The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Optimization Using RSM
2.2.2. Degradable Plastic Synthesis
2.3. Characterization and Testing
2.3.1. Water Absorption
2.3.2. Biodegradability Rate
2.3.3. Mechanical Properties
2.3.4. Chemical Characterization
2.3.5. Thermal Properties
2.3.6. Morphological Properties
3. Results
3.1. Water Absorption Result
3.2. Biodegradability Rate Result
3.3. Determination of Optimum Condition Result
3.4. Mechanical Properties Results
3.5. Chemical Characterization Result
3.6. Thermal Properties Result
3.6.1. Thermogravimetric Analysis (TGA) Result
3.6.2. Differential Scanning Calorimetry (DSC) Result
3.6.3. Melt Flow Rate (MFR) Result
3.7. Morphological Properties Result
4. Discussion
4.1. Water Absorption Analysis
4.2. Biodegradability Rate Analysis
4.3. Determination of Optimum Conditions
4.4. Tensile Strength, Elongation, and Young’s Modulus Analysis
4.5. FTIR Analysis
4.6. Thermal Properties Analysis
4.6.1. TGA Analysis
4.6.2. DSC Analysis
4.6.3. MFR Analysis
4.7. SEM Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merino, D.; Quilez-Molina, A.I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A Second Life for Fruit and Vegetable Waste: A Review on Bioplastic Films and Coatings for Potential Food Protection Applications. Green Chem. 2022, 24, 4703–4727. [Google Scholar] [CrossRef]
- Huang, J.; Veksha, A.; Chan, W.P.; Giannis, A.; Lisak, G. Chemical Recycling of Plastic Waste for Sustainable Material Management: A Prospective Review on Catalysts and Processes. Renew. Sustain. Energy Rev. 2022, 154, 111866. [Google Scholar] [CrossRef]
- Lestari, P.; Trihadiningrum, Y. The Impact of Improper Solid Waste Management to Plastic Pollution in Indonesian Coast and Marine Environment. Mar. Pollut. Bull. 2019, 149, 110505. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Cao, G.; Wang, D.; Ho, S.-H. A Sustainable Solution to Plastics Pollution: An Eco-Friendly Bioplastic Film Production from High-Salt Contained Spirulina Sp. Residues. J. Hazard. Mater. 2020, 388, 121773. [Google Scholar] [CrossRef]
- Farajpour, R.; Djomeh, Z.E.; Moeini, S.; Tavakolipour, H.; Safayan, S. Structural and Physico-Mechanical Properties of Potato Starch-Olive Oil Edible Films Reinforced with Zein Nanoparticles. Int. J. Biol. Macromol. 2020, 149, 941–950. [Google Scholar] [CrossRef]
- Meereboer, K.W.; Misra, M.; Mohanty, A.K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Prendiz, J.; Vega-Baudrit, J.R.; Mena, M. Polylactic Acid (PLA) As a Bioplastic and Its Possible Applications in The Food Industry. Food Sci. Nutr. 2019, 5, 2–6. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef]
- Feyissa, E.M.; Gudayu, A.D. Synthesis of Starch-Derived Biopolymer Reinforced Enset Fiber Green Composite Packaging Films: Processes and Properties Optimization. Compos. Adv. Mater. 2023, 32, 907. [Google Scholar] [CrossRef]
- Nwuzor, I.C.; Oyeoka, H.C.; Nwanonenyi, S.C.; Ihekweme, G.O. Biodegradation of Low-Density Polyethylene Film/Plasticized Cassava Starch Blends with Central Composite Design for Optimal Environmental Pollution Control. J. Hazard. Mater. Adv. 2023, 9, 100251. [Google Scholar] [CrossRef]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Ayyubi, S.N.; Purbasari, A.; Kusmiyati. The Effect of Composition on Mechanical Properties of Biodegradable Plastic Based on Chitosan/Cassava Starch/PVA/Crude Glycerol: Optimization of the Composition Using Box Behnken Design. Mater. Today Proc. 2022, 63, S78–S83. [Google Scholar] [CrossRef]
- Yang, S.; Chen, K.; Xiang, H.; Wang, Y.; Huang, C. The Optimized Preparation Conditions of Cellulose Triacetate Hollow Fiber Reverse Osmosis Membrane with Response Surface Methodology. Polymers 2023, 15, 3569. [Google Scholar] [CrossRef]
- Magesh, A.; Jayabalan, K.; Kannan, R.R.; Rathakrishnan, P.; Dilipkumar, M.; Suriyaprakash, M. Optimization and Production of Bioplastic from Bio Waste Using Response Surface Methodology (RSM). Environ. Qual. Manag. 2022, 32, 179–190. [Google Scholar] [CrossRef]
- De Dios-Avila, N.; Tirado-Gallegos, J.M.; Rios-Velasco, C.; Luna-Esquivel, G.; Isiordia-Aquino, N.; Zamudio-Flores, P.B.; Estrada-Virgen, M.O.; Cambero-Campos, O.J. Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars. Molecules 2022, 27, 910. [Google Scholar] [CrossRef]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.-C. Poly (Lactic Acid) Blends: Processing, Properties and Applications. Int. J. Biol. Macromol. 2019, 125, 307–360. [Google Scholar] [CrossRef]
- Mittal, M.; Chaudhary, R.; Phutela, K.; Airon, M.; Singh, R.C. Modeling and Performance Optimization of Starch-Based Biocomposite Films Using Response Surface Methodology. J. Appl. Res. Technol. 2022, 20, 430–447. [Google Scholar] [CrossRef]
- Moria, K.M.; Khurshid, H.; Mustafa, M.R.U.; Alhothali, A.; Bamasag, O.O. Application of the Response Surface Methodology (RSM) in the Optimization of Acenaphthene (ACN) Removal from Wastewater by Activated Carbon. Sustainability 2022, 14, 8581. [Google Scholar] [CrossRef]
- ASTM D2765-16; Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM: West Conshohocken, PA, USA, 2024.
- ASTM G21-13; Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. ASTM: West Conshohocken, PA, USA, 2015.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM D1238-23; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM: West Conshohocken, PA, USA, 2023.
- Waday, Y.A.; Aklilu, E.G. ANN and RSM Modeling for the Synthesis of Avocado Seed Starch Combined Orange Peel Extract Antimicrobial Packaging Film. Int. J. Polym. Sci. 2023, 2023, 8877598. [Google Scholar] [CrossRef]
- Tessanan, W.; Phinyocheep, P.; Amornsakchai, T. Sustainable Materials with Improved Biodegradability and Toughness from Blends of Poly(Lactic Acid), Pineapple Stem Starch and Modified Natural Rubber. Polymers 2024, 16, 232. [Google Scholar] [CrossRef]
- Tabassum, N.; Rafique, U.; Qayyum, M.; Mohammed, A.A.A.; Asif, S.; Bokhari, A. Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. J. Compos. Sci. 2024, 8, 29. [Google Scholar] [CrossRef]
- Zahri, K.N.M.; Zulkharnain, A.; Gomez-Fuentes, C.; Sabri, S.; Khalil, K.A.; Convey, P.; Ahmad, S.A. The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria. Life 2021, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Amaba, A.S.; Villanueva, K.C.; Tan, N.P.; Siacor, F.D.; Paler, M.K. Preparation of Bioplastic Film from Chitosan and Mango (Mangifera indica L. Anacardiaceae) Kernel Starch by Casting Method. Appl. Chem. Eng. 2023, 6, 2819. [Google Scholar] [CrossRef]
- ASTM D6002-96; Standard Guide for Assessing the Compostability of Environmentally Degradable Plastics. ASTM: West Conshohocken, PA, USA, 2017.
- Standardization of Terminology for Recycling and Degradation of Plastics. Available online: https://www.astm.org/jurisdiction-d2096 (accessed on 6 August 2024).
- Cao, X.; Li, L.; Zhang, F.; Shi, L.; Zhang, F.; Song, X.; Zhao, W.; Dai, F. Optimization of the Green Fibre Paper Film Preparation Process Based on Box–Behnken Response Surface Methodology. Coatings 2023, 13, 2025. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Chang, P.R.; Huneault, M.A. Preparation and Properties of Plasticized Starch/Multiwalled Carbon Nanotubes Composites. J. Appl. Polym. Sci. 2007, 106, 1431–1437. [Google Scholar] [CrossRef]
- Anitha, R.; Jayakumar, K.; Samuel, G.V.; Joice, M.E.; Sneha, M.; Seeli, D.S. Synthesis and Characterization of Starch-Based Bioplastics: A Promising Alternative for a Sustainable Future. In Proceedings of the The International Conference on Processing and Performance of Materials (ICPPM 2023), Chennai, India, 2–3 March 2023. [Google Scholar] [CrossRef]
- Wojciechowska, P. The Effect of Concentration and Type of Plasticizer on the Mechanical Properties of Cellulose Acetate Butyrate Organic-Inorganic Hybrids. In Recent Advances in Plasticizers; Luqman, M., Ed.; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Stanley, J.; Culliton, D.; Jovani Sancho, A.J.; Neves, A.C. Mechanical Properties of Starch-Protein Blend Bioplastics. Wjert 2022, 8, 1–19. [Google Scholar]
- Fabra, M.J.; Martínez-Sanz, M.; Gómez-Mascaraque, L.G.; Gavara, R.; López-Rubio, A. Structural and Physicochemical Characterization of Thermoplastic Corn Starch Films Containing Microalgae. Carbohydr. Polym. 2018, 186, 184–191. [Google Scholar] [CrossRef]
- Jiménez, R.; Sandoval-Flores, G.; Alvarado-Reyna, S.; Alemán-Castillo, S.E.; Santiago-Adame, R.; Velázquez, G. Extraction of Starch from Hass Avocado Seeds for the Preparation of Biofilms. Food Sci. Technol. 2022, 42, e56820. [Google Scholar] [CrossRef]
- Navasingh, R.J.H.; Gurunathan, M.K.; Nikolova, M.P.; Królczyk, J.B. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers 2023, 15, 3760. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, L.; Kwiatkowski, P.; Drozłowska, E.; Trocer, P.; Kostek, M.; Śliwiński, M.; Polak-Śliwińska, M.; Kowalczyk, E.; Sienkiewicz, M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymers 2021, 13, 499. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Linganiso, L.Z.; Deenadayalu, N. Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films. Polymers 2023, 15, 1557. [Google Scholar] [CrossRef]
- Tan, S.X.; Ong, H.C.; Andriyana, A.; Lim, S.; Pang, Y.L.; Kusumo, F.; Ngoh, G.C. Characterization and Parametric Study on Mechanical Properties Enhancement in Biodegradable Chitosan-Reinforced Starch-Based Bioplastic Film. Polymers 2022, 14, 278. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers 2015, 7, 1106–1124. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.; Ilyas, R.A.; Sapuan, S.M. Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers 2022, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Marichelvam, M.K.; Jawaid, M.; Asim, M. Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers 2019, 7, 32. [Google Scholar] [CrossRef]
- Terán, J.L.L.; Maldonado, E.V.C.; Rangel, J.d.C.A.; Otazo, J.P.; Rico, M.I.B. Development of Antibacterial Thermoplastic Starch with Natural Oils and Extracts: Structural, Mechanical and Thermal Properties. Polymers 2024, 16, 180. [Google Scholar] [CrossRef]
- Jozinović, A.; Kovač, M.; Bulatović, V.O.; Grgić, D.K.; Miloloža, M.; Šubarić, D.; Ačkar, Đ. Biopolymeric Blends of Thermoplastic Starch and Polylactide as Sustainable Packaging Materials. Polymers 2024, 16, 1268. [Google Scholar] [CrossRef] [PubMed]
- Pulgarin, H.L.C.; Caicedo, C. Barrier, Mechanical, Thermal, and Rheological Properties of Plasticized Biopolymeric Films Manufactured by Co-Extrusion. Processes 2024, 12, 524. [Google Scholar] [CrossRef]
- Morales, J.; Michell, R.M.; Sommer-Márquez, A.; Rodrigue, D. Effect of Biobased SiO2 on the Morphological, Thermal, Mechanical, Rheological, and Permeability Properties of PLLA/PEG/SiO2 Biocomposites. J. Compos. Sci. 2023, 7, 150. [Google Scholar] [CrossRef]
- Dewi, R.; Sylvia, N.; Zulnazri; Riza, M.; Siregar, J.P.; Cionita, T.; Kusuma, B.S. Characterization of Sago Starch-Based Degradable Plastic with Agricultural Waste Cellulose Fiber as Filler. AIMS Environ. Sci. 2024, 11, 304–323. [Google Scholar] [CrossRef]
- Dimonie, D.; Petrache, M.; Damian, C.; Anton, L.; Musat, M.; Dima, Ş.-O.; Jinescu, C.; Maria, R. New Evidences on the Process Sensitivity of Some Renewable Blends Based on Starch Considering Their Melt Rheological Properties. Int. J. Polym. Sci. 2016, 2016, 7873120. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Y.; Shi, Q.; Guo, S. Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. J. Compos. Sci. 2021, 5, 48. [Google Scholar] [CrossRef]
- Dewi, R.; Sylvia, N.; Zulnazri; Riza, M. Melt Flow Index (MFI) Analysis of Sago Based Thermoplastic Starch Blend with Polypropylene and Polyethylene. Mater. Today: Proc. 2023, 87, 396–400. [Google Scholar] [CrossRef]
- Righetti, M.C.; Cinelli, P.; Aliotta, L.; Bianchi, E.; Tricoli, F.; Seggiani, M.; Lazzeri, A. Immiscible PHB/PB S and PHB/PBSA Blends: Morphology, Phase Composition and Modelling of Elastic Modulus. Polym. Int. 2022, 71, 47–56. [Google Scholar] [CrossRef]
- Sangeetha, V.; Deka, H.; Varghese, T.; Nayak, S. State of the Art and Future Prospectives of Poly(Lactic Acid) Based Blends and Composites. Polym. Compos. 2018, 39, 81–101. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Adv. Chem. Eng. Sci. 2011, 1, 208–214. [Google Scholar] [CrossRef]
- Amin, M.R.; Chowdhury, M.A.; Kowser, M.A. Characterization and Performance Analysis of Composite Bioplastics Synthesized Using Titanium Dioxide Nanoparticles with Corn Starch. Heliyon 2019, 5, e02009. [Google Scholar] [CrossRef]
- Nguyen, T.K.; That, N.T.T.; Nguyen, N.T.; Nguyen, H.T. Development of Starch-Based Bioplastic from Jackfruit Seed. Adv. Polym. Technol. 2022, 2022, 6547461. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Liu, L.; Chen, L.; Teng, J.; Zhu, X.; Zhao, J.; Wang, Q. Spatial and Seasonal Variations in Biofilm Formation on Microplastics in Coastal Waters. Sci. Total Environ. 2021, 770, 145303. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Amritkumar, P. Synthesis and Characterization of Eco-Friendly Bioplastic from Low-Cost Plant Resources. SN Appl. Sci. 2019, 1, 1432. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of Biodegradable Starch-Based Foams Incorporated with Grape Stalks for Food Packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef] [PubMed]
- Szatkowski, P.; Gralewski, J.; Suchorowiec, K.; Kosowska, K.; Mielan, B.; Kisilewicz, M. Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose. Materials 2023, 17, 22. [Google Scholar] [CrossRef] [PubMed]
Run | Independent Variable | Dependent Variable | Dependent Variable | |
---|---|---|---|---|
X1: Starch (g) | X2: PLA (g) | Y1: Water Absorption (%) | Y2: Biodegradability (%) | |
1 | 2.5 | 7.82843 | 6.2 | 21.18 |
2 | 2.5 | 5 | 6.41 | 33.63 |
3 | 2.5 | 5 | 6.41 | 33.63 |
4 | 2.5 | 5 | 6.41 | 33.63 |
5 | 3.5 | 3 | 15.06 | 49.9 |
6 | 1.08579 | 5 | 7.41 | 19.27 |
7 | 3.91421 | 5 | 11.13 | 41.08 |
8 | 1.5 | 7 | 5.69 | 12.55 |
9 | 2.5 | 2.17157 | 7.45 | 42.77 |
10 | 2.5 | 5 | 6.41 | 33.63 |
11 | 1.5 | 3 | 5.08 | 38.25 |
12 | 3.5 | 7 | 6.44 | 26.29 |
13 | 2.5 | 5 | 6.41 | 33.63 |
Run | A: Starch (g) | B: PLA (g) | Water Absorption Experiment (%) | Water Absorption Predicted (%) | % Error |
---|---|---|---|---|---|
1 | 2.5 | 7.82843 | 6.2 | 5.1 | 1.1 |
2 | 2.5 | 5 | 6.41 | 6.4 | 0 |
3 | 2.5 | 5 | 6.41 | 6.4 | 0 |
4 | 2.5 | 5 | 6.41 | 6.4 | 0 |
5 | 3.5 | 3 | 15.06 | 13.6 | 1.5 |
6 | 1.08579 | 5 | 7.41 | 6.5 | 1.0 |
7 | 3.91421 | 5 | 11.13 | 12.1 | 1.0 |
8 | 1.5 | 7 | 5.69 | 7.1 | 1.5 |
9 | 2.5 | 2.17157 | 7.45 | 8.6 | 1.1 |
10 | 2.5 | 5 | 6.41 | 6.4 | 0.0 |
11 | 1.5 | 3 | 5.08 | 5.0 | 0.1 |
12 | 3.5 | 7 | 6.44 | 6.5 | 0.1 |
13 | 2.5 | 5 | 6.41 | 6.4 | 0.0 |
Source of Water Absorption | Sum of Square | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 79.54 | 5 | 15.91 | 12.93 | 0.0020 | Significant |
X1 | 31.96 | 1 | 31.96 | 25.99 | 0.0014 | |
X2 | 11.95 | 1 | 11.95 | 9.72 | 0.0169 | |
X1. X2 | 21.30 | 1 | 21.30 | 17.31 | 0.0169 | |
X12 | 14.33 | 1 | 14.33 | 11.65 | 0.0112 | |
X22 | 0.3141 | 1 | 0.3141 | 0.2554 | 0.6288 | |
Residual | 8.61 | 7 | 1.23 | - | - | |
Lack of Fit | 8.61 | 3 | 2.87 | - | - | |
Pure Error | 0.0000 | 4 | 0.0000 | - | - | |
Cor Total | 88.15 | 12 | - | - | - |
Std. Dev. | 1.11 | R2 | 0.9023 |
---|---|---|---|
Mean | 7.42 | Adjusted R2 | 0.8326 |
C.V.% | 14.94 | Predicted R2 | 0.3054 |
Adeq Precision | 11.4307 |
Run | A: Starch (g) | B: PLA (g) | Biodegradability Experiment (%) | Biodegradability Predicted (%) | % Error |
---|---|---|---|---|---|
1 | 2.5 | 7.82843 | 21.18 | 18.2 | −1.7938 |
2 | 2.5 | 5 | 33.63 | 32.3 | −3.1928 |
3 | 2.5 | 5 | 33.63 | 32.3 | −3.1928 |
4 | 2.5 | 5 | 33.63 | 32.3 | −3.1928 |
5 | 3.5 | 3 | 49.9 | 49.3 | −4.8875 |
6 | 1.08579 | 5 | 19.27 | 22.3 | −2.2131 |
7 | 3.91421 | 5 | 41.08 | 42.2 | −4.1795 |
8 | 1.5 | 7 | 12.55 | 15.3 | −1.5130 |
9 | 2.5 | 2.17157 | 42.77 | 46.4 | −4.5951 |
10 | 2.5 | 5 | 33.63 | 32.3 | −3.1928 |
11 | 1.5 | 3 | 38.25 | 35.2 | −3.4833 |
12 | 3.5 | 7 | 26.29 | 29.3 | −2.9051 |
13 | 2.5 | 5 | 33.63 | 32.3 | 3192.8 |
Source of Biodegradability | Sum of Square | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1192.14 | 2 | 596.07 | 87.43 | <0.0001 | Significant |
X1 | 395.28 | 1 | 395.28 | 57.98 | <0.0001 | |
X2 | 796.86 | 1 | 796.86 | 116.89 | <0.0001 | |
Residual | 68.17 | 10 | 6.82 | |||
Lack of Fit | 68.17 | 6 | 11.36 | |||
Pure Error | 0.0000 | 4 | 0.0000 | |||
Cor Total | 1260.32 | 12 |
Std. Dev. | 2.61 | R2 | 0.9459 |
---|---|---|---|
Mean | 32.26 | Adjusted R2 | 0.9351 |
C.V.% | 8.09 | Predicted R2 | 0.8882 |
Adeq Precision | 27.1221 |
Name | Goal | Lower Limit | Upper Limit | Lower Weight | Upper Weight |
---|---|---|---|---|---|
Y1 | In Range | 1.5 | 3.5 | 1 | 1 |
Y2 | In Range | 3 | 7 | 1 | 1 |
Y1 | Minimize | 5.08 | 15.06 | 1 | 1 |
Y2 | Maximize | 12.55 | 49.9 | 1 | 1 |
X1: Starch (g) | X2: PLA (g) | Y1: Water Absorption (%) | Y2: Biodegradability (%) | Desirability |
---|---|---|---|---|
1.894 | 3.000 | 5.763 | 37.988 | 0.797 |
Type Sample | Tensile Strength (MPa) | Elongation (%) | Young’s Modulus (MPa) |
---|---|---|---|
Avocado-seed-starch-based degradable plastic and PLA Pure PLA | 10.127 5.00–42.0 | 85.75 15.0–100 | 190.02 2960–3600 |
Bonding | Compound Type | Wave Numbers (cm−1) |
---|---|---|
O-H | Alcohol Monomer | 3273.20, 3502.73, 3647.39 |
CH2 | Alkana | 2953.52, 2945.30, 2902.87, 2258.64 |
C=C | Alkena | 1631.78 |
C-O | Carboxylic Acid | 1741.72 |
Area | Normalized (J/g) | Onset (°C) | End Set (°C) | Peak (°C) |
---|---|---|---|---|
I | −20.59 | 129.22 | 141.84 | 136.50 |
II | −29.93 | 143.70 | 159.10 | 149.17 |
Sample Name | MFR [g/10 min.] |
---|---|
Avocado-seed-starch-based degradable plastics + PLA | Not measurable. Sample melted before measurement. |
Sample Name | MFR Value | References |
---|---|---|
Sugarcane-bagasse-cellulose-based degradable plastics | [230 °C/5 kg] 1.02 ± 0.68 g/10 min | [48] |
Corn-cob-cellulose-based degradable plastics | The sample was not measured, since it did not melt completely, rendering the measurement invalid. | [48] |
Thermoplastic starch + polypropylene (TPS + PP) | [230 °C/2.16 kg] 10.9 ± 0.1 g/10 min | [51] |
Thermoplastic starch + polyethylene (TPS + PE) | [190 °C/2.16 kg] 13.5 ± 0.1 g/10 min | [51] |
Pure polypropylene (PP) using injection molding | [230 °C/5 kg] 5–20 g/10 min | [51] |
Pure polyethylene (PE) using injection molding | [190°C/5 kg] 13–25 g/10 min | [51] |
PP and PE standard value using compression molding | [230 °C/5 kg] 2 g/10 min | [51] |
PP and PE standard value using blow molding | [190 °C/5 kg] 0.05–0.15 g/10 min | [51] |
Poly(butylene succinate) (PBS) and Poly(butylene succinate-co-adipate) (PBSA) | [190 °C/0.325 kg] 3.6 ± 0.5 and 0.65 ± 0.01 g/10 min | [52] |
PLA (material datasheet by Biomer for L9000) | 3–6 g/10 min | [53] |
Polypropylene (PP) standard value | [230 °C/5 kg] 1–5 g/10 min | [47,54] |
Polyethylene (PE) standard value | [230 °C/5 kg] 1–3 g/10 min | [47,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewi, R.; Sylvia, N.; Zulnazri, Z.; Fithra, H.; Riza, M.; Siregar, J.P.; Cionita, T.; Fitriyana, D.F.; Anis, S. The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM). Polymers 2024, 16, 2384. https://doi.org/10.3390/polym16162384
Dewi R, Sylvia N, Zulnazri Z, Fithra H, Riza M, Siregar JP, Cionita T, Fitriyana DF, Anis S. The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM). Polymers. 2024; 16(16):2384. https://doi.org/10.3390/polym16162384
Chicago/Turabian StyleDewi, Rozanna, Novi Sylvia, Zulnazri Zulnazri, Herman Fithra, Medyan Riza, Januar Parlaungan Siregar, Tezara Cionita, Deni Fajar Fitriyana, and Samsudin Anis. 2024. "The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM)" Polymers 16, no. 16: 2384. https://doi.org/10.3390/polym16162384
APA StyleDewi, R., Sylvia, N., Zulnazri, Z., Fithra, H., Riza, M., Siregar, J. P., Cionita, T., Fitriyana, D. F., & Anis, S. (2024). The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM). Polymers, 16(16), 2384. https://doi.org/10.3390/polym16162384