Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospinning
2.3. Morphologies and Inner Structures
2.4. Physical State and Compatibility
2.5. In Vitro Dissolution Tests
2.6. Statistical Analysis
3. Results and Discussion
3.1. Strategies for Developing Novel Core–Shell Nanostructures with Radical Distributions of Soluble and Insoluble Polymers
3.2. Successful Implementations of the Electrospinning Processes
3.3. The Morphologies and Inner Structures of the Electrospun Nanofibers
3.4. The Physical State of FA and Its Compatibility with EC and PVP
3.5. The In Vitro Dissolution Profiles of FA from the Three Kinds of Nanofibers
3.6. The Drug Sustained-Release Mechanisms from the Medicated Nanofibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Riaz, Z.; Baddi, S.; Gao, F.; Feng, C. Gallic Acid-doped multifunctional hybrid hydrogel for antioxidant and antibacterial studies. Eur. Polym. J. 2024, 206, 112778. [Google Scholar] [CrossRef]
- Gupta, C.; Naik, I.; Menon, M.; Ambre, P.; Coutinho, E. A review on exploring the opportunities of polymer drug conjugated systems for targeted cancer treatment. Curr. Drug Deliv. 2023, 20, 8–30. [Google Scholar] [CrossRef]
- Pathan, R.R.; Shaikh, M.S.; Syed, I.J.; Qureshi, M.A.; Acharya, P.N.; Shirsat, M.K.; Aquil-ur-RahimSiddiqui; Dehghan, M.H.; Moon, R.S. Microwave-assisted synthesis of celecoxib nanocomposites for enhancement of solubility and colon cancer targeting. Nano Struct. Nano Objects 2024, 37, 101116. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, T.; Cheng, Y.; Zhao, K.; Meng, Z.; Huang, J.; Cai, W.; Lai, Y. Recent advances in functional cellulose-based materials: Classification, properties, and applications. Adv. Fiber Mater. 2024, 6, 1–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Liao, Q.; Qian, Y.; Zhu, L.; Yu, D.; Xu, Y.; Lu, X.; Kim, I.; Song, W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J. Mater. Chem. B 2024, 12, 2054–2069. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Li, Y.; Xu, Y.; Song, W. Poly(Glutamic acid)-engineered nanoplatforms for enhanced cancer phototherapy. Curr. Drug Deliv. 2023, 21, 326–338. [Google Scholar] [CrossRef]
- Shariatzadeh, F.J.; Currie, S.; Logsetty, S.; Spiwak, R.; Liu, S. Enhancing Wound Healing and Minimizing Scarring: A Comprehensive Review of Nanofiber Technology in Wound Dressings. Prog. Mater. Sci. 2024, 147, 101350. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, J.; Fang, B.; Ying, Y.; Yu, D.; He, H. Three EHDA processes from a detachable spinneret for fabricating drug fast dissolution composites. Macromol. Mater. Eng. 2024, 309, 361. [Google Scholar] [CrossRef]
- Zhong, Z.; Lan, Y.; Chen, J.; Ping, L.; Li, X.; Wang, Q.; Zhuang, X.; Qiu, Z.; Yuan, T.; Guo, Q.; et al. Optimizing Paclitaxel Oral Absorption and Bioavailability: TPGS Co-Coating via Supercritical Anti-Solvent Fluidized Bed Technology. Pharmaceuticals 2024, 17, 412. [Google Scholar] [CrossRef]
- Al-Nimry, S.; Khanfar, M. Enhancement of the solubility of asenapine maleate through the preparation of co-crystals. Curr. Drug Deliv. 2022, 19, 788–800. [Google Scholar] [CrossRef]
- Geng, Y.; Williams, G. Developing and scaling up captopril-loaded electrospun ethyl cellulose fibers for sustained-release floating drug delivery. Int. J. Pharm. 2023, 648, 123557. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, C.; Zhai, H.; Peng, C.; Yu, X.; Zheng, X.; Zhang, H.; Wang, X.; Yu, L.; Wang, S.; et al. Electrospun scaffolds are not necessarily always made of nanofibers as demonstrated by polymeric heart valves for tissue engineering. Adv. Healthc. Mater. 2024, 13, 3395. [Google Scholar] [CrossRef]
- Peng, W.; Wang, L.; Zhang, M.; Yu, D.; Li, X. Biodegradable flexible conductive film based on sliver nanowires and PLA electrospun fibers. J. Appl. Polym. Sci. 2024, 141, 55433. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Gong, W.; Lu, Y.; Yu, D.-G.; Liu, P. Recent progress of electrospun nanofibers as burning dressings. RSC Adv. 2024, 14, 14374–14391. [Google Scholar] [CrossRef] [PubMed]
- Kuperkar, K.; Atanase, L.; Bahadur, A.; Crivei, I.; Bahadur, P. Degradable polymeric bio(nano)materials and their biomedical applications: A comprehensive overview and recent updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.; Ghitman, J.; Pircalabioru, G.; Zaharia, A.; Iovu, H.; Sarbu, A. Electrospun/3D-printed bicomponent scaffold co-loaded with a prodrug and a drug with antibacterial and immunomodulatory properties. Polymers 2023, 15, 2854. [Google Scholar] [CrossRef]
- Murugesan, R.; Raman, S. Recent trends in carbon nanotubes based prostate cancer therapy: A biomedical hybrid for diagnosis and treatment. Curr. Drug Deliv. 2022, 19, 229–237. [Google Scholar] [CrossRef]
- Ajalli, N.; Pourmadadi, M.; Yazdian, F.; Abdouss, M.; Rashedi, H.; Rahdar, A. PVA based nanofiber containing GO modified with Cu nanoparticles and loaded curcumin; high antibacterial activity with acceleration wound healing. Curr. Drug Deliv. 2023, 20, 1569–1583. [Google Scholar] [CrossRef]
- Chen, Y.; Lo, T.; Chien, Y.; Kuo, Y.; Liu, S. In vitro and in vivo drug release from a nano-hydroxyapatite reinforced resorbable nanofibrous scaffold for treating female pelvic organ prolapse. Polymers 2024, 16, 1667. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, B.; Chen, J.; He, J.; Qiu, X. Facile synthesis of three types of mesoporous silica microspheres as drug delivery carriers and their sustained-Release properties. Curr. Drug Deliv. 2023, 20, 1337–1350. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, C.; Yang, J.; Zhao, J.; Feng, Y.; Liu, M.; Zhang, J. Physical characterization and safety evaluation of folic acid-conjugated mesoporous silica nanoparticles loaded with rhodojaponin III. Curr. Drug Deliv. 2023, 20, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Qosim, N.; Majd, H.; Huo, S.; Edirisinghe, M.; Williams, G. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int. J. Pharm. 2024, 654, 123972. [Google Scholar] [CrossRef]
- Pan, L.; Yang, J.; Xu, L. Electrospun core-shell bead-on-string nanofibers for sustained release of simvastatin. Colloid. Surf. A 2023, 678, 132516. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, J.; Chen, Y.; Yu, D.; Liu, P. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines. Front. Bioeng. Biotechnol. 2023, 11, 1308004. [Google Scholar] [CrossRef]
- He, H.; Wu, M.; Zhu, J.; Yang, Y.; Ge, R.; Yu, D. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv. Fiber Mater. 2022, 4, 305–317. [Google Scholar] [CrossRef]
- Gong, W.; Yang, W.; Zhou, J.; Zhang, S.; Yu, D.-G.; Liu, P. Engineered beads-on-a-string nanocomposites for an improved drug fast-sustained bi-stage release. Nanocomposites 2024, 10, 240–253. [Google Scholar] [CrossRef]
- Mao, H.; Zhou, J.; Yan, L.; Zhang, S.; Yu, D. Hybrid films loaded with 5-fluorouracil and reglan for synergistic treatment of colon cancer via asynchronous dual-drug delivery. Front. Bioeng. Biotechnol. 2024, 12, 1398730. [Google Scholar] [CrossRef]
- Tan, C.; Xiong, S. Preparation, characterization and in vitro/vivo evaluation of long-acting rivaroxaban-loaded microspheres. Curr. Drug Deliv. 2023, 20, 1547–1558. [Google Scholar] [CrossRef]
- Vashishth, R.; Chuong, M.; Duarte, J.; Gharat, Y.; Kerr, S. Two sustained release membranes used in formulating low strength testosterone reservoir transdermal patches. Curr. Drug Deliv. 2023, 21, 438–450. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, J.; Wu, X.; Shen, X.; Zhang, Q.; Zhang, W. Preparation of the chitosan/poly-γ-glutamic acid/glabrid in hybrid nanoparticles and study on its releasing property. Curr. Drug Deliv. 2023, 20, 1195–1205. [Google Scholar] [CrossRef]
- González López, E.J.; Palacios, Y.B.; Martinez, S.R. Durantini, A.M. Durantini, E.N. Abraham, G.A. Bongiovanni Abel, S Heredia, D.A. Light-Activated Antibacterial Ethylcellulose Electrospun Nanofibrous Mats Containing Fluorinated Zn (II) Porphyrin. ACS Appl. Polym. Mater. 2024, 13, 7691–7704. [Google Scholar] [CrossRef]
- Transito-Medina, J.; Vázquez-Vélez, E.; Castillo, M.; Martínez, H.; Campillo, B. Gentamicin release study in uniaxial and coaxi-al polyhydroxybutyrate-polyethylene glycol-gentamicin microfibers treated with atmospheric plasma. Polymers 2023, 15, 3889. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Borregales, L.; Vergara-Rubio, A.; Santos, A.; Famá, L.; Goyanes, S. Black tea extracts/polyvinyl alcohol active nanofibers electrospun mats with sustained release of polyphenols for food packaging applications. Polymers 2023, 15, 1311. [Google Scholar] [CrossRef]
- Ali, A.; Hussain, M.A.; Haseeb, M.T.; Bukhari, S.N.A.; Muhammad, G.; Sheikh, F.A.; Farid-ul-Haq, M.; Ahmad, N. A smart hydrogel from salvia spinosa seeds: pH responsiveness, on-off switching, sustained drug release, and transit detection. Curr. Drug Deliv. 2023, 20, 292–305. [Google Scholar] [CrossRef]
- Zdraveva, E.; Dolenec, T.; Trcin, M.; Bajsic, E.; Grguric, T.; Tomljenovic, A.; Dekaris, I.; Jelic, J.; Mijovic, B. The reliability of PCL/anti-VEGF electrospun scaffolds to support limbal stem cells for corneal repair. Polymers 2023, 15, 2663. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, E.; Bowlin, G.; Mansfield, K.; Layman, J.; Simpson, D.; Sanders, E.; Wnek, G. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic Acid), and a blend. J. Control. Release 2002, 81, 57–64. [Google Scholar] [CrossRef]
- Mahant, S.; Sharma, A.; Gandhi, H.; Wadhwa, R.; Dua, K.; Kapoor, D. Emerging trends and potential prospects in vaginal drug delivery. Curr. Drug Deliv. 2023, 20, 730–751. [Google Scholar] [CrossRef]
- Dhiman, S.; Philip, N.; Singh, T.; Babbar, R.; Garg, N.; Diwan, V.; Singh, P. An insight on novel approaches & perspectives for gastro-retentive drug delivery systems. Curr. Drug Deliv. 2023, 20, 708–729. [Google Scholar] [CrossRef]
- Jiffrin, R.; Abd Razak, S.; Jamaludin, M.; Hamzah, A.; Mazian, M.; Jaya, M.; Nasrullah, M.; Majrashi, M.; Theyab, A.; Aldarmahi, A.; et al. Electrospun nanofiber composites for drug delivery: A review on current progresses. Polymers 2022, 14, 3725. [Google Scholar] [CrossRef]
- Ouerghemmi, S.; Degoutin, S.; Maton, M.; Tabary, N.; Cazaux, F.; Neut, C.; Blanchemain, N.; Martel, B. Core-sheath electrospun nanofibers based on chitosan and cyclodextrin polymer for the prolonged release of triclosan. Polymers 2022, 14, 1955. [Google Scholar] [CrossRef]
- Abdullah, M.; Nuge, T.; Andriyana, A.; Ang, B.; Muhamad, F. Core-shell fibers: Design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 2019, 11, 2008. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Zhu, L.; Miao, Y.; Zhu, Y.; Yue, B. Tailored drug delivery platforms: Stimulus-responsive core-shell structured nanocarriers. Adv. Healthc. Mater. 2024, 13, 2301726. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, V.; Patel, R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr. Drug Deliv. 2022, 19, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cheng, Y.; Luo, Y.; Teng, Y.; Liu, Y.; Feng, L.; Wang, N.; Zhao, Y. Electrospun nanofiber materials for photothermal interfacial evaporation. Materials 2023, 16, 5676. [Google Scholar] [CrossRef]
- Madheswaran, D.; Sivan, M.; Hauzerova, S.; Kostakova, E.; Jencova, V.; Valtera, J.; Behalek, L.; Mullerova, J.; Nguyen, N.; Capek, L.; et al. Continuous fabrication of braided composite nanofibrous surgical yarns using advanced AC electrospinning and braiding technology. Compos. Commun. 2024, 48, 101932. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, C.; Ahmad, Z.; Huang, J.; Li, J.; Chang, M. Designer fibers from 2D to 3D-simultaneous and controlled engineering of morphology, shape and size. Chem. Eng. J. 2018, 334, 89–98. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, C.; Xing, Z.; Ahmad, Z.; Ding, Q.; Chang, M. Controlled engineering of multifunctional porous structures using tri-needle co-axial electrohydrodynamic flow and sacrificial media. Chem. Eng. J. 2022, 429, 132221. [Google Scholar] [CrossRef]
- Wang, L.; Ahmad, Z.; Huang, J.; Li, J.; Chang, M. Multi-compartment centrifugal electrospinning based composite fibers. Chem. Eng. J. 2017, 330, 541–549. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D. Processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef]
- Liu, J.; Yao, H.; Chai, X.; Zhang, X.; Fu, J. Review of electrospinning technology of photocatalysis, electrocatalysis and magnetic response. J. Mater. Sci. 2024, 59, 10623–10649. [Google Scholar] [CrossRef]
- Li, D.; Yue, G.; Li, S.; Liu, J.; Li, H.; Gao, Y.; Liu, J.; Hou, L.; Liu, X.; Cui, Z.; et al. Fabrication and applications of multi-fluidic electrospinning multi-structure hollow and core-shell nanofibers. Engineering 2022, 13, 116–127. [Google Scholar] [CrossRef]
- Jarić, A.M.; Petrović, P.; Jurašin, D.D.; Vrsaljko, D.; Nodilo, L.N.; Kuzmić, S.; Kovačević, M.; Logarušić, M.; Slivac, I.; Komes, D. Electrospun Pullulan/Hemp Protein Nanohybrids for Sustained Release of Phenylethanoid Glycosides. Food Bioprocess. Technol. 2024, 27, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Liang, Z.; Guo, J.; Chen, B.; Zhou, S.; Yu, D. Application of electrospun drug-loaded nanofibers in cancer therapy. Polymers 2024, 16, 504. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Liu, Y.; Chen, S.; Zhang, C.; Chen, X.; Liu, Y.; Liu, P. Electrospun core-sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front. Bioeng. Biotechnol. 2023, 11, 1205252. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Liu, P. Electrospun core-sheath nanofibers with a cellulose acetate coating for the synergistic release of zinc ion and drugs. Mol. Pharm. 2023, 21, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Tayebi-Khorrami, V.; Rahmanian-Devin, P.; Fadaei, M.; Movaffagh, J.; Askari, V. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int. J. Pharm. X 2024, 8, 100265. [Google Scholar] [CrossRef]
- He, C.; Huang, Z.; Liu, L.; Han, X. Electrospun core-shell PLLA nanofiber and its potential for drug release. In Proceedings of the New Century, New Mater. New Life—Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials, ICAFPM 2005, Donghua University, Shanghai, China, 19–21 October 2005; Volume 2005, pp. 708–712. [Google Scholar]
- Gong, W.; Wang, M.-L.; Liu, Y.; Yu, D.-G.; Bligh, S.W.A. Shell Distribution of Vitamin K3 within Reinforced Electrospun Nanofibers for Improved Photo-Antibacterial Performance. Int. J. Mol. Sci. 2024, 25, 9556. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, W.; Zhang, Z.; Zhou, J.; Yu, D.-G.; Yi, T. Reverse Gradient Distributions of Drug and Polymer Molecules within Electrospun Core–Shell Nanofibers for Sustained Release. Int. J. Mol. Sci. 2024, 25, 9524. [Google Scholar] [CrossRef]
- Brimo, N.; Serdaroglu, D.; Uyar, T.; Uysal, B.; Çakici, E.; Dikmen, M.; Canturk, Z. Novel electrospun polymeric nanofibers loaded different medicaments as drug delivery systems for regenerative endodontics. Curr. Drug Deliv. 2023, 20, 992–1014. [Google Scholar] [CrossRef]
- El Fawal, G.; Abu-Serie, M. Preparation of poly(vinyl alcohol) nanofibers containing disulfiram-copper complex by electrospinning: A potential delivery system against melanoma. Daru J. Pharm. Sci. 2024, 1–11. [Google Scholar] [CrossRef]
- Yu, D.-G.; Gong, W.; Zhou, J.; Liu, Y.; Zhu, Y.; Lu, X. Engineered shapes using electrohydrodynamic atomization for an improved drug delivery. WIREs Nanomed. Nanobiotechnol. 2024, 16, e1964. [Google Scholar] [CrossRef] [PubMed]
- Qosim, N.; Majd, H.; Ahmed, J.; Williams, G.; Edirisinghe, M. Making fibers from cellulose derivatives by pressurized gyration and electrospinning. Cellulose 2024, 31, 2815–2832. [Google Scholar] [CrossRef]
- Wang, M.; Hou, J.; Yu, D.; Li, S.; Zhu, J.; Chen, Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd. 2020, 846, 156471. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, H.; Liu, H.; Zhao, P.; Yu, D. Electrosprayed stearic-acid-coated ethylcellulose microparticles for an improved sustained release of anticancer drug. Gels 2023, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, H.; Yu, D.; Bligh, S. Alginate-based electrospun nanofibers and the enabled drug controlled release profiles: A review. Biomolecules 2024, 14, 789. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, L.; Sheng, L.; Wang, H.; Li, C.; Lin, X.; Yang, P. Design of an injectable sustained release in-situ forming depot of meloxicam for pain relief. J. Drug Deliv. Sci. Technol. 2024, 93, 105460. [Google Scholar] [CrossRef]
- Yan, S.; Qian, Y.; Haghayegh, M.; Xia, Y.; Yang, S.; Cao, R.; Zhu, M. Electrospun organic/inorganic hybrid nanofibers for accelerating wound healing: A review. J. Mater. Chem. B 2024, 12, 3171–3190. [Google Scholar] [CrossRef]
- Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomed. 2019, 14, 4589–4599. [Google Scholar] [CrossRef]
- Shukla, D.; Nandi, N.; Singh, B.; Singh, A.; Kumar, B.; Narang, R.; Singh, C. Ferulic acid-loaded drug delivery systems for biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 75, 103621. [Google Scholar] [CrossRef]
- El-Adl, K.; Ghobashy, M.; Ismail, A.; El-morsy, A.; Shoman, N. Radiation synthesis and characterization of pH-responsive sodium alginate/poly(acrylic acid) nanogel loaded with ferulic acid for anticancer drug delivery. Mater. Chem. Phys. 2024, 322, 129564. [Google Scholar] [CrossRef]
- Yücel, C.; Karatoprak, G.; Ilbasmis-Tamer, S.; Degim, I. Ferulic acid-loaded aspasomes: A new approach to enhance the skin permeation, anti-aging and antioxidant effects. J. Drug Deliv. Sci. Technol. 2023, 86, 104748. [Google Scholar] [CrossRef]
- Mahmoud, M.; El-Gogary, R.; Soliman, M.; Kamel, A. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int. J. Biol. Macromol. 2024, 264, 130698. [Google Scholar] [CrossRef]
- Mercante, L.; Teodoro, K.; dos Santos, D.; dos Santos, F.; Ballesteros, C.; Ju, T.; Williams, G.; Correa, D. Recent progress in stimuli-Responsive antimicrobial electrospun nanofibers. Polymers 2023, 15, 4299. [Google Scholar] [CrossRef]
- Dharmaraj, D.; Chavan, N.; Likhitha, U.; Nayak, U. Electrospun nanofibers for dermatological delivery. J. Drug Deliv. Sci. Technol. 2024, 99, 105981. [Google Scholar] [CrossRef]
- Zheng, Q.; Xi, Y.; Weng, Y. Functional electrospun nanofibers: Fabrication, properties, and applications in wound-healing process. RSC Adv. 2024, 14, 3359–3378. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Lv, X.; Jiang, Q.; Zhang, J.; Gu, Z.; Yu, W.; Han, Z.; Wang, N.; Hou, W.; Cheng, Z. Multifunctional electrospun polycaprolactone/chitosan/hEGF/lidocaine nanofibers for the treatment of 2 stage pressure ulcers. Int. J. Biol. Macromol. 2024, 256, 128533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, N.; Ren, Q.; Niu, S.; Zhu, L.; Hong, L.; Cui, K.; Wang, X.; Jiang, W.; Wen, M.; et al. Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv. Funct. Mater. 2024, 34, 2315020. [Google Scholar] [CrossRef]
- Abid, S.; Wang, L.; Haider, M.; Mayakrishnan, G.; Lakshminarayanan, R.; Kim, K.; Ullah, A.; Kim, I. Investigating alginate and chitosan electrospun nanofibers as a potential wound dressing: An in vitro study. Nanocomposites 2024, 10, 254–267. [Google Scholar] [CrossRef]
- Huang, Y.; Zhan, M.; Shen, M.; Zhang, L.; Shi, X. Electrospun short fibers: A new platform for cancer nanomedicine. Explor. Drug Sci. 2023, 1, 454–467. [Google Scholar] [CrossRef]
- Alam, A.; Karmakar, R.; Rengan, A.; Khandelwal, M. Nanofiber-based systems for stimuli-responsive and dual drug delivery: Present scenario and the way forward. ACS Biomater. Sci. Eng. 2023, 9, 3160–3184. [Google Scholar] [CrossRef]
- Khan, J.; Khan, A.; Khan, M.Q.; Khan, H. Applications of co-axial electrospinning in the biomedical field. Next Mater. 2024, 3, 100138. [Google Scholar] [CrossRef]
- Aung, W.; Krongrawa, W.; Limmatvapirat, S.; Kulpicheswanich, P.; Okonogi, S.; Limmatvapirat, C.; Zhang, W. Fabrication and optimization of electrospun shellac fibers loaded with senna alata leaf extract. Polymers 2024, 16, 183. [Google Scholar] [CrossRef] [PubMed]
- Haseli, M.; Esmaeili, A. A review of advances in coaxial electrospinning for drug delivery. Int. J. Ind. Chem. 2024, 14, 1–12. [Google Scholar] [CrossRef]
- Zahra, F.; Zhang, Y.; Ajayi, A.; Quick, Q.; Mu, R. Optimization of electrospinning parameters for lower molecular weight polymers: A case study on polyvinylpyrrolidone. Polymers 2024, 16, 1217. [Google Scholar] [CrossRef]
- Castellano, M.; Dodero, A.; Scarfi, S.; Mirata, S.; Pozzolini, M.; Tassara, E.; Sionkowska, A.; Adamiak, K.; Alloisio, M.; Vicini, S. Chitosan-collagen electrospun nanofibers loaded with curcumin as wound-healing patches. Polymers 2023, 15, 2931. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.-G. Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures. Innovation 2023, 4, 100381. [Google Scholar] [CrossRef]
- Kang, S.; Hou, S.; Chen, X.; Yu, D.; Wang, L.; Li, X.; Williams, G. Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 2020, 12, 2421. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, B.; Meng, X.; Ye, X.; Luo, T.; Xin, X.; Wen, Z. Effect of NiO addition on the sintering and electrochemical properties of BaCe0.55Zr0.35Y0.1O3-δ proton-conducting ceramic electrolyte. Membranes 2024, 14, 61. [Google Scholar] [CrossRef]
- Fan, J.; Ma, J.; Zhu, L.; Wang, H.; Hao, W.; Min, Y.; Bi, Q.; Li, G. Silver nanowires cascaded layered double hydroxides nanocages with enhanced directional electron transport for efficient electrocatalytic oxygen evolution. Small 2024, 20, 2309859. [Google Scholar] [CrossRef]
- Almeida, H.; Teixeira, N.; Sarmento, B.; Vasconcelos, T. Freeze-drying cycle optimization of an amorphous solid dispersion of resveratrol. Eur. J. Pharm. Sci. 2024, 200, 106855. [Google Scholar] [CrossRef]
- Higuchi, C.; Andreo, N.; Lopes, P.; Grice, J.; Leite-Silva, V. Topical mosquito repellent formulations for enhanced repellency time and reduced toxicity. Curr. Drug Deliv. 2023, 20, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.; Ghonge, M.; Kathpalia, H. Recent updates on oral and dermal film-based formulations and their applications. Curr. Drug Deliv. 2023, 20, 335–349. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, S. Design of novel PLK4 inhibitors as TRIM37-amplified breast cancer drugs using 3D-QSAR, molecular docking, and molecular dynamics simulation methods. Mol. Simul. 2024, 50, 571–587. [Google Scholar] [CrossRef]
- Ju, M.; Liu, J.; Guan, D.; Leng, N.; Algharib, S.A.; Dawood, A.S.; Luo, W. Antibacterial activity of a novel glycyrrhizic acid-loaded chitosan composite nanogel in vitro against staphylococcus aureus small colony variants. Curr. Drug Deliv. 2023. [Google Scholar] [CrossRef]
- Bayer, I. Controlled drug release from nanoengineered polysaccharides. Pharmaceutics 2023, 15, 1364. [Google Scholar] [CrossRef] [PubMed]
- Rusdin, A.; Gazzali, A.; Thomas, N.; Megantara, S.; Aulifa, D.; Budiman, A.; Muchtaridi, M. Advancing drug delivery paradigms: Polyvinyl pyrolidone (PVP)-based amorphous solid dispersion for enhanced physicochemical properties and therapeutic efficacy. Polymers 2024, 16, 286. [Google Scholar] [CrossRef] [PubMed]
- El Kalaaoui, K.; Boukhriss, A.; Bili, O.; Ait Chaoui, M.; Majid, S.; El Hajaji, M.; Gmouh, S. Hybrid Polyvinyl Alcohol-Silica Antibacterial Nanofiber Fabricated by Combined Sol-Gel and Electrospinning Techniques. J. Sol Gel Sci. Technol. 2024, 11, 1–5. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Liu, Y.; Huang, T.; Xing, J.; Ge, R.; Yu, D. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer. Int. J. Biol. Macromol. 2024, 269, 132113. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Zhang, Z.; Yu, D.; Bligh, A. Integrated Janus nanofibers enabled by a co-shell solvent for enhancing icariin delivery efficiency. Int. J. Pharm. 2024, 658, 124180. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Wang, H.; Liu, H.; Yu, D.; Bligh, S.; Lu, X. Electrospun multi-functional medicated tri-section Janus nanofibers for an improved anti-adhesion tendon repair. Chem. Eng. J. 2024, 492, 152359. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, K.; Xia, Y.; Qian, C.; Yu, D.; Xie, Y.; Liao, Y. Electrospun trilayer eccentric Janus nanofibers for a combined treatment of periodontitis. Adv. Fiber Mater. 2024, 6, 1053–1073. [Google Scholar] [CrossRef]
- Pan, S.; Xiang, C.; Liu, Z.; Tong, G.; Zhang, C.; Zhu, X. Bio-inspired, Robust, and Anti-Swelling Hydrogel Sensors for Underwater Information Transmission. J. Mater. Chem. C 2024, 12, 8813–8824. [Google Scholar] [CrossRef]
- Song, W.; Wen, Y.; Wang, Z.; Xu, H.; Liao, Q.; Tang, Y.; Yu, D.G.; Kim, I. Versatile Hyper-Cross-Linked Polymers Derived from Waste Polystyrene: Synthesis, Properties, and Intentional Recycling. Langmuir 2024, 24, 16670–16689. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.O. In Vitro and Anti-Inflammatory Activity Evaluation Nanofibers from a Breath Mask and Filter Based on Polyurethane and Polyvinylidene Fluoride. Polymers 2023, 15, 4650. [Google Scholar] [CrossRef] [PubMed]
- Parın, F.N.; Ullah, A.; Yeşilyurt, A.; Parın, U.; Haider, M.K.; Kharaghani, D. Development of PVA–Psyllium Husk Meshes via Emulsion Electrospinning: Preparation, Characterization, and Antibacterial Activity. Polymers 2022, 14, 1490. [Google Scholar] [CrossRef]
- Chen, X.; Wu, L.; Ge, M.; Wang, X.; Ren, N.; Sun, H.; Zhu, X. Reactive Molecular Simulation with Size Extrapolation to Bridge the Polymerization Mechanism and Kinetics. Macromolecules 2024, 16, 4285–4297. [Google Scholar] [CrossRef]
Sample No. | Electrospinning Process | Operational Parameters a | Drug Content (%) | |||
---|---|---|---|---|---|---|
V (kV) | F (mL/h) | L (cm) | ||||
Core | Shell | |||||
F1 | Blending | 11 | -- b | 2.0 | 20 | 20% |
F2 | Blending | 11 | 2.0 | -- b | 20 | 20% |
F3 | Coaxial | 11 | 1.0 | 1.0 | 20 | 20% |
Sample | Initial Release | Sustained Release | Tailing-Off Negative Effect | ||||
---|---|---|---|---|---|---|---|
t30% | t50% | t90% | t95% | t98% | t95%−t90% | t98%−t90% | |
F1 | 1.12 | 3.92 | 12.94 | 16.78 | 21.56 | 3.84 | 8.62 |
F2 | 0.75 | 1.74 | 9.26 | 11.18 | 13.67 | 1.92 | 4.41 |
F3 | 1.06 | 2.86 | 10.82 | 13.64 | 16.58 | 2.82 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Gong, W.; Guo, Q.; Liu, H.; Yu, D.-G. Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid. Polymers 2024, 16, 2614. https://doi.org/10.3390/polym16182614
Dong R, Gong W, Guo Q, Liu H, Yu D-G. Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid. Polymers. 2024; 16(18):2614. https://doi.org/10.3390/polym16182614
Chicago/Turabian StyleDong, Ran, Wenjian Gong, Qiuyun Guo, Hui Liu, and Deng-Guang Yu. 2024. "Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid" Polymers 16, no. 18: 2614. https://doi.org/10.3390/polym16182614
APA StyleDong, R., Gong, W., Guo, Q., Liu, H., & Yu, D. -G. (2024). Synergistic Effects of Radical Distributions of Soluble and Insoluble Polymers within Electrospun Nanofibers for an Extending Release of Ferulic Acid. Polymers, 16(18), 2614. https://doi.org/10.3390/polym16182614