Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Preparation of HPSAs
2.3. Preparation of Pressure-Sensitive Adhesive Tape
2.4. Performance Testing and Characterization
2.4.1. Emulsion Viscosity and Structural Characterization
2.4.2. Solid Content and Gel Fraction
2.4.3. Water Absorption and Water Resistance
2.4.4. Emulsion Particle Size and Morphology
2.4.5. Differential Scanning Calorimetry (DSC)
2.4.6. Thermogravimetry (TGA) and Hygrothermal Shock
2.4.7. Adhesion Performance
3. Results and Discussion
3.1. Synthesis and Physical Characterization of HPSAs
3.2. Water Absorption and Water Resistance of HPSAs
3.3. Particle Size and Morphology Analysis of HPSAs
3.4. Glass Transition Temperature Analysis of HPSAs
3.5. Thermogravimetric Analysis of HPSAs
3.6. Adhesive Performance of HPSAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermens, J.G.H.; Freese, T.; Berg, K.J.V.D.; Gemert, R.V.; Feringa, B.L. A coating from nature. Sci. Adv. 2020, 6, eabe0026. [Google Scholar] [CrossRef]
- Droesbeke, M.A.; Aksakal, R.; Simula, A.; Asua, J.M.; Du Prez, F.E. Biobased acrylic pressure-sensitive adhesives. Prog. Polym. Sci. 2021, 117, 101396. [Google Scholar] [CrossRef]
- Casas-Soto, C.R.; Conejo-Dávila, A.S.; Osuna, V.; Chávez-Flores, D.; Espinoza-Hicks, J.C.; Flores-Gallardo, S.G.; Vega-Rios, A. Dibutyl Itaconate and Lauryl Methacrylate Copolymers by Emulsion Polymerization for Development of Sustainable Pressure-Sensitive Adhesives. Polymers 2022, 14, 632. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, F.; Li, J.; Lai, L.; Yu, W.; Severtson, S.J.; Wang, W.-J. Influence of Phase Separation on Performance of Graft Acrylic Pressure-Sensitive Adhesives with Various Copolyester Side Chains. ACS Omega 2018, 3, 6945–6954. [Google Scholar] [CrossRef]
- Do, H.S.; Park, J.H.; Kim, H.J. UV-curing behavior and adhesion performance of polymeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. 2008, 44, 3871–3882. [Google Scholar] [CrossRef]
- Schilling, M.L.; Colvin, V.L.; Dhar, L.; Harris, A.L. Acrylate Oligomer-Based Photopolymers for Optical Storage Applications. Chem. Mater. 1999, 11, 247–254. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, Z.; Chen, M.; Wang, J.; Yu, Y. UV-Curable Polyurethane Acrylate Pressure-Sensitive Adhesives with High Optical Clarity for Full Lamination of TFT-LCD. ACS Appl. Polym. Mater. 2023, 5, 2051–2061. [Google Scholar] [CrossRef]
- Seok, W.C.; Leem, J.T.; Song, H.J. The Effect of Silane Acrylate Containing Ethylene Glycol Chains on the Adhesive Performance and Viscoelastic Behavior of Acrylic Pressure-Sensitive Adhesives for Flexible Displays. Polymers 2023, 15, 3601. [Google Scholar] [CrossRef] [PubMed]
- Khalina, M.; Sanei, M.; Mobarakeh, H.S.; Mahdavian, A.R. Preparation of acrylic/silica nanocomposites latexes with potential application in pressure sensitive adhesive. Int. J. Adhes. Adhes. 2015, 58, 21–27. [Google Scholar] [CrossRef]
- Yang, H.W.H. Water-based polymers as pressure-sensitive adhesives—Viscoelastic guidelines. J. Appl. Polym. Sci. 1995, 55, 645–652. [Google Scholar] [CrossRef]
- Márquez, I.; Paredes, N.; Alarcia, F.; Velasco, J.I. Influence of polymerizable surfactants on the adhesion performance and water resistance of water-based acrylic pressure-sensitive adhesives (PSAs). J. Adhes. Sci. Technol. 2023, 37, 1770–1788. [Google Scholar] [CrossRef]
- Droesbeke, M.A.; Simula, A.; Asua, J.M.; Prez, F.E.D. Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive adhesives via emulsion polymerization. Green Chem. 2020, 22, 4561–4569. [Google Scholar] [CrossRef]
- Vishnu, S.P.; Balasubramanian, K.; Sumati, S. A review on recent trends in bio-based pressure sensitive adhesives. J. Adhes. 2023, 99, 2145–2166. [Google Scholar]
- Vendamme, R.; Schüwer, N.; Eevers, W. Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J. Appl. Polym. Sci. 2014, 131, 40669. [Google Scholar] [CrossRef]
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philosophical Trans. R. Soc. B Biol. Sci. 2019, 374, 20190199. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Huang, X.; Chen, Y.; Zhan, A. Protein-mediated bioadhesion in marine organisms: A review. Mar. Environ. Res. 2021, 170, 10509. [Google Scholar] [CrossRef]
- Petrone, L. Molecular surface chemistry in marine bioadhesion. Adv. Colloid Interface Sci. 2013, 195–196, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; Stewart, R.J. Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): Catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 2013, 14, 1607–1617. [Google Scholar] [CrossRef]
- Wei, W.; Yu, J.; Broomell, C.; Israelachvili, J.N.; Waite, J.H. Hydrophobic Enhancement of Dopa-Mediated Adhesion in a Mussel Foot Protein. J. Am. Chem. Soc. 2013, 135, 377–383. [Google Scholar] [CrossRef]
- Liu, J.; Yong, H.M.; Yao, X.Y.; Hu, H.X.; Yun, D.W.; Xiao, L.X. Recent advances in phenolic–protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Adv. 2019, 9, 35825–35840. [Google Scholar] [CrossRef]
- Zheng, X.R.; Guo, Y.F.; Douglas, J.F.; Xia, W.J. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets. Chem. Phys. 2022, 157, 064901. [Google Scholar] [CrossRef]
- Bandara, N.; Zeng, H.; Wu, J. Marine mussel adhesion: Biochemistry, mechanisms, and biomimetics. J. Adhes. Sci. Technol. 2013, 27, 2139–2162. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, M.; Yan, Y.; Zhong, J.; Zhen, L.; Zhang, J. Insights into the effect of water content on asphaltene aggregation behavior and crude oil rheology: A molecular dynamics simulation study. J. Mol. Liq. 2024, 396, 124042. [Google Scholar] [CrossRef]
- Grosso, C.A.D.; Chuan, L.; Zhang, K.X.; Hung, H.C.; Jiang, S.Y.; Chen, Z.; Wilker, J.J. Surface hydration for antifouling and bio-adhesion. Chem. Sci. 2020, 11, 10367–10377. [Google Scholar] [CrossRef]
- Zhang, C.; Xiang, L.; Zhang, J.W.; Liu, C.; Wang, Z.K.; Zeng, H.B.; Xu, Z.K. Revisiting the adhesion mechanism of mussel-inspired chemistry. Chem. Sci. 2022, 13, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.K. Perspectives on Mussel-Inspired Wet Adhesion. J. Am. Chem. Soc. 2017, 139, 10166–10171. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.X.; Fan, H.L. The Modulation of Melanin-like Materials: Methods, Characterizations and Applications. Polym. Int. 2016, 65, 1258–1266. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- White, J.D.; Wilker, J.J. Underwater Bonding with Charged Polymer Mimics of Marine Mussel Adhesive Proteins. Macromolecules 2011, 44, 5085–5088. [Google Scholar] [CrossRef]
- Peng, X.; Ma, C.; Ji, J.; Li, J. Underwater Adhesion Mechanisms and Biomimetic Study of Marine Life. Tribology 2020, 40, 816–830. [Google Scholar]
- Zhan, K.; Kim, C.; Sung, K.; Ejima, H.; Yoshie, N. Tunicate-Inspired Gallol Polymers for Underwater Adhesive: A Comparative Study of Catechol and Gallol. Biomacromolecules 2017, 18, 2959–2966. [Google Scholar] [CrossRef]
- Deng, X.; Li, D.; Chen, L. Preparation and properties of biocompatible and injectable hydrogels for bladder cancer drug delivery. New J. Chem. 2023, 47, 16835–16842. [Google Scholar] [CrossRef]
- Mapari, S.; Mestry, S.; Mhaske, S.T. Developments in pressure-sensitive adhesives: A review. Polym. Bull. 2020, 78, 4075–4108. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.S. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC Adv. 2015, 5, 44009–44017. [Google Scholar] [CrossRef]
- Guo, J.; Severtson, S.J.; Gwin, L.E. Optimizing the Monomer Composition of Acrylic Water-Based Pressure-Sensitive Adhesives to Minimize Their Impact on Recycling Operations. Ind. Eng. Chem. Res. 2015, 46, 2753–2759. [Google Scholar] [CrossRef]
- Yao, Y.; He, E.; Xu, H.; Liu, Y.; Wei, Y.; Ji, Y. Fabricating liquid crystal vitrimer actuators far below the normal processing temperature. Mater. Horiz. 2023, 10, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Ouzineb, K.; Graillat, C.; Mckenna, T.F. High-solid-content emulsions. V. Applications of miniemulsions to high solids and viscosity control. J. Appl. Polym. Scence 2005, 97, 745–752. [Google Scholar] [CrossRef]
- Bartkowiak, K.N.M. Influence of thermal reactive crosslinking agents on the tack, peel adhesion, and shear strength of acrylic pressure-sensitive adhesives. Polym. Test. 2020, 90, 106603. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, T.-H.; Shim, K.-S.; Park, J.-W.; Kim, H.-J.; Kim, Y.; Jung, S. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int. J. Adhes. Adhes. 2017, 74, 137–143. [Google Scholar] [CrossRef]
- Baik, S.; Lee, H.J.; Kim, D.W.; Kim, J.W.; Lee, Y.; Pang, C. Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Adv. Mater. 2019, 31, e1803309. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Gao, Z.; Hou, R.; Ga, G. Bioinspired Adhesive Hydrogel Driven by Adenine and Thymine. J. ACS Appl. Mater. Interfaces 2017, 9, 17645–17652. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.D.; Croll, A.B.; Crosby, A. Designing Bio-Inspired Adhesives for Shear Loading: From Simple Structures to Complex Patterns. Adv. Funct. Mater. 2012, 22, 4985–4992. [Google Scholar] [CrossRef]
- Zheng, X.; Nie, W.; Guo, Y.; Douglas, J.F.; Xia, W. Influence of Chain Stiffness on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers. ACS Macromol. 2023, 56, 7636–7650. [Google Scholar] [CrossRef]
- Jin, K.; Barreiro, D.L.; Martin-Martinez, F.J.; Qin, Z.; Hamm, M.; Paul, C.W.; Buehler, M.J. Improving the performance of pressure sensitive adhesives by tuning the crosslinking density and locations. Polymer 2018, 154, 164–171. [Google Scholar] [CrossRef]
- Desroches, G.; Wang, Y.P.; Kubiak, J.; Macfarlane, R. Crosslinking of Pressure-Sensitive Adhesives with Polymer-Grafted Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 9579–9586. [Google Scholar] [CrossRef]
- Dobson, A.L.; Bongiardina, N.J.; Bowman, C.N. Combined Dynamic Network and Filler Interface Approach for Improved Adhesion and Toughness in Pressure-Sensitive Adhesives. ACS Appl. Polym. Mater. 2020, 2, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Li, M.; Liu, A. A review on mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of petroleum and biobased epoxy resins: A Review. Polym. Int. 2018, 67, 133–155. [Google Scholar] [CrossRef]
Sample | Monomer (g) | DHBA (%) | ||||
---|---|---|---|---|---|---|
MMA | BA | AA | HEA | EHA | ||
HPSA1 | 35 | 120 | 3 | 6 | 40 | 1 |
HPSA2 | 35 | 120 | 3 | 6 | 40 | 2 |
HPSA3 | 35 | 120 | 3 | 6 | 40 | 3 |
HPSA4 | 35 | 120 | 3 | 6 | 40 | 4 |
HPSA5 | 35 | 120 | 3 | 6 | 40 | 5 |
PSA | 35 | 120 | 3 | 6 | 40 | 0 |
Sample | Stability (Six Months) | Viscosity (mPa.s) | Solid Content (%) | Gel Content (%) |
---|---|---|---|---|
HPSA1 | No layering, unchanged viscosity | 144.2 | 50.1 | 0 |
HPSA2 | No layering, unchanged viscosity | 116.4 | 49.2 | 0 |
HPSA3 | No layering, unchanged viscosity | 117.5 | 49.4 | 0 |
HPSA4 | No layering, unchanged viscosity | 114.5 | 48.9 | 0.13 |
HPSA5 | No layering, unchanged viscosity | 102.2 | 48.3 | 0.21 |
PSA | No layering, unchanged viscosity | 145.7 | 49.6 | 0 |
Sample | Tg Value (°C) | |
---|---|---|
Theoretical (FOX) | Measured (DSC) | |
HPSA1 | - | −39.31 |
HPSA2 | - | −35.26 |
HPSA3 | - | −31.41 |
HPSA4 | - | −27.13 |
HPSA5 | - | −29.26 |
PSA | −26.02 | −28.57 |
Sample | Residual Situation (1h) | |||||
---|---|---|---|---|---|---|
20 °C | 30 °C | 50 °C | 70 °C | 90 °C | 110 °C | |
HPSA1 | - | - | Residue | Residue | Residue | |
HPSA2 | - | Residue | Residue | Residue | ||
HPSA3 | - | - | - | Residue | Residue | |
HPSA4 | - | - | - | - | Residue | |
HPSA5 | - | - | - | - | Residue | |
PSA | - | Residue | Residue | Residues | Residues |
Sample | 180° Peel Strength (gf) | Ring Primary Adhesion (N) | Holding Force | ||
---|---|---|---|---|---|
Initial | 3 d | 7 d | |||
HPSA1 | 433.5 | 1186.1 | 941.7 | 3.41 | ≈10 h |
HPSA2 | 586.6 | 1381.3 | 1030.3 | 3.34 | >72 h |
HPSA3 | 898.3 | 1261.5 | 927.2 | 4.16 | >72 h |
HPSA4 | 825.4 | 1256.7 | 915.1 | 5.75 | >72 h |
HPSA5 | 653.3 | 1290.2 | 973.3 | 3.53 | >72 h |
PSA | 446.4 | 1026.4 | 923.5 | 2.21 | ≈8 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Zhang, X.; Zhang, X.; Li, X.; Xu, S.; Li, Y. Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives. Polymers 2024, 16, 2404. https://doi.org/10.3390/polym16172404
Jiang C, Zhang X, Zhang X, Li X, Xu S, Li Y. Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives. Polymers. 2024; 16(17):2404. https://doi.org/10.3390/polym16172404
Chicago/Turabian StyleJiang, Chunyuan, Xinrui Zhang, Xinyue Zhang, Xingjian Li, Shoufang Xu, and Yinwen Li. 2024. "Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives" Polymers 16, no. 17: 2404. https://doi.org/10.3390/polym16172404
APA StyleJiang, C., Zhang, X., Zhang, X., Li, X., Xu, S., & Li, Y. (2024). Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives. Polymers, 16(17), 2404. https://doi.org/10.3390/polym16172404