 462–473. [Google Scholar]
- Gardette, M.; Perthue, A.; Gardette, J.-L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo-and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. Polym. Degrad. Stab. 2013, 98, 2383–2390. [Google Scholar] [CrossRef]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011, 36, 1015–1049. [Google Scholar] [CrossRef]
- Abrusci, C.; Pablos, J.L.; Marín, I.; Espí, E.; Corrales, T.; Catalina, F. Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal-and photo-degraded low density polyethylene mulching films. Int. Biodeterior. Biodegrad. 2013, 83, 25–32. [Google Scholar] [CrossRef]
- Monkul, M.M.; Özhan, H.O. Microplastic contamination in soils: A review from geotechnical engineering view. Polymers 2021, 13, 4129. [Google Scholar] [CrossRef] [PubMed]
- Therias, S.; Rapp, G.; Masson, C.; Gardette, J.-L. Limits of UV-light acceleration on the photooxidation of low-density polyethylene. Polym. Degrad. Stab. 2021, 183, 109443. [Google Scholar] [CrossRef]
- Antunes, M.C.; Agnelli, J.A.; Babetto, A.S.; Bonse, B.C.; Bettini, S.H. Abiotic thermo-oxidative degradation of high density polyethylene: Effect of manganese stearate concentration. Polym. Degrad. Stab. 2017, 143, 95–103. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; Swift, G. Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym. Degrad. Stab. 2003, 81, 341–351. [Google Scholar] [CrossRef]
- Fa, W.; Wang, J.; Ge, S.; Chao, C. Performance of photo-degradation and thermo-degradation of polyethylene with photo-catalysts and thermo-oxidant additives. Polym. Bull. 2020, 77, 1417–1432. [Google Scholar] [CrossRef]
- Benítez, A.; Sánchez, J.J.; Arnal, M.L.; Müller, A.J.; Rodríguez, O.; Morales, G. Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polym. Degrad. Stab. 2013, 98, 490–501. [Google Scholar] [CrossRef]
- Roé-Sosa, A.; Estrada, M.R.; Calderas, F.; Sánchez-Arévalo, F.; Manero, O.; de Velasquez, M.T.O.L. Degradation and biodegradation of polyethylene with pro-oxidant aditives under compost conditions establishing relationships between physicochemical and rheological parameters. J. Appl. Polym. Sci. 2015, 132, 42721. [Google Scholar] [CrossRef]
- ASTM D5208-14; Standard Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM D3826-18; Standard Practice for Determining Degradation End Point in Degradable Polyethylene and Polypropylene Using a Tensile Test. ASTM: West Conshohocken, PA, USA, 2021.
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Mo, Z.; Zhang, H. The degree of crystallinity in polymers by wide-angle x-ray diffraction (WAXD). J. Macromol. Sci. Part C Polym. Rev. 1995, 35, 555–580. [Google Scholar] [CrossRef]
- Fayolle, B.; Colin, X.; Audouin, L.; Verdu, J. Mechanism of degradation induced embrittlement in polyethylene. Polym. Degrad. Stab. 2007, 92, 231–238. [Google Scholar] [CrossRef]
- ISO 846:2019; Plastics—Evaluation of the Action of Microorganisms. ISO: Geneva, Switzerland, 2021.
- Kuka, E.; Cirule, D.; Andersone, I.; Vasiljevs, L.O.; Merna, J.; Sarakovskis, A.; Kurnosova, N.; Sansonetti, E.; Vevere, L.; Andersons, B. A step to microplastic formation: Microcracking and associated surface transformations of recycled LDPE, LLDPE, HDPE, and PP plastics exposed to UV radiation. Polym. Degrad. Stab. 2024, 229, 110967. [Google Scholar] [CrossRef]
- Rodriguez, A.K.; Mansoor, B.; Ayoub, G.; Colin, X.; Benzerga, A.A. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene. Polym. Degrad. Stab. 2020, 180, 109185. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Weir, M.P.; Truss, R.W.; Garvey, C.J.; Nicholson, T.M.; Halley, P.J. A fundamental study on photo-oxidative degradation of linear low density polyethylene films at embrittlement. Polymer 2012, 53, 2385–2393. [Google Scholar] [CrossRef]
- Andrady, A.; Pegram, J.; Tropsha, Y. Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J. Environ. Polym. Degrad. 1993, 1, 171–179. [Google Scholar] [CrossRef]
- Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- Moreira, C.; Lloyd, R.; Hill, G.; Huynh, F.; Trufasila, A.; Ly, F.; Sawal, H.; Wallis, C. Temperate UV-accelerated weathering cycle combined with HT-GPC analysis and drop point testing for determining the environmental instability of polyethylene films. Polymers 2021, 13, 2373. [Google Scholar] [CrossRef]
- Fayolle, B.; Richaud, E.; Colin, X.; Verdu, J. Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J. Mater. Sci. 2008, 43, 6999–7012. [Google Scholar] [CrossRef]
- Quintana, A.; Celina, M.C. Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation. Polym. Degrad. Stab. 2018, 149, 173–191. [Google Scholar] [CrossRef]
- Cunliffe, A.; Davis, A. Photo-oxidation of thick polymer samples—Part II: The influence of oxygen diffusion on the natural and artificial weathering of polyolefins. Polym. Degrad. Stab. 1982, 4, 17–37. [Google Scholar] [CrossRef]
- Liu, X.; Gao, C.; Sangwan, P.; Yu, L.; Tong, Z. Accelerating the degradation of polyolefins through additives and blending. J. Appl. Polym. Sci. 2014, 131, 40750. [Google Scholar] [CrossRef]
- Muthukumar, T.; Aravinthan, A.; Mukesh, D. Effect of environment on the degradation of starch and pro-oxidant blended polyolefins. Polym. Degrad. Stab. 2010, 95, 1988–1993. [Google Scholar] [CrossRef]
- Martínez-Romo, A.; González-Mota, R.; Soto-Bernal, J.; Rosales-Candelas, I. Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation. J. Spectrosc. 2015, 2015, 586514. [Google Scholar] [CrossRef]
- Maalihan, R.D.; Pajarito, B.B. Effect of colorant, thickness, and pro-oxidant loading on degradation of low-density polyethylene films during thermal aging. J. Plast. Film Sheeting 2016, 32, 124–129. [Google Scholar] [CrossRef]
- Focke, W.W.; Mashele, R.P.; Nhlapo, N.S. Stabilization of low-density polyethylene films containing metal stearates as photodegradants. J. Vinyl Addit. Technol. 2011, 17, 21–27. [Google Scholar] [CrossRef]
- Council of Europe. Resolution CM/Res(2013)9 on Metals and Alloys Used in Food Contact Materials and Articles; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Mukherjee, S.; Kundu, P.P. Alkaline fungal degradation of oxidized polyethylene in black liquor: Studies on the effect of lignin peroxidases and manganese peroxidases. J. Appl. Polym. Sci. 2014, 131, 40738. [Google Scholar] [CrossRef]
- Iiyoshi, Y.; Tsutsumi, Y.; Nishida, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci. 1998, 44, 222–229. [Google Scholar] [CrossRef]
- Lee, B.; Pometto, A.L., III; Fratzke, A.; Bailey, T.B., Jr. Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl. Environ. Microbiol. 1991, 57, 678–685. [Google Scholar] [CrossRef]
- Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme–laccase–in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegrad. 2013, 84, 204–210. [Google Scholar] [CrossRef]
- Michaels, A.S.; Bixler, H.J. Flow of gases through polyethylene. J. Polym. Sci. 1961, 50, 413–439. [Google Scholar] [CrossRef]
- François-Heude, A.; Richaud, E.; Guinault, A.; Desnoux, E.; Colin, X. Impact of Oxygen Transport Properties on Polypropylene Thermal Oxidation, Part 1: Effect of Oxygen Solubility. J. Appl. Polym. Sci. 2015, 132, 41441. [Google Scholar] [CrossRef]
- François-Heude, A.; Richaud, E.; Desnoux, E.; Colin, X. A general kinetic model for the photothermal oxidation of polypropylene. J. Photochem. Photobiol. A Chem. 2015, 296, 48–65. [Google Scholar] [CrossRef]
Abbreviation | Formulation | ||||
---|---|---|---|---|---|
Resin | Fe * | Mn * | Thickness | Blow Agent | |
LDPE-0.4 | LDPE | 0 | 0 | 0.4 mm | 0 |
LDPE-0.8 | 0.8 mm | ||||
LDPE-1.2 | 1.2 mm | ||||
LDPE-0.8-Fe30 | LDPE | 30 ppm | 0 | 0.8 mm | 0 |
LDPE-0.8-Fe60 | 60 ppm | ||||
LDPE-0.8-Mn30 | LDPE | 30 ppm | 0.8 mm | 0 | |
LDPE-0.8-Mn60 | 60 ppm | ||||
LDPE-0.8-Foamed | LDPE | 0 | 0 | 0.8 mm | 2 wt% |
HDPE-0.8 | HDPE | 0 | 0 | 0.8 mm | 0 |
Duration of Weathering | LDPE-0.8 | LDPE-0.8-Fe30 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CIface | CIback | (Da) | Decrease (%) | Đ | CIface | CIback | (Da) | Decrease (%) | Đ | |
Unweathered | N.D. * | 2.09 × 105 | 0 | 5.93 | N.D. * | 2.07 × 105 | 0 | 6.18 | ||
2 weeks | 0.21 ± 0.08 | 0.18 ± 0.07 | 5.14 × 104 | 75.36 | 7.18 | 1.49 ± 0.20 | 1.26 ± 0.12 | 3.08 × 104 | 85.13 | 4.65 |
4 weeks | 0.95 ± 0.15 | 0.58 ± 0.05 | 3.25 × 104 | 84.42 | 6.94 | 2.51 ± 0.17 | 2.24 ± 0.08 | 1.32 × 104 | 93.64 | 4.48 |
6 weeks | 1.22 ± 0.23 | 0.98 ± 0.16 | 1.85 × 104 | 91.14 | 4.73 | 2.67 ± 0.35 | 2.39 ± 0.25 | 5.63 × 103 | 97.28 | 4.73 |
8 weeks | 1.75 ± 0.38 | 1.60 ± 0.28 | 1.45 × 104 | 93.07 | 5.12 | 2.78 ± 0.22 | 2.45 ± 0.07 | 5.44 × 103 | 97.37 | 4.25 |
Sample | Unweathered | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Da) | Decrease (%) | Đ | Xc (%) | (Da) | Decrease (%) | Đ | Xc (%) | (Da) | Decrease (%) | Đ | Xc (%) | |
LDPE-0.4 | 2.07 × 105 | 0 | 6.38 | 67.5 ± 5.9 | 1.53 × 104 | 92.63 | 5.41 | 73.5 ± 6.2 | 7.55 × 103 | 96.35 | 5.72 | 85.9 ± 5.4 * |
LDPE-0.8 | 2.09 × 105 | 0 | 5.93 | 64.3 ± 8.1 | 3.25 × 104 | 84.42 | 6.94 | 70.6 ± 9.9 | 1.45 × 103 | 93.07 | 5.12 | 85.2 ± 6.6 * |
LDPE-1.2 | 2.07 × 105 | 0 | 6.87 | 54.6 ± 9.2 | 8.63 × 104 | 58.26 | 5.22 | 61.7 ± 8.8 | 3.75 × 103 | 81.84 | 7.02 | 80.4 ± 4.2 * |
Sample | Unweathered | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Decrease (%) | Đ | Xc (%) | Decrease (%) | Đ | Xc (%) | Decrease (%) | Đ | Xc (%) | ||||
LDPE-0.8 | 2.09 × 105 | 0 | 5.93 | 64.3 ± 8.1 | 3.25 × 104 | 84.42 | 6.94 | 70.6 ± 9.9 | 1.45 × 103 | 93.07 | 5.12 | 85.2 ± 6.6 * |
LDPE-0.8-Fe30 | 2.07 × 105 | 0 | 6.18 | 67.5 ± 1.2 | 1.32 × 104 | 93.64 | 4.48 | 74.8 ± 3.9 | 5.44 × 103 | 97.37 | 4.25 | 87.5 ± 4.1 * |
LDPE-0.8-Fe60 | 1.75 × 105 | 0 | 5.62 | 64.7 ± 5.3 | 8.92 × 103 | 94.90 | 5.39 | 83.2 ± 8.5 * | 5.05 × 103 | 97.10 | 5.78 | 88.9 ± 6.2 * |
LDPE-0.8-Mn30 | 2.04 × 105 | 0 | 4.82 | 65.4 ± 8.1 | 2.65 × 104 | 86.97 | 6.23 | 77.5 ± 6.9 | 1.23 × 104 | 93.98 | 5.19 | 81.4 ± 2.8 * |
LDPE-0.8-Mn60 | 2.00 × 105 | 0 | 5.03 | 65.9 ±7.5 | 2.21 × 104 | 88.91 | 5.36 | 80.2 ± 6.2 * | 1.02 × 104 | 94.89 | 6.56 | 82.5 ± 7.7 * |
Sample | Unweathered | 4 Weeks | 8 Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Decrease (%) | Đ | Xc (%) | Decrease (%) | Đ | Xc (%) | Decrease (%) | Đ | Xc (%) | ||||
LDPE-0.8 | 2.09 × 105 | 0 | 5.93 | 64.3 ± 8.1 | 3.25 × 104 | 84.42 | 6.94 | 70.6 ± 9.9 | 1.45 × 104 | 93.07 | 5.12 | 85.2 ± 6.6 * |
LDPE-0.8-Foamed | 2.07 × 105 | 0 | 5.87 | 63.2 ± 5.9 | 3.53 × 104 | 82.99 | 5.06 | 64.9 ± 4.2 | 1.73 × 104 | 91.66 | 4.02 | 75.8 ± 4.6 |
HDPE-0.8 | 1.05 × 105 | 0 | 4.52 | 81.4 ± 1.4 | 6.19 × 104 | 41.17 | 2.73 | 83.2 ± 2.8 | 2.71× 104 | 74.24 | 6.24 | 87.2 ± 1.9 * |
Sample | Crosslinks (mol/kg) | Chain Scission (mol/kg) | ||
---|---|---|---|---|
4 Weeks | 8 Weeks | 4 Weeks | 8 Weeks | |
LDPE-0.4 | 0.067 | 0.391 | 0.157 | 0.884 |
LDPE-0.8 | 0.044 | 0.230 | 0.066 | 0.391 |
LDPE-1.2 | 0.005 | 0.032 | 0.037 | 0.191 |
LDPE-0.8-Fe30 | 0.056 | 0.367 | 0.131 | 0.882 |
LDPE-0.8-Fe60 | 0.120 | 0.692 | 0.242 | 1.354 |
LDPE-0.8-Mn30 | 0.049 | 0.260 | 0.082 | 0.482 |
LDPE-0.8-Mn60 | 0.046 | 0.263 | 0.144 | 0.762 |
LDPE-0.8-Foamed | 0.023 | 0.138 | 0.033 | 0.237 |
HDPE-0.8 | 0.006 | 0.035 | 0.044 | 0.231 |
Sample | Before Incubation | After Incubation | Weight Loss (%) | ||
---|---|---|---|---|---|
Đ | Đ | ||||
LDPE-0.8 @ 4 weeks | 3.25 × 104 | 6.94 | 2.86 × 104 | 5.92 | 1.05 ± 0.18 |
LDPE-0.8-Fe30 @ 4 weeks | 1.32 × 104 | 4.48 | 1.10 × 104 | 4.92 | 3.95 ± 0.52 |
LDPE-0.8-Mn30 @ 4 weeks | 2.65 × 104 | 6.23 | 1.27 × 104 | 4.24 | 1.87 ± 0.32 |
LDPE-0.8 @ 8 weeks | 1.45 × 104 | 5.12 | 2.75 × 104 | 6.02 | 1.42 ± 0.14 |
LDPE-0.8-Fe30 @ 8 weeks | 5.44 × 103 | 4.25 | 1.10 × 104 | 5.68 | 1.72 ± 0.39 |
LDPE-0.8-Mn30 @ 8 weeks | 1.23 × 104 | 5.19 | 1.03 × 104 | 4.39 | 0.87 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Lee, C.; Ji, Y. Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets. Polymers 2024, 16, 2709. https://doi.org/10.3390/polym16192709
Du B, Lee C, Ji Y. Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets. Polymers. 2024; 16(19):2709. https://doi.org/10.3390/polym16192709
Chicago/Turabian StyleDu, Bochu, Chenghao Lee, and Ying Ji. 2024. "Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets" Polymers 16, no. 19: 2709. https://doi.org/10.3390/polym16192709
APA StyleDu, B., Lee, C., & Ji, Y. (2024). Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets. Polymers, 16(19), 2709. https://doi.org/10.3390/polym16192709