Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review
Abstract
:1. Introduction
Lignocellulosic Biomass Material: Overview and Characterization
2. Dye Removal Methods
2.1. Biological Processes
2.2. Chemical Methods
2.3. Physical Methods
3. Dye Removal via Adsorption
3.1. Factors Affecting Adsorption
3.1.1. Dye Concentration
3.1.2. pH
3.1.3. Adsorbent Dosage
3.1.4. Adsorbent Size
3.1.5. Temperature
3.1.6. Miscellaneous Factors
3.2. Adsorption Isotherms
- Langmuir Isotherm
- Freundlich Isotherm
3.3. Adsorption Kinetics
3.4. Thermodynamics Study
3.5. Lignocellulosic Biomass Materials as Adsorbents
3.6. Desorption Studies
4. Challenges and Limitations
5. Future Scope and Considerations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoen, D.; Joshi, P.; Diels, L.; Sarma, P.M.; Pant, D. Agriculture biomass in India: Part 1. Estimation and characterization. Resour. Conserv. Recycl. 2015, 102, 39–48. [Google Scholar] [CrossRef]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Das, A.M.; Hazarika, M.P.; Goswami, M.; Yadav, A.; Khound, P. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum. Carbohydr. Polym. 2016, 141, 20–27. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Preparation and characterization of long natural cellulose fibers from wheat straw. J. Agric. Food Chem. 2007, 55, 8570–8575. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Zhang, Z.; Lu, C. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr. Polym. 2011, 85, 245–250. [Google Scholar] [CrossRef]
- Annu; Mittal, M.; Tripathi, S.; Shin, D.K. Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges. Polymers 2024, 16, 294. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Yang, Y. Natural Cellulose Fibers from Corn Stover. In Innovative Biofibers from Renewable Resources; Springer: Cham, Switzerland, 2015; pp. 5–8. [Google Scholar] [CrossRef]
- Asagekar, S.D.; Joshi, V.K. Characteristics of sugarcane fibres. Indian J. Fibre Text. Res. 2014, 39, 180–184. Available online: http://nopr.niscpr.res.in/handle/123456789/28916 (accessed on 18 June 2024).
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Sugiyama, J.; Chanzy, H.; Langan, P. Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2003, 125, 14300–14306. [Google Scholar] [CrossRef]
- Nishino, T.; Matsuda, I.; Hirao, K. All-Cellulose Composite. Macromolecules 2004, 37, 7683–7687. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, R.; Muthukumar, K. Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresour. Technol. 2011, 102, 7119–7123. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H.; Zhang, X. Biotransformation of lignocellulosic materials into value-added products—A review. Int. J. Biol. Macromol. 2017, 98, 447–458. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Sivakumar, D. Role of Lemna minor Lin. in treating the textile industry wastewater. Int. J. Mater. Text. Eng. 2014, 8, 208–212. [Google Scholar]
- Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V.V.; Ghaly, A. Production, Characterization and Treatment of Textile Effluents: A Critical Review. Chem. Eng. Process. Technol. 2014, 5, 182. [Google Scholar]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Patil, C.S.; Hingu, S.; Parikh, J.; Karmakar, S.; Joshi, M.; Soni, K.; Pandit, S.; Chandrasekaran, S.; Manan, M. Sugarcane molasses derived carbon sheet@sea sand composite for direct removal of methylene blue from textile wastewater: Industrial wastewater remediation through sustainable, greener, and scalable methodology. Sep. Purif. Technol. 2020, 247, 116997. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H.; Beygzadeh, M. Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 2014, 349, 145–154. [Google Scholar] [CrossRef]
- Kerkez-Kuyumcu, Ö.; Kibar, E.; Dayioğlu, K.; Gedik, F.; Akin, A.N.; Özkara Aydinoğlu, S. A comparative study for removal of different dyes over M/TiO2(M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J. Photochem. Photobiol. A Chem. 2015, 311, 176–185. [Google Scholar] [CrossRef]
- Son, G.; Lee, H. Methylene blue removal by submerged plasma irradiation system in the presence of persulfate. Environ. Sci. Pollut. Res. 2016, 23, 15651–15656. [Google Scholar] [CrossRef] [PubMed]
- Naresh Kumar, A.; Nagendranatha Reddy, C.; Venkata Mohan, S. Biomineralization of azo dye bearing wastewater in periodic discontinuous batch reactor: Effect of microaerophilic conditions on treatment efficiency. Bioresour. Technol. 2015, 188, 56–64. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Elgarahy, A.M.; Mohammad, S.H. Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. J. Environ. Chem. Eng. 2017, 5, 578–587. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization. Ultrason. Sonochem. 2016, 32, 418–431. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surf. Interfaces 2020, 18, 100422. [Google Scholar] [CrossRef]
- Li, M.; Li, K.; Wang, L.; Zhang, X. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. Water Res. 2020, 172, 115488. [Google Scholar] [CrossRef]
- Nasrullah, A.; Saad, A.; Bukhari, S.N.A.; Waqar, A.; Iqbal, M.; Hussain, A.; Ali, R.; Bokhari, T.H. Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal. J. Clean Prod. 2019, 211, 1190–1200. [Google Scholar] [CrossRef]
- Garg, A.; Sarkar, R.; Kamruzzaman, A.H.M.; Datta, M.; Achal, V.; Latifi, N. Influence of biochar addition on gas permeability in unsaturated soil. Geotech. Lett. 2019, 9, 66–71. [Google Scholar] [CrossRef]
- Garg, A.; Achal, V.; Al-Tabbaa, A. Mechanism of biochar soil pore–gas–water interaction: Gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. 2020, 68, 207–217. [Google Scholar] [CrossRef]
- Tang, R.; Dai, C.; Li, C.; Liu, W.; Gao, S.; Wang, C. Removal of Methylene Blue from Aqueous Solution Using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. J. Chem. 2017, 2017, 8404965. [Google Scholar] [CrossRef]
- Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut. 2011, 218, 499–515. [Google Scholar] [CrossRef]
- Wang, L.G.; Yan, G.B. Adsorptive removal of direct yellow 161 dye from aqueous solution using bamboo charcoals activated with different chemicals. Desalination 2011, 274, 81–90. [Google Scholar] [CrossRef]
- Hameed, B.H.; Krishni, R.R.; Sata, S.A. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J. Hazard. Mater. 2009, 162, 305–311. [Google Scholar] [CrossRef]
- Priyantha, N.; Lim, L.B.L.; Dahri, M.K. Dragon fruit skin as a potential biosorbent for the removal of methylene blue dye from aqueous solution. Int. Food Res. J. 2015, 22, 2141–2148. [Google Scholar]
- Kuppusamy, S.; Venkateswarlu, K.; Thavamani, P.; Lee, Y.B.; Naidu, R.; Megharaj, M. Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecol. Eng. 2017, 101, 3–8. [Google Scholar] [CrossRef]
- Bouranene, S.; Bouacherine, S.; Sedira, N. Study of the Influence of Operational Parameters on the Adsorption of a Dye by a Potato Peels. In 4th International Symposium on Materials and Sustainable Development; Abdelbaki, T.A.M.S.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 53–62. [Google Scholar]
- Salazar-Rabago, J.J.; Leyva-Ramos, R.; Rivera-Utrilla, J.; Ocampo-Perez, R.; Cerino-Cordova, F.J. Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustain. Environ. Res. 2017, 27, 32–40. [Google Scholar] [CrossRef]
- Boudechiche, N.; Mokaddem, H.; Sadaoui, Z.; Trari, M. Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): Characterization, equilibrium, kinetic and thermodynamic studies. Int. J. Ind. Chem. 2016, 7, 167–180. [Google Scholar] [CrossRef]
- Etim, U.J.; Umoren, S.A.; Eduok, U.M. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J. Saudi Chem. Soc. 2016, 20, S67–S76. [Google Scholar] [CrossRef]
- Yadav, V.; Ali, J.; Garg, M.C. Biosorption of Methylene Blue Dye from Textile-Industry Wastewater onto Sugarcane Bagasse: Response Surface Modeling, Isotherms, Kinetic and Thermodynamic Modeling. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020067. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Sahoo, B.; Mukherjee, A.K.; Naskar, A. Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste. SN Appl. Sci. 2019, 1, 1537. [Google Scholar] [CrossRef]
- Jain, S.N.; Tamboli, S.R.; Sutar, D.S.; Jadhav, S.R.; Marathe, J.V.; Mawal, V.N. Kinetic, equilibrium, thermodynamic, and desorption studies for sequestration of acid dye using waste biomass as sustainable adsorbents. Biomass Convers. Biorefin. 2020, 12, 2597–2609. [Google Scholar] [CrossRef]
- Murcia-Salvador, A.; Pellicer, J.A.; Rodríguez-López, M.I.; Gómez-López, V.M.; Núñez-Delicado, E.; Gabaldón, J.A. Egg By-Products as a Tool to Remove Direct Blue 78 Dye from Wastewater: Kinetic, Equilibrium Modeling, Thermodynamics and Desorption Properties. Materials 2020, 13, 1262. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.; Farooq, U.; Ahmad, M.; Athar, M.; Khan, M.A. Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab. J. Chem. 2017, 10, 1512–1522. [Google Scholar] [CrossRef]
- Abdelkarim, S.; Mohammed, H.; Nouredine, B. Sorption of methylene blue dye from aqueous solution using an agricultural waste. Trends Green Chem. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Nasuha, N.; Hameed, B.H. Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. Chem. Eng. J. 2011, 166, 783–786. [Google Scholar] [CrossRef]
- Deng, H.; Lu, J.; Li, G.; Zhang, G.; Wang, X. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J. 2011, 172, 326–334. [Google Scholar] [CrossRef]
- Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M.K. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 479–490. [Google Scholar] [CrossRef]
- Amel, K.; Hassen, M.A.; Kerroum, D. Isotherm and Kinetics Study of Biosorption of Cationic Dye onto Banana Peel. Energy Procedia 2012, 19, 286–295. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour. Technol. 2012, 112, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Jena, H.M. Adsorption of crystal violet dye using low-cost biomass-derived activated carbon. Environ. Sci. Pollut. Res. 2017, 24, 12224–12235. [Google Scholar]
- Hameed, B.H.; Mahmoud, D.K.; Ahmad, A.L. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. J. Hazard. Mater. 2008, 158, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, G.; Juang, R.S.; Lee, D.J. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002, 92, 263–274. [Google Scholar] [CrossRef]
- Roa, K.; Oyarce, E.; Boulett, A.; ALSamman, M.; Oyarzún, D.; Pizarro, G.D.C.; Sánchez, J. Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain. Mater. Technol. 2021, 29, e00320. [Google Scholar] [CrossRef]
- Mishra, S.; Cheng, L.; Maiti, A. The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104901. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Jamal, A.; Ilyas, M.; Zubair, M.; Khan, G.; Atieh, M.A. Bioremediation of dyes: Current status and prospects. J. Water Process Eng. 2020, 38, 101680. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Mir, A.A.; Pazoki, M.; Pourjamshidian, R.; Tabeshnia, M. Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. J. Environ. Chem. Eng. 2017, 5, 1946–1956. [Google Scholar] [CrossRef]
- Guarín, J.R.; Moreno-Pirajan, J.C.; Giraldo, L. Kinetic Study of the Bioadsorption of Methylene Blue on the Surface of the Biomass Obtained from the Algae D. antarctica. J. Chem. 2018, 2018, 2124845. [Google Scholar] [CrossRef]
- Shao, H.; Li, Y.; Zheng, L.; Chen, T.; Liu, J. Removal of methylene blue by chemically modified defatted brown algae Laminaria japonica. J. Taiwan Inst. Chem. Eng. 2017, 80, 525–532. [Google Scholar] [CrossRef]
- dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol. 2007, 98, 2369–2385. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Wang, J.; Liu, H. Novel catalysts in advanced oxidation processes for dye degradation: Efficiency and energy cost analysis. J. Environ. Chem. Eng. 2023, 11, 123456. [Google Scholar]
- Zhang, W.; Chen, L.; Sun, Y. Sunlight-driven photocatalysis for sustainable dye removal from wastewater. Environ. Sci. Technol. 2022, 56, 2345–2356. [Google Scholar]
- Kim, S.; Park, J.; Lee, H. Optimization of Fenton process for textile wastewater treatment: Reducing chemical usage and improving dye removal. J. Hazard. Mater. 2022, 435, 128567. [Google Scholar]
- Singh, A.; Sharma, R.; Gupta, V. Integration of ozonation with biological treatments for enhanced dye removal and minimized secondary pollutants. Water Res. 2023, 158, 115678. [Google Scholar]
- Martinez, A.; Gonzalez, R.; Perez, J. Development of advanced electrode materials for electrochemical degradation of dyes: Large-scale application potential. Electrochim. Acta 2021, 367, 137890. [Google Scholar]
- Chen, T.; Wang, Z.; Liu, X. Combined oxidation and UV irradiation for efficient textile effluent treatment with lower energy consumption. J. Water Process Eng. 2022, 45, 102346. [Google Scholar]
- Wang, L.; Chen, Z.; Huang, J. Development of biochar from agricultural waste for efficient dye adsorption. J. Environ. Manag. 2023, 321, 115678. [Google Scholar]
- Li, Y.; Zhao, X.; Liu, H. Nanocomposite membranes with antifouling properties for improved dye rejection. Sep. Purif. Technol. 2022, 279, 119840. [Google Scholar]
- Srivatsav, P.; Bhargav, B.S.; Shanmugasundaram, V.; Arun, J.; Gopinath, K.P.; Bhatnagar, A. Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water 2020, 12, 3561. [Google Scholar] [CrossRef]
- Morais da Silva, P.M.; Camparotto, N.G.; Grego Lira, K.T.; Franco Picone, C.S.; Prediger, P. Adsorptive removal of basic dye onto sustainable chitosan beads: Equilibrium, kinetics, stability, continuous-mode adsorption and mechanism. Sustain. Chem. Pharm. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Fan, H.; Ma, Y.; Wan, J.; Wang, Y.; Li, Z.; Chen, Y. Adsorption properties and mechanisms of novel biomaterials from banyan aerial roots via simple modification for ciprofloxacin removal. Sci. Total Environ. 2020, 708, 134630. [Google Scholar] [CrossRef] [PubMed]
- Murthy, U.N. Experimental study on biosorption of Cr (VI) from water by banana peel based biosorbent. Res. Rev. J. Eng. Technol. 2013, 2, 37. [Google Scholar]
- Sims, R.A.; Harmer, S.L.; Quinton, J.S. The Role of Physisorption and Chemisorption in the Oscillatory Adsorption of Organosilanes on Aluminium Oxide. Polymers 2019, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Hoang, L.T.; Huynh, C.D. An investigation on kinetic and thermodynamic parameters of methylene blue adsorption onto graphene-based nanocomposite. Chem. Phys. 2020, 535, 110793. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, S.K. Adsorption phenomenon and its application in removal of lead from wastewater: A review. Int. J. Hydrol. 2017, 1, 38–47. [Google Scholar] [CrossRef]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef]
- Terangpi, P.; Chakraborty, S. Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate. Appl. Water Sci. 2016, 7, 3661–3671. [Google Scholar] [CrossRef]
- Hassan, W.; Noureen, S.; Mustaqeem, M.; Saleh, T.A.; Zafar, S. Efficient adsorbent derived from Haloxylon recurvum plant for the adsorption of acid brown dye: Kinetics, isotherm and thermodynamic optimization. Surf. Interfaces 2020, 20, 100510. [Google Scholar] [CrossRef]
- Silva, C.E.d.F.; da Gama, B.M.V.; Gonçalves, A.H.d.S.; Medeiros, J.A.; de Souza Abud, A.K. Basic-dye adsorption in albedo residue: Effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength. J. King Saud Univ. Eng. Sci. 2020, 32, 351–359. [Google Scholar]
- Rodríguez-Arellano, G.; Barajas-Fernández, J.; García-Alamilla, R.; Lagunes-Gálvez, L.M.; Lara-Rivera, A.H.; García-Alamilla, P. Evaluation of Cocoa Beans Shell Powder as a Bioadsorbent of Congo Red Dye Aqueous Solutions. Materials 2021, 14, 2763. [Google Scholar] [CrossRef]
- Dali Youcef, L.; Belaroui, L.S.; López-Galindo, A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Appl. Clay Sci. 2019, 179, 105145. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M.H. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef]
- Değermenci, G.D.; Değermenci, N.; Ayvaoğlu, V.; Durmaz, E.; Çakır, D.; Akan, E. Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. J. Clean. Prod. 2019, 225, 1220–1229. [Google Scholar] [CrossRef]
- Wong, S.; Tumari, H.H.; Ngadi, N.; Mohamed, N.B.; Hassan, O.; Mat, R.; Saidina Amin, N.A. Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL). J. Clean. Prod. 2019, 206, 394–406. [Google Scholar] [CrossRef]
- Singh, H.; Chauhan, G.; Jain, A.K.; Sharma, S.K. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. [Google Scholar] [CrossRef]
- Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous Mesoporous Mater. 2017, 239, 180–189. [Google Scholar] [CrossRef]
- Çelekli, A.; Al-Nuaimi, A.I.; Bozkurt, H. Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process. J. Mol. Struct. 2019, 1195, 168–178. [Google Scholar] [CrossRef]
- Elsherif, K.; El-Dali, A.; Alkarewi, A.A.; Ewlad-Ahmed, A.M.; Treban, A. Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chem. Int. 2021, 7, 79–89. [Google Scholar]
- Khasri, A.; Ridzuan Mohd Jamir, M.; Ahmad, A.A.; Ahmad, M.A. Adsorption of Remazol Brilliant Violet 5R dye from aqueous solution onto melunak and rubberwood sawdust based activated carbon: Interaction mechanism, isotherm, kinetic and thermodynamic properties. Desalination Water Treat. 2021, 216, 401–411. [Google Scholar] [CrossRef]
- Rápó, E.; Szép, R.; Keresztesi, Á.; Suciu, M.; Tonk, S. Adsorptive Removal of Cationic and Anionic Dyes from Aqueous Solutions by Using Eggshell Household Waste as Biosorbent. Acta Chim. Slov. 2018, 65, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef] [PubMed]
- Alhujaily, A.; Yu, H.; Zhang, X.; Ma, F. Adsorptive removal of anionic dyes from aqueous solutions using spent mushroom waste. Appl. Water Sci. 2020, 10, 183. [Google Scholar] [CrossRef]
- Şentürk, İ.; Alzein, M. Adsorption of Acid Violet 17 Onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies. Acta Chim. Slov. 2020, 67, 55–69. [Google Scholar] [CrossRef]
- Ma, C.M.; Hong, G.B.; Wang, Y.K. Performance Evaluation and Optimization of Dyes Removal using Rice Bran-Based Magnetic Composite Adsorbent. Materials 2020, 13, 2764. [Google Scholar] [CrossRef]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Khalil, A.; Zerrouq, F. Adsorption of Methylene Blue Dye from Aqueous Solutions onto Walnut Shells Powder: Equilibrium and Kinetic Studies. Surfaces Interfaces 2018, 11, 74–81. [Google Scholar] [CrossRef]
- Alver, E.; Metin, A.Ü.; Brouers, F. Methylene Blue Adsorption on Magnetic Alginate/Rice Husk Bio-Composite. Int. J. Biol. Macromol. 2020, 154, 104–113. [Google Scholar] [CrossRef]
- Raj, R.A.; Manimozhi, V.; Saravanathamizhan, R. Adsorption Studies on Removal of Congo Red Dye from Aqueous Solution Using Petroleum Coke. Petrol. Sci. Technol. 2019, 37, 913–924. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Salari, M.; Karri, R.R.; Hamidi, F.; Bahadori, R. Process Modeling of Municipal Solid Waste Compost Ash for Reactive Red 198 Dye Adsorption from Wastewater Using Data Driven Approaches. Sci. Rep. 2021, 11, 11613. [Google Scholar] [CrossRef]
- Hamzezadeh, A.; Rashtbari, Y.; Afshin, S.; Morovati, M.; Vosoughi, M. Application of Low-Cost Material for Adsorption of Dye from Aqueous Solution. Int. J. Environ. Anal. Chem. 2020, 102, 254–269. [Google Scholar] [CrossRef]
- Rápó, E.; Aradi, L.E.; Szabó, Á.; Posta, K.; Szép, R.; Tonk, S. Adsorption of Remazol Brilliant Violet-5R Textile Dye from Aqueous Solutions by Using Eggshell Waste Biosorbent. Sci. Rep. 2020, 10, 8385. [Google Scholar] [CrossRef]
- Rápó, E.; Posta, K.; Suciu, M.; Szép, R.; Tonk, S. Adsorptive Removal of Remazol Brilliant Violet-5R Dye from Aqueous Solutions Using Calcined Eggshell as Biosorbent. Acta Chim. Slov. 2019, 66, 648–658. [Google Scholar] [CrossRef]
- Šljivić-Ivanović, M.; Smičiklas, I. Utilization of C&D Waste in Radioactive Waste Treatment—Current Knowledge and Perspectives. In Advances in Construction and Demolition Waste Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 475–500. [Google Scholar]
- Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon. Arab. J. Chem. 2017, 10, S3381–S3393. [Google Scholar] [CrossRef]
- Wekoye, J.N.; Wanyonyi, W.C.; Wangila, P.T.; Tonui, M.K. Kinetic and Equilibrium Studies of Congo Red Dye Adsorption on Cabbage Waste Powder. Environ. Chem. Ecotoxicol. 2020, 2, 24–31. [Google Scholar] [CrossRef]
- Felista, M.M.; Wanyonyi, W.C.; Ongera, G. Adsorption of Anionic Dye (Reactive Black 5) Using Macadamia Seed Husks: Kinetics and Equilibrium Studies. Sci. Afr. 2020, 7, e00283. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of Toxic Crystal Violet Dye Using Coffee Husks: Equilibrium, Kinetics and Thermodynamics Study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Baghban, A.; Zorofi, S.; Massoudi, A. Kappa-Carrageenan Biopolymer-Based Nanocomposite Hydrogel and Adsorption of Methylene Blue Cationic Dye from Water. J. Mater. Environ. Sci. 2014, 5, 330–337. [Google Scholar]
- Kah Yeow, P.; Wei Wong, S.; Hadibarata, T. Removal of Azo and Anthraquinone Dye by Plant Biomass as Adsorbent—A Review. Biointerface Res. Appl. Chem. 2021, 11, 8218–8232. [Google Scholar]
- Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Ashour, M.; Mansour, A.T. Removing of Anionic Dye from Aqueous Solutions by Adsorption Using Multiwalled Carbon Nanotubes and Poly(Acrylonitrile-Styrene) Impregnated with Activated Carbon. Sustainability 2021, 13, 7077. [Google Scholar] [CrossRef]
- Khalaf, I.H.; Al-Sudani, F.T.; AbdulRazak, A.A.; Aldahri, T.; Rohani, S. Optimization of Congo Red Dye Adsorption from Wastewater by a Modified Commercial Zeolite Catalyst Using Response Surface Modeling Approach. Water Sci. Technol. 2021, 83, 1369–1383. [Google Scholar] [CrossRef]
- Belala, Z.; Jeguirim, M.; Belhachemi, M.; Addoun, F.; Trouvé, G. Biosorption of Basic Dye from Aqueous Solutions by Date Stones and Palm-Trees Waste: Kinetic, Equilibrium and Thermodynamic Studies. Desalination 2011, 271, 80–87. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Ho, Y.S. Effect of Temperatures and pH on Methyl Violet Biosorption by Mansonia Wood Sawdust. Bioresour. Technol. 2008, 99, 5411–5417. [Google Scholar] [CrossRef]
- Akar, T.; Ozcan, A.S.; Tunali, S.; Ozcan, A. Biosorption of a Textile Dye (Acid Blue 40) by Cone Biomass of Thuja Orientalis: Estimation of Equilibrium, Thermodynamic and Kinetic Parameters. Bioresour. Technol. 2008, 99, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, C.; Huang, Z. Optimization of Shaking Speed for Enhanced Adsorption of Reactive Red 198 Using Activated Carbon. J. Environ. Chem. Eng. 2021, 9, 106104. [Google Scholar]
- Mahmoud, M.; Ahmed, M.; El-Din, A. Adsorption of Reactive Dyes: Effect of Dye Molecular Structure and Size on Removal Efficiency. Dyes Pigments 2022, 193, 109644. [Google Scholar]
- Yadav, A.; Sharma, R.; Gupta, S. Influence of Biochar Properties on Azo Dye Adsorption from Aqueous Solutions. Environ. Sci. Pollut. Res. 2023, 30, 24518–24530. [Google Scholar]
- Liu, Y.; Wang, Y.; Yang, X. Impact of Metal Ions on the Adsorption of Dyes: A Competitive Adsorption Study. Chem. Eng. J. 2021, 419, 129301. [Google Scholar]
- Chen, H.; Zhou, J.; Zhang, S. The Effect of Contact Time on Dye Removal Efficiency: A Comprehensive Study. J. Hazard. Mater. 2022, 424, 127431. [Google Scholar]
- Kini, M.S.; Saidutta, M.B.; Murty, V.R. Studies on Biosorption of Methylene Blue from Aqueous Solutions by Powdered Palm Tree Flower (Borassus flabellifer). Int. J. Chem. Eng. 2014, 2014, 306519. [Google Scholar] [CrossRef]
- Rehman, R.; Farooq, S.; Mahmud, T. Use of Agro-Waste Musa acuminata and Solanum tuberosum Peels for Economical Sorptive Removal of Emerald Green Dye in Ecofriendly Way. J. Clean Prod. 2019, 206, 819–826. [Google Scholar] [CrossRef]
- Ooi, J.L.Y.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Gan, S. Assessment of Fish Scales Waste as a Low-Cost and Eco-Friendly Adsorbent for Removal of an Azo Dye: Equilibrium, Kinetic and Thermodynamic Studies. Bioresour. Technol. 2017, 245, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Palanivell, P.; Ahmed, O.H.; Latifah, O.; Majid, N.M.A. Adsorption and Desorption of Nitrogen, Phosphorus, Potassium, and Soil Buffering Capacity following Application of Chicken Litter Biochar to an Acid Soil. Appl. Sci. 2019, 10, 295. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.T.; Umar, M.T.; Abdulhamid, Z.; Muhammad, A.I. Adsorption Kinetics and Isotherm Models: A Review. CaJoST 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Sahu, N.; Pati, S.K.; Choudhury, S.; Rath, P.K. Process Optimization and Modeling of Methylene Blue Adsorption Using Zero-Valent Iron Nanoparticles Synthesized from Sweet Lime Pulp. Appl. Sci. 2019, 9, 5112. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, H.; Ji, F.; Yuan, S. Removal of Congo Red from Aqueous Solution by Cattail Root. J. Hazard. Mater. 2010, 173, 292–297. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Vadivelan, V.; Vasanth Kumar, M. Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef]
- Kezerle, A.; Velic, D.; Hasenay, D.; Kovacevic, D. Lignocellulosic Materials as Dye Adsorbents: Adsorption of Methylene Blue and Congo Red on Brewers’ Spent Grain. Croat. Chem. Acta 2018, 91, 53–65. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S. Removal of Anionic Dyes (Reactive Black 5 and Congo Red) from Aqueous Solutions Using Banana Peel Powder as an Adsorbent. Ecotoxicol. Environ. Saf. 2018, 148, 601–607. [Google Scholar] [CrossRef]
- Malakootian, M.; Mohammad, M.; Heidari, R. Reactive Orange 16 Dye Adsorption from Aqueous Solutions by Psyllium Seed Powder as a Low-Cost Biosorbent: Kinetic and Equilibrium Studies. Appl. Water Sci. 2018, 8, 212. [Google Scholar] [CrossRef]
- Ferrero, G. Dye Removal by Low Cost Adsorbents: Hazelnut Shells in Comparison with Wood Sawdust. J. Hazard. Mater. 2007, 142, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Pengthamkeerati, P.; Satapanajaru, T.; Singchan, O. Sorption of Reactive Dye from Aqueous Solution on Biomass Fly Ash. J. Hazard. Mater. 2008, 153, 1149–1156. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, X.; Wu, Y.; Liu, X. Adsorption of Anionic Dyes from Aqueous Solution on Fly Ash. J. Hazard. Mater. 2010, 181, 335–342. [Google Scholar] [CrossRef]
- O’Mahony, T.; Guibal, E.; Tobin, J.M. Reactive Dye Biosorption by Rhizopus arrhizus Biomass. Enzyme Microb. Technol. 2002, 31, 456–463. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Safa, Y.; Yakout, S.M.; Shair, O.H.; Iqbal, M.; Nazir, A. Efficient Removal of Dyes Using Carboxymethyl Cellulose/Alginate/Polyvinyl Alcohol/Rice Husk Composite: Adsorption/Desorption, Kinetics and Recycling Studies. Int. J. Biol. Macromol. 2020, 150, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, A.A.; Jellali, S.; Bengharez, Z.; Bousselmi, L.; Akrout, H. Investigations on a Dye Desorption from Modified Biomass by Using a Low-Cost Eluent: Hysteresis and Mechanisms Exploration. Int. J. Environ. Sci. Technol. 2019, 16, 7393–7408. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhao, Y.F.; Zhang, J.; Fan, J. Utilization of Modified Dioscorea opposita Thunb. as a Novel Biosorbent for the Adsorption of Indigo Carmine in Aqueous Solutions. RSC Adv. 2018, 8, 30040–30048. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Type of Dye | Conc. (mg/L) | Reaction Time (min) | Adsorption Capacity (mg/g) | Dye Removal (%) | Source |
---|---|---|---|---|---|---|
Algerian Palygorskite | (MB) | 3–30 | 5 | 2.5–10 | up to 97% | [85] |
Haloxylon Recurvum Plant | Acid Brown | 10–60 | 180 | 2.8–10 | -- | [82] |
Fava Bean Peels | (MB) | 3.6–100 | 70 | -- | 80–95 | [86] |
Fava Bean Peels | (MB) | 3.6–100 | 70 | -- | 70–90 | [86] |
Corn Silk | Reactive Blue 19 | 10–500 | 10–60 | 2–71 | -- | [87] |
Corn Silk | Reactive Red 128 | 10–500 | 10–60 | 2–63 | -- | [87] |
Spent Tea Leaves | Reactive Black 5 | 50–100 | 5–200 | 24.8–6.7 | 99–43 | [88] |
Citrus Limetta Peel | Malachite Green | 5–25 | 10–60 | 0.17–4.7 | 97–95 | [89] |
Mango Stone Biocomposite | Crystal Violet | 20–50 | 60 | 25–352 | -- | [90] |
Moringa Oleifera Seed | Reactive Red 120 | 10–100 | 30 | 18.5–174 | -- | [91] |
Olive Leaves Powder | Crystal Violet | 10–100 | 5–70 | 5–45 | -- | [92] |
Type of Dye | Adsorbent | Adsorbent Dosage | Adsorption Capacity (mg/g) | Dye Removal (%) | Source |
---|---|---|---|---|---|
(MB) | Walnut Shell | 0.5–2 g/L | 179–48 | -- | [99] |
(MB) | Alginate/Rice Husk Bio Composite | 0.1–1 g | 338–145 | 15–89 | [100] |
Congo Red | Raw Petroleum Coke | 4–24 g/L | -- | 10–60 | [101] |
Reactive Red 198 | Municipal Solid Waste Compost Ash | 0.5–2 g/L | -- | 79–93 | [102] |
Cationic blue 41 | Mucilage Of Salvia Seed | 0.5–4 g/L | 34.2–6.74 | 34.2–54 | [103] |
Remazol Brilliant Violet 5R | Eggshell | 0.5–2.5 g | 2.9–0.75 | 74.6–93.8 | [104] |
Remazol Brilliant Violet 5R | Calcined Eggshell | 0.5–2 g | 3.5–0.96 | 89.8–96.3 | [105] |
Type of Dye | Adsorbent | Adsorbent Size | Adsorption Capacity (mg/g) | Dye Removal (%) | Source |
---|---|---|---|---|---|
Congo Red | Cabbage Waste Powder | 150–300 to 360–4750 µm | -- | 76–8 | [108] |
Reactive Black 5 | Macadamia Seed Husks | 150–300 to 2360–4750 µm | -- | 99–33 | [109] |
Direct Yellow 12 | Coconut Shell Activated Carbon | 50, 75, 107 µm | 5.5–4.5–3.5 | -- | [107] |
Crystal Violet | Coffee Husks | 0.15–0.3 to 2.36–4.75 mm | -- | 96–90 | [110] |
(MB) | Biopolymer-Based Nanocomposite | 177–250 to 400–840 | -- | 99–86 | [111] |
Adsorbent | Type of Dye | Monolayer Adsorption Capacity (mg/g) | Source |
---|---|---|---|
Sugarcane Bagasse | (MB) | 1.83 | [44] |
Rice Husk | 40.6 | [132] | |
Brewers Spent Grain | 13 | [133] | |
Orange Albedo | 70.30 | [83] | |
Luffa Cylindrica | 49 | [42] | |
Walnut Shell Powder | 51.5 | [34] | |
Orange Albedo | 70.30 | [83] | |
Banana Peel Powder | Reactive Blue 5 | 49.2 | [134] |
Psyllium Seed Powder | Reactive Orange 16 | 206 | [135] |
Egg Shell | Direct Blue 78 | 13 | [47] |
Mango Leaf Powder | Acid Yellow 99 | 708 | [45] |
Mushroom Waste | Direct Red 5B, Direct Black 22, Direct Black 71, and Reactive Black 5 | 18, 15.4, 20.1, and 14.6 | [96] |
Oak Saw Dust | Acid Blue 25 | 29.5 | [136] |
Walnut Shell | Acid Blue 25 | 36.98 | [136] |
Fly Ash | Reactive Black 5, Reactive Red 23, and Reactive Blue 171 | 4.3, 2.1, and 1.8 | [137,138] |
Tea Waste | Acid Green 25 | 123.46 | [46] |
Cashew Nutshell | Acid Green 25 | 76.34 | [46] |
Rhizopus Arrhizal | Reactive Red 4, Reactive Blue 19, and Reactive Orange16 | 150, 90, and 190 | [139] |
Type of Dye | Adsorbent | Desorption Agents | Results of Desorption | Source |
---|---|---|---|---|
Direct Orange 26, Direct Red 31, Direct Blue 67, Ever Direct Orange | Modified Rice Husk | H2O, NaOH, Na2CO3 | 62.8 mg/g, 80.5 mg/g, 53.7 mg/g, 75.3 mg/g After 10 cycles, adsorption capacity decreased by 17% | [140] |
Acid Violet 17 | Activated Pistachio Shell | NaCl, HCl, NaOH, CH3COOH | Desorption efficiency decreases from 94.6% (1st cycle) to 75.8% (3rd cycle) | [97] |
(MB) | Black And Green Olive Stones | Acetic acid and ethanol | Desorption efficiency for black olive stone (92.5%) and green olive stone (88.1%) | [95] |
(MB) | Modified Orange Tree Sawdust | DI water, NaCl | 16.5% (using water), 58.6% (using NaCl) | [141] |
Direct Blue 78 | Egg Shell | NaOH | Desorption efficiency increases from 21% (1st cycle) to ~58% (3rd cycle) | [47] |
Acid Yellow 99 | Mango Leaf Powder | NaOH, NaCl | 97% (using NaOH), 58.5% (using NaCl) | [45] |
Dioscorea Opposita Thunb. (DOT) | Indigo Carmine | NaOH | 93% desorption efficiency | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, M.; Singh, N.; Annu; Khan, S.A.; Raorane, C.J.; Shin, D.K. Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers 2024, 16, 2417. https://doi.org/10.3390/polym16172417
Yadav M, Singh N, Annu, Khan SA, Raorane CJ, Shin DK. Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers. 2024; 16(17):2417. https://doi.org/10.3390/polym16172417
Chicago/Turabian StyleYadav, Manisha, Nagender Singh, Annu, Suhail Ayoub Khan, Chaitany Jayprakash Raorane, and Dong Kil Shin. 2024. "Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review" Polymers 16, no. 17: 2417. https://doi.org/10.3390/polym16172417
APA StyleYadav, M., Singh, N., Annu, Khan, S. A., Raorane, C. J., & Shin, D. K. (2024). Recent Advances in Utilizing Lignocellulosic Biomass Materials as Adsorbents for Textile Dye Removal: A Comprehensive Review. Polymers, 16(17), 2417. https://doi.org/10.3390/polym16172417