Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Starch Films Formulations for Food Packaging
2.2.2. Preparation of the Edible Films
2.2.3. Water Content and Solubility Analyses
2.2.4. Water Vapor Permeability (WVP)
2.2.5. Water Activity (aw)
2.2.6. Mechanical Properties
2.2.7. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC)
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Experimental Results of Physicochemical Characterization
3.2. Mechanical Properties’ Results
3.3. SEM, XRD and DSC Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandão, A.S.; Gonçalves, A.; Santos, J.M.R.C.A. Circular bioeconomy strategies: From scientific research to commercially viable products. J. Clean Prod. 2021, 295, 126407. [Google Scholar] [CrossRef]
- Punnagaiarasi, A.; Elango, A.; Rajarajan, G.; Prakash, S. Application of Bioremediation on Food Waste Management for Cleaner Environment. In Bioremediation and Sustainable Technologies for Cleaner Environment; Prashanthi, M., Sundaram, R., Jeyaseelan, A., Kaliannan, T., Eds.; Springer: Cham, Switzerland, 2017; pp. 51–56. [Google Scholar] [CrossRef]
- Walker, T.R.; Fequet, L. Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends Anal. Chem. 2023, 160, 116984. [Google Scholar] [CrossRef]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef]
- Kumar, G.M.; Irshad, A.V.B.R.; Rajarajan, G. Waste Management in Food Packaging Industry. In Integrated Waste Management in India Prashanthi, M., Sundaram, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 265–277. [Google Scholar] [CrossRef]
- Adilah, A.N.; Jamilah, B.; Noranizan, M.A.; Hanani, Z.A.N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf. Life 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Hanani, Z.A.N.; Husna, A.B.A.; Syahida, S.N.; Khaizura, M.A.B.N.; Jamilah, B. Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packag. Shelf. Life 2018, 18, 201–211. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Cities and Circular Economy for Food. 2019. Available online: https://www.ellenmacarthurfoundation.org/cities-and-circular-economy-for-food (accessed on 26 October 2023).
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef]
- Baldissera, A.C.; Betta, F.D.; Penna, A.L.; Lindner, J.D. Alimentos funcionais: Uma nova fronteira para o desenvolvimento de bebidas protéicas a base de soro de leite. Semina Ciênc. Agr. 2011, 32, 1497–1512. [Google Scholar] [CrossRef]
- Barandiaran, A.; Montanes, N.; Gomez-Caturla, J.; Balart, R.; Florez-Prieto, M.A.; Ávila-Martin, L.; Perilla, J.E. Development and characterization of edible films based on starch isolated from different Colombian potato varieties. Int. J. Biol. Macromol. 2024, 263, 130165. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, F.M.; Martelli, S.M.; Bertan, L.C.; Yamashita, F.; Mei, L.H.; Queiroz, F.P. Edible films made from blends of manioc starch and gelatine Influence of different types of plasticizer and different levels of macromolecules on their properties. LWT-Food Sci. Technol. 2012, 49, 149–154. [Google Scholar] [CrossRef]
- Rojas-Bringas, P.M.; De-La-Torre, G.E.; and Torres, F.G. Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach. Sci. Total Environ. 2021, 769, 144869. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Mathusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Huber, K.C.; Embuscado, M.E. Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; 416p. [Google Scholar] [CrossRef]
- Kramer, M.E. Structure and Function of Starch-Based Edible Films and Coatings. In Edible Films and Coatings for Food Applications; Huber, K., Embuscado, M., Eds.; Springer: New York, NY, USA, 2009; pp. 113–134. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H. Edible films and coatings based on starch/gelatin: Films properties and effect of coatings on quality of refrigerated Red Crissom grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Han, B.; Chen, P.; Guo, J.; Yu, H.; Zhong, S.; Li, D.; Liu, C.; Feng, Z.; Jiang, B. A Novel Intelligent Indicator Film: Preparation, Characterization, and Application. Molecules 2023, 28, 3384. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, C.T.; Fakhouri, F.M.; Garcia, V.A.d.S.; Velasco, J.I.; Nogueira, G.F.; Ramos da Silva, L.; Oliveira, R.A.d. Effect of Adding Red Propolis to Edible Biodegradable Protein Films for Coating Grapes: Shelf Life and Sensory Analysis. Polymers 2024, 16, 888. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.M.; Filgueiras, C.T.; Gracia, V.A.S.; Carvalho, R.A.; Velasco, J.I.; Fakhouri, F.M. Antimicrobial Activity and GC-MS Profile of Copaiba Oil for Incorporation into Xanthosoma mafaffa Schott Starch-Based Films. Polymers 2020, 12, 2883. [Google Scholar] [CrossRef]
- Hernández, M.S.; Ludueña, L.N.; Flore, S.K. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. Carbohydr. Polym. Technol. Appl. 2023, 5, 100307. [Google Scholar] [CrossRef]
- Matheus, J.R.V.; Farias, P.M.; Satoriva, J.M.; Andrade, C.J.; Fai, A.E.C. Cassava starch films for food packaging: Trends over the last decade and future research. Int. J. Biol. Macromol. 2023, 225, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Bertoft, E.; Blennow, A. Chapter 3–Structure of potato starch. In Advances in Potato Chemistry and Technology, 2nd ed.; Singh, J., Kaur, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–73. [Google Scholar] [CrossRef]
- AOAC-Association of Analytical Chemists. Official Methods of Analysis of the Association of Analytical Chemists, 15th ed.; Helrich, K., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; p. 684. [Google Scholar]
- Gontard, N.; Guilbert, S.; Cuq, J.L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. J. Food Sci. 1992, 57, 190–199. [Google Scholar] [CrossRef]
- ASTM-American Society for Testing and Materials. Standard Test Methods for Water Vapor Transmission of Materials (ASTM –E9600e1). In Book of Standards; Subcommittee C16.33, Ed.; ASTM: Philadelphia, PA, USA, 2017; Volume 04.06, p. 9. [Google Scholar] [CrossRef]
- Mchugh, T.H.; and Krochta, J.M. Permeability properties of edible films. In Edible Coatings and Films to Improve Food Quality; Krochta, J.M., Baldwin, E.A., Nisperos-Carriedo, M., Eds.; Technomic Publishing: Lancaster, PA, USA, 1994; Volume 7, pp. 139–183. [Google Scholar]
- ASTM-American Society for Testing and Materials. Standard test method for tensile properties of thin plastic sheeting (ASTM -D882-18). In Book of Standards; Subcommittee D20.19, Ed.; ASTM: Philadelphia, PA, USA, 2018; Volume 08.01, p. 12. [Google Scholar] [CrossRef]
- Sartori, T.; Menegalli, F.C. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocoll. 2016, 55, 210–219. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Fontes, L.C.; Gonçalves, P.V.; Milanez, C.R.; Steel, C.J.; Collares-Queiroz, F.P. Films and edible coatings based on native starches and gelatin in the conservation and sensory acceptance of Crimson grapes. Food Sci. Technol. 2007, 27, 369–375. [Google Scholar] [CrossRef]
- Zavareze, E.R.; Onto, V.Z.; Klein, B.; Halal, S.L.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R. Development of oxidised and heat–moisture treated potato starch film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Moreno, O.; Atarés, L.; Chiralt, A. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films. Carbohydr. Polym. 2015, 133, 353–364. [Google Scholar] [CrossRef]
- Caetano, K.S.; Lopes, N.A.; Costa, T.M.H.; Brandelli, A.; Rodrigues, E.; Flôres, S.H.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compunds. Food Packag. Shelf. Life. 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Farias, M.G.; Fakhouri, F.M.; Piler, C.W.; Ascheri, J.L. Physicochemical characterization of edible starch films with barbados cherry (Malphigia emarginata D.C.). Quím. Nova. 2012, 35, 546–552. [Google Scholar] [CrossRef]
- Hu, G.; Chen, J.; Gao, J. Preparation and characteristics of oxidized potato starch films. Carbohydr. Polym. 2009, 76, 291–298. [Google Scholar] [CrossRef]
- Shimazu, A.A.; Mali, S.; Grossmann, M.V. Plasticizing and antiplasticizing effects of glycerol and sorbitol on biodegradable cassava starch films. Semina Ciênc. Agr. 2007, 28, 79–88. Available online: https://www.redalyc.org/articulo.oa?id=445744083010 (accessed on 26 October 2023). [CrossRef]
- Bergo, P.V.; Carvalho, R.A.; Sobral, P.J.; Dos Santos, R.M.; Da Silva, F.B.; Prison, J.M.; Solorza-Feira, J.; Habitante, A.M. Physical Properties of Edible Films Based on Cassava Starch as Affected by the Plasticizer Concentration. Packag. Technol. Sci. 2008, 21, 85–89. [Google Scholar] [CrossRef]
- Lagos, J.B.; Vicentini, N.M.; Dos Santos, R.M.; Bittante, A.M.; Sobral, P.J. Mechanical properties of cassava starch affected by different plasticizers and different relative humidity conditions. Int. J. Food Stud. 2015, 4, 116–125. [Google Scholar] [CrossRef]
- Rennert, M.; Nase, M.; Lach, R.; Reinck, K.; Arndt, S.; Androsch, R.; Grellmann, W. Influence of low-density polyethylene blown film thickness on the mechanical properties and fracture toughness. J. Plas. Film Sheeting 2013, 29, 327–346. [Google Scholar] [CrossRef]
- Henrique, C.M.; Cereda, M.P.; Sarmento, S.B. Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca. Food Sci. Technol. 2008, 28, 231–240. Available online: http://www.redalyc.org/articulo.oa?id=395940086033 (accessed on 26 October 2023). [CrossRef]
- Zhang, R.; Wang, X.; Cheng, M. Preparation and Characterization of Potato Starch Film with Various Size of Nano-SiO2. Polymers 2018, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Ock, S.Y.; Park, G.D.; Lee, I.W.; Lee, M.H.; Park, H.J. Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packag. Shelf Life 2020, 26, 1000556. [Google Scholar] [CrossRef]
- Pavlath, A.E.; Orts, W. Edible Films and Coatings: Why, What, and How. In Edible Films and Coatings for Food Applications; Huber, K., Embuscado, M., Eds.; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar] [CrossRef]
- Zobel, H.F. Starch granule structure. In Developments in Carbohydrate Chemistry; Alexander, R.J., Ed.; The American Association of Cereal Chemists: St. Paul, MN, USA, 1994; pp. 1–36. ISBN 10:0913250767. [Google Scholar]
- Sravan, T.; Spandana, K. Sorbitol–Its applications in different fields. Agric. Food E-Newsl. 2021, 3, 197–198. [Google Scholar]
Experimental Run | Encoded Starch Concentration (x) | Encoded Plasticizer Percentage (y) | Real x (g·100 mL−1 of Water) | Real y (%) |
---|---|---|---|---|
1 | −1.00 | −1.00 | 2.00 | 15.0 |
2 | −1.00 | 1.00 | 2.00 | 20.0 |
3 | 1.00 | −1.00 | 4.00 | 15.0 |
4 | 1.00 | 1.00 | 4.00 | 20.0 |
5 | −1.41 | 0.00 | 1.59 | 17.5 |
6 | 1.41 | 0.00 | 4.41 | 17.5 |
7 | 0.00 | −1.41 | 3.00 | 14.0 |
8 | 0.00 | 1.41 | 3.00 | 21.0 |
9 | 0.00 | 0.00 | 3.00 | 17.5 |
10 | 0.00 | 0.00 | 3.00 | 17.5 |
11 | 0.00 | 0.00 | 3.00 | 17.5 |
PoS | |||||
Experimental Run | Water Content (g·100 g−1) | Solubility (g·100 g−1) | aw (Decimal) | WVP (g·mm/m2 day·kPa) | Thickness (mm) |
1 | 20.36 ± 7.75 | 17.74 ± 3.67 | 0.539 ± 0.013 | 4.39 ± 0.07 | 0.033 ± 0.004 |
2 | 27.06 ± 1.51 | 20.17 ± 1.77 | 0.493 ± 0.008 | 3.12 ± 0.17 | 0.032 ± 0.006 |
3 | 15.95 ± 0.92 | 11.48 ± 3.66 | 0.436 ± 0.012 | 4.86 ± 0.08 | 0.068 ± 0.017 |
4 | 10.32 ± 3.87 | 5.29 ± 1.06 | 0.429 ± 0.008 | 5.82 ± 0.53 | 0.049 ± 0.003 |
5 | 29.94 ± 3.09 | 16.90 ± 0.91 | 0.538 ± 0.006 | 4.33 ± 0.47 | 0.024 ± 0.004 |
6 | 12.11 ± 1.46 | 3.13 ± 0.44 | 0.416 ± 0.005 | 2.64 ± 0.26 | 0.057 ± 0.004 |
7 | 23.35 ± 1.38 | 11.90 ± 0.23 | 0.517 ± 0.005 | 6.80 ± 0.22 | 0.042 ± 0.002 |
8 | 19.63 ± 0.75 | 12.33 ± 0.16 | 0.518 ± 0.005 | 4.70 ± 0.15 | 0.042 ± 0.002 |
9 | 18.26 ± 3.74 | 15.76 ± 0.58 | 0.517 ± 0.007 | 5.78 ± 0.03 | 0.045 ± 0.004 |
10 | 21.62 ± 4.63 | 16.27 ± 2.19 | 0.497 ± 0.002 | 5.68 ± 0.56 | 0.045 ± 0.004 |
11 | 20.33 ± 2.15 | 24.04 ± 0.31 | 0.516 ± 0.009 | 6.31 ± 0.19 | 0.042 ± 0.002 |
CaS | |||||
Experimental Run | Water Content (g·100 g−1) | Solubility (g·100 g−1) | aw (Decimal) | WVP (g·mm/m2 day·kPa) | Thickness (mm) |
1 | 13.65 ± 1.44 | 9.96 ± 1.57 | 0.440 ± 0.006 | 8.02 ± 0.89 | 0.034 ± 0.005 |
2 | 13.26 ± 3.27 | 16.53 ± 1.84 | 0.441 ± 0.007 | 2.95 ± 0.27 | 0.030 ± 0.002 |
3 | 12.38 ± 2.11 | 5.41 ± 0.70 | 0.533 ± 0.004 | 3.26 ± 0.52 | 0.030 ± 0.005 |
4 | 15.47 ± 1.13 | 11.35 ± 1.64 | 0.529 ± 0.011 | 2.27 ± 0.06 | 0.032 ± 0.003 |
5 | 7.95 ± 1.78 | 10.50 ± 0.46 | 0.489 ± 0.011 | 4.42 ± 0.15 | 0.023 ± 0.002 |
6 | 15.03 ± 0.95 | 11.04 ± 0.29 | 0.436 ± 0.004 | 3.33 ± 0.66 | 0.057 ± 0.006 |
7 | 4.10 ± 0.73 | 15.73 ± 0.96 | 0.471 ± 0.004 | 3.80 ± 0.31 | 0.036 ± 0.008 |
8 | 6.19 ± 0.22 | 18.39 ± 1.77 | 0.464 ± 0.022 | 3.24 ± 0.18 | 0.032 ± 0.004 |
9 | 10.21 ± 1.52 | 5.44 ± 2.77 | 0.457 ± 0.011 | 2.42 ± 0.18 | 0.024 ± 0.000 |
10 | 11.45 ± 0.61 | 3.39 ± 0.25 | 0.429 ± 0.008 | 2.42 ± 0.19 | 0.032 ± 0.002 |
11 | 11.40 ± 0.72 | 3.06 ± 0.46 | 0.447 ± 0.005 | 2.40 ± 0.59 | 0.034 ± 0.003 |
SS | df | MS | Fcalc | Ftab (10%) | |
---|---|---|---|---|---|
WVP | |||||
Regression | 11.58 | 3 | 3.86 | 5.27 | 3.07 |
Residue | 5.13 | 7 | 0.73 | ||
Lack of Fit | 4.89 | 5 | 0.98 | 8.52 | 9.29 |
Pure error | 0.23 | 2 | 0.12 | ||
Total | 16.71 | 10 | |||
Thickness | |||||
Regression | 0.0013 | 3 | 0.00045 | 33.37 | 3.07 |
Residue | 9.39 × 10−5 | 7 | 1.34 × 10−5 | ||
Lack of Fit | 0.00009 | 5 | 1.75 × 10−5 | 5.41 | 9.29 |
Pure error | 0.00001 | 2 | 3.23 × 10−6 | ||
Total | 0.00144 | 10 | |||
Water content | |||||
Regression | 306.58 | 2 | 153.29 | 39.03 | 3.11 |
Residue | 31.42 | 8 | 3.93 | ||
Lack of Fit | 25.67 | 6 | 4.23 | 1.49 | 9.33 |
Pure error | 5.74 | 2 | 2.87 | ||
Total | 337.995 | 10 | |||
aw | |||||
Regression | 0.0173 | 2 | 0.0086564 | 28.14 | 3.11 |
Residue | 0.0025 | 8 | 0.0003076 | ||
Lack of Fit | 0.0022 | 6 | 0.000367 | 2.84 | 9.33 |
Pure error | 0.0003 | 2 | 0.000129 | ||
Total | 0.0198 | 10 |
SS | df | MS | Fcalc | Ftab (10%) | |
---|---|---|---|---|---|
WVP | |||||
Regression | 21.15 | 5 | 4.23 | 3.69 | 3.45 |
Residue | 5.74 | 5 | 1.15 | ||
Lack of Fit | 5.74 | 3 | 1.91 | 9180.07 | 9.16 |
Pure error | 0.00042 | 2 | 0.00021 | ||
Total | 26.89 | 10 | |||
Solubility | |||||
Regression | 226.55 | 3 | 75.52 | 9.44 | 3.07 |
Residue | 56.01 | 7 | 8.002 | ||
Lack of Fit | 52.69 | 5 | 10.54 | 6.34 | 9.29 |
Pure error | 3.33 | 2 | 1.66 | ||
Total | 282.56 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias, L.V.A.; Silva, V.d.S.; Vieira, J.M.M.; Fakhouri, F.M.; de Oliveira, R.A. Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case. Polymers 2024, 16, 2390. https://doi.org/10.3390/polym16172390
Arias LVA, Silva VdS, Vieira JMM, Fakhouri FM, de Oliveira RA. Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case. Polymers. 2024; 16(17):2390. https://doi.org/10.3390/polym16172390
Chicago/Turabian StyleArias, Luna Valentina Angulo, Viviane de Souza Silva, Jorge Miguel Magalhães Vieira, Farayde Matta Fakhouri, and Rafael Augustus de Oliveira. 2024. "Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case" Polymers 16, no. 17: 2390. https://doi.org/10.3390/polym16172390
APA StyleArias, L. V. A., Silva, V. d. S., Vieira, J. M. M., Fakhouri, F. M., & de Oliveira, R. A. (2024). Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case. Polymers, 16(17), 2390. https://doi.org/10.3390/polym16172390