Research Status of Lignin-Based Polyurethane and Its Application in Flexible Electronics
Abstract
:1. Introduction
2. Synthesis of Polyurethane
3. Methods for Preparing Polyols from Lignin
3.1. Liquefaction
3.2. Alkylation
3.2.1. Hydromethylation
3.2.2. Hydroxypropyl
3.3. Acetylation
3.4. Demethylation
3.5. Other Methods
4. Application of Lignin-Based Polyurethane in Flexible Electronics
4.1. Polyurethane Films
4.2. Polyurethane Foams
4.3. Polyurethane Elastomers
4.4. Others
5. Conclusions and Perspective
Funding
Conflicts of Interest
References
- Li, J.; Zhang, E.B.; Ren, X.Y. Ultrahigh strain-response conductive polyurethane foam for strain sensor and pressure control switches. Mater. Today Commun. 2024, 38, 108016. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; An, X.Y.; Niu, L.; Feng, J.; Liu, Z.M. Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam. Polymers 2023, 15, 4709. [Google Scholar] [CrossRef] [PubMed]
- Lavazza, J.; Zhang, Q.C.; Kergariou, C.D.; Comandini, G.; Briscoe, W.H.; Rowlandson, J.L.; Panzera, T.H.; Scarpa, F. Rigid polyurethane foams from commercial castor oil resins. Polym. Test. 2024, 135, 108457. [Google Scholar] [CrossRef]
- Wang, S.S.; Chen, X.Y.; Guo, L.Z.; Wang, S.S.; Dong, F.H.; Liu, H.; Xu, X. A human muscle-inspired, high strength, good elastic recoverability, room-temperature self-healing, and recyclable polyurethane elastomer based on dynamic bonds. Compos. Sci. Technol. 2024, 248, 110457. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Wang, R.F.; Han, H.C.; Huang, Z.; Wang, J. Self-healing polyurethane elastomers: An essential review and prospects for future research. Eur. Polym. J. 2024, 214, 113159. [Google Scholar] [CrossRef]
- Hevus, I.; Webster, D.C. Short-chain polyols from bio-based carboxylic acids for high-performance polyurethane coatings. Prog. Org. Coat. 2023, 183, 107825. [Google Scholar] [CrossRef]
- Qin, Q.; Wei, D.D.; Gan, J.M.; Gong, Y.P.; Tao, J. Preparation of environmental-benign castor oil-derived polyurethane thermal conductive structural adhesives with superior strength. Polymer 2024, 298, 126831. [Google Scholar] [CrossRef]
- Vieira, F.R.; Gama, N.; Magina, S.; Barros-Timmons, A.; Evtuguin, D.V.; Pin, P.C.O.R. Polyurethane adhesives based on Oxyalkylated Kraft lignin. Polymers 2022, 14, 5305. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Cao, S.T.; Liu, Z.L.; Wang, J.Y.; Liu, Y.T.; Sun, L.S.; Gao, C.H. Sulfur-Modified Polyurethane Adhesives: Green Synthesis Process and Disassembly-Responsive Characteristics. Polym. Degrad. Stab. 2024, 228, 110910. [Google Scholar] [CrossRef]
- Serrano-Martínez, V.M.; Hernández-Fernández, C.; Pérez-Aguilar, H.; Carbonell-Blasco, M.P.; García-García, A.; Orgilés-Calpena, E. Development and application of a lignin-based polyol for sustainable reactive polyurethane adhesives synthesis. Polymers 2024, 16, 1928. [Google Scholar] [CrossRef]
- Duldner, M.; Dolana, S.; Bartha, E.; Teodorescu, F.; Slabu, A. Nano-composite semi-flexible polyurethane foams containing montmorillonite intercalated/exfoliated in situ during the synthesis of the intermediate polyester-polyols obtained from PET wastes. Eur. Polym. J. 2023, 196, 112280. [Google Scholar] [CrossRef]
- Nadim, E.; Paraskar, P.; Murphy, E.J.; Hesabi, M.; Major, I. Sustainable polyurethane coatings based on functional Camelina oil-based polyols. Ind. Crops Prod. 2023, 204, 117274. [Google Scholar] [CrossRef]
- Jiang, K.S.; Chen, W.S.; Liu, X.B.; Wang, Y.X.; Han, D.Z. Effect of bio-based polyols and chain extender on the microphase separation structure, mechanical properties and morphology of rigid polyurethane foams. Eur. Polym. J. 2023, 179, 111572. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, R.B.; Tang, S.Y.; Wu, K.J.; Wu, K.J. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. Int. J. Biol. Macromol. 2023, 243, 125219. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, U.; Li, X.L.; Wang, B.; Geng, F.H.; Zhang, Q.; Zhang, K.; Xu, X.; Xu, J. Structure and integrity of sequentially extracted lignin during poplar (alkaline) pretreatment. Prog. Biochem. 2022, 117, 198–208. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Sternberg, J.; Sequerth, O.; Pilla, S. Green chemistry design in polymers derived from lignin: Review and perspective. Prog. Polym. Sci. 2021, 113, 101344. [Google Scholar] [CrossRef]
- Zheng, B.X.; Liu, T.; Liu, J.; Cui, Y.L.; Ou, R.X. Spider silk-inspired dynamic covalent polyurethane with fast repairing, shape memory, and strong dynamic adhesion via lignin enhanced microphase separation. Compos. Part B Eng. 2023, 257, 110697. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wyman, C.E.; Cai, C.M.; Ragauskas, A.J. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation. ACS Appl. Polym. Mater. 2019, 1, 1672–1679. [Google Scholar] [CrossRef]
- Szpilyk, M.; Lubczak, R.; Lubczak, J. Cellulose-Based Polyurethane Foams of Low Flammability. Polymers 2024, 16, 1438. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Molinari, M.; Aguié-Béghin, V. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. Langmuir 2018, 34, 9376–9386. [Google Scholar] [CrossRef]
- Shafiq, A.; Bhatti, I.A.; Amjed, N.; Zeshan, M.; Zaheer, A.; Kamal, A.; Naz, S.; Rasheed, T. Lignin derived polyurethanes: Current advances and future prospects in synthesis and applications. Eur. Polym. J. 2024, 209, 112899. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Z.F.; Ma, X.; Zhang, K.X.; Wang, Z.Y.; Guo, Z.Y.; Chen, Y.; Sun, L.H.; Lu, W.; Liu, Y.; et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds. Ind. Crops Prod. 2021, 174, 114178. [Google Scholar] [CrossRef]
- Terreni, E.; Caserio, L.; Mauri, E.; Storti, G.; Moscatelli, D. Synthesis of novel bio-based and degradable polyurethanes using lignin oligomers. Chem. Eng. Sci. 2024, 298, 120325. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Wu, H.C.; Kessler, M.R. High bio-content polyurethane composites with urethane modified lignin as filler. Polymer 2015, 69, 52–57. [Google Scholar] [CrossRef]
- Santos, O.D.S.H.; da Silva, M.C.; Silva, V.R.; Mussel, W.N.; Yoshida, M.I. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J. Hazard. Mater. 2017, 324, 406–413. [Google Scholar] [CrossRef]
- Luo, X.; Mohanty, A.; Misra, M. Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind. Crops Prod. 2013, 47, 13–19. [Google Scholar] [CrossRef]
- Song, X.X.; Guo, W.X.; Zhu, Z.P.; Han, G.P.; Cheng, W.L. Preparation of uniform lignin/titanium dioxide nanoparticles by confined assembly: A multifunctional nanofiller for a waterborne polyurethane wood coating. Int. J. Biol. Macromol. 2023, 258, 128827. [Google Scholar] [CrossRef]
- Guo, W.Q.; Sun, S.R.; Wang, P.; Chen, H.A.; Zheng, J.Y.; Lin, X.L.; Qin, Y.L.; Qin, X.Q. Successive organic solvent fractionation and homogenization of technical lignin for polyurethane foam with high mechanical performance. Int. J. Biol. Macromol. 2022, 221, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Jin, H.Q.; Hou, M.J.; Guo, X.; Xiao, T.Y.; Cao, X.Y.; Jia, W.C.; Fatehi, P.; Shi, H.Q. Fractionated lignin as a polyol in polyurethane fabrication. Int. J. Biol. Macromol. 2023, 256, 128290. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, C.; Gnanasekar, P.; Xiao, P.; Luo, P.; Li, S.Q.; Qin, D.D.; Chen, T.; Chen, J.; Zhu, J.; et al. Mechanically robust, solar-driven, and degradable lignin-based polyurethane adsorbent for efficient crude oil spill remediation. Chem. Eng. J. 2021, 415, 128956. [Google Scholar] [CrossRef]
- Fan, D.Q.; Huang, Y.J.; Niu, Y.H.; Lv, Y.D.; Li, G.X. Sustainable waterborne polyurethane/lignin nanoparticles composites: Durability meets degradability. Polymer 2024, 305, 127179. [Google Scholar] [CrossRef]
- Li, M.C.; Xu, B.; Xu, M.F.; Wu, Y.; Liu, Z.H.; Li, B.Z.; Zhong, C.; Jia, S.R. Mild and recyclable ethylenediamine pretreatment for bacterial cellulose fermentation and lignin valorization. Ind. Crops Prod. 2024, 207, 117681. [Google Scholar] [CrossRef]
- Ma, X.Z.; Wang, X.L.; Zhao, H.L.; Xu, X.B.; Cui, M.H.; Stott, N.E.; Chen, P.; Zhu, J.; Yan, N.; Chen, J. High-Performance, Light-Stimulation Healable, and Closed-Loop Recyclable Lignin-Based Covalent Adaptable Networks. Small 2023, 19, 2303215. [Google Scholar] [CrossRef]
- Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-free routes to polyurethanes and poly (hydroxy urethane) s. Chem. Rev. 2015, 115, 12407–12439. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Green and facile procedure for the preparation of liquid and gel-like polyurethanes based on castor oil and lignin: Effect of processing conditions on the rheological properties. J. Clean. Prod. 2020, 277, 123367. [Google Scholar] [CrossRef]
- Cassales, A.; Ramos, L.A.; Frollini, E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int. J. Biol. Macromol. 2020, 145, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Dun, C.; Jariwala, H.; Wang, R.; Cui, P.Y.; Zhang, H.P.; Dai, Q.G.; Yang, S.; Zhang, H.C. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. J. Control. Release 2022, 350, 748–760. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, S.; Zhang, H. Signally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124164. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.L.; Zhong, Y.Y.; Ma, X.Z.; Lv, W.R.; Zhao, H.L.; Zhu, J.; Yan, N. Multifunctional superhydrophilic/underwater superoleophobic lignin-based polyurethane foam for highly efficient oil-water separation and water purification. Sep. Purif. Technol. 2023, 311, 123284. [Google Scholar] [CrossRef]
- Hernández-Ramos, F.; Alriols, M.G.; Antxustegi, M.M.; Labidi, J.; Erdocia, X. Valorisation of crude glycerol in the production of liquefied lignin bio-polyols for polyurethane formulations. Int. J. Biol. Macromol. 2023, 247, 125855. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Ha, T.M.N.; Nguyen, B.T.; Ha, D.; Vo, T.V.; Nguyen, D.M.; Vo, D.K.; Nguyen, N.T.; Nguyen, T.V.; Hoang, D. Microwave-assisted polyol liquefication from bamboo for bio-polyurethane foams fabrication. J. Environ. Chem. Eng. 2023, 11, 109605. [Google Scholar] [CrossRef]
- Nguyen-Ha, T.M.; Nguyen, T.B.; Nguyen, T.A.; Pham, L.H.; Nguyen, D.H.; Nguyen, D.M.; Hoang, D.; Oh, E.; Suhr, J. Novel high-performance sustainable polyurethane nanocomposite foams: Fire resistance, thermal stability, thermal conductivity, and mechanical properties. Chem. Eng. J. 2023, 474, 145585. [Google Scholar] [CrossRef]
- Chen, Y.C.; Zhang, H.; Zhu, Z.D.; Fu, S.Y. High-value utilization of hydroxymethylated lignin in polyurethane adhesives. Int. J. Biol. Macromol. 2020, 152, 775–785. [Google Scholar] [CrossRef]
- Yang, Y.M.; Cao, H.; Liu, R.L.; Wang, Y.K.; Zhu, M.Y.; Su, C.S.; Lv, X.F.; Zhao, J.B.; Qin, P.Y.; Cai, D. Fabrication of ultraviolet resistant and anti-bacterial non-isocyanate polyurethanes using the oligomers from the reductive catalytic fractionated lignin oil. Ind. Crops Prod. 2022, 193, 116213. [Google Scholar] [CrossRef]
- Kurańska, M.; Pinto, J.A.; Salach, K.; Barreiro, M.F.; Prociak, A. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study. Ind. Crops Prod. 2020, 143, 111882. [Google Scholar] [CrossRef]
- Duval, A.; Vidal, D.; Sarbu, A.; René, W.; Avérous, L. Scalable single-step synthesis of lignin-based liquid polyols with ethylene carbonate for polyurethane foams. Mater. Today Chem. 2022, 24, 100793. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.Y.; Huo, W.Z.; Cai, D.; Qin, P.Y.; Cao, H.; Tan, T.W. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crops Prod. 2020, 143, 111887. [Google Scholar] [CrossRef]
- Gouveia, J.R.; de Sousa Júnior, R.R.; Ribeiro, A.O.; Saraiva, S.A.; dos Santos, D.J. Effect of soft segment molecular weight and NCO: OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive. Eur. Polym. J. 2020, 131, 109690. [Google Scholar] [CrossRef]
- Liu, J.M.; Xie, E.J.; Tang, Y.R.; Feng, R.; Gan, W.X. Eco-friendly phenol formaldehyde resin wood adhesive from bagasse lignin liquefaction. Sustain. Chem. Pharm. 2023, 33, 101129. [Google Scholar] [CrossRef]
- Liu, J.P.; Zhao, L.Y.; Liu, Z.Y. Catalyst-free liquefaction of lignin for monophenols in hydrogen donor solvents. Fuel Process. Technol. 2022, 229, 107180. [Google Scholar] [CrossRef]
- Feng, F.; Li, X.H.; Wang, Z.Z.; Liu, B.Z. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. Bioresour. Technol. 2021, 323, 124569. [Google Scholar] [CrossRef]
- Araujo, T.R.; Bresolin, D.; de Oliveira, D.; Sayer, C.; Araujo, P.H.H.D.; Oliveira, J.V. Lipase-catalyzed glycerolysis of technical lignin towards high-density polyurethane foams. Ind. Crops Prod. 2023, 204, 1257. [Google Scholar] [CrossRef]
- Daronch, N.A.; Kelbert, M.; Pereira, C.S.; de Araujo, P.H.H.; de Oliverira, D. Elucidating the choice for a precise matrix for laccase immobilization: A review. Chem. Eng. J. 2020, 397, 125506. [Google Scholar] [CrossRef]
- Chen, X.J.; Guo, T.; Mo, X.; Zhang, L.D.; Wang, R.F.; Xue, Y.N.; Fan, X.L.; Sun, S.L. Reduced nutrient release and greenhouse gas emissions of lignin-based coated urea by synergy of carbon black and polysiloxane. Int. J. Biol. Macromol. 2023, 231, 123334. [Google Scholar] [CrossRef]
- Paananen, H.; Alvila, L.; Pakkanen, T.T. Hydroxymethylation of softwood kraft lignin and phenol with paraformaldehyde. Sustain. Chem. Pharm. 2021, 20, 100376. [Google Scholar] [CrossRef]
- Schieppati, D.; Dreux, A.; Gao, W.J.; Fatehi, P.; Boffito, D.C. Ultrasound-assisted carboxymethylation of LignoForce Kraft lignin to produce biodispersants. J. Clean. Prod. 2022, 366, 132776. [Google Scholar] [CrossRef]
- Afreen, G.; Upadhyayula, S. Mechanistic insights into upgrading of biomass-derived phenolic compounds: Comparative study of the impact of Lewis acidity in Zn loaded FAU zeolite on reaction mechanism. Chem. Eng. J. 2019, 377, 120236. [Google Scholar] [CrossRef]
- Zhang, X.F.; Kim, Y.; Islam, E.; Taylor, M.; Eberhardt, T.L.; Hassan, E.; Shmulsky, R. Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind. Crops Prod. 2019, 141, 111797. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.C.; Ou, R.X.; Fan, Q.; Li, L.P.; Guo, C.G.; Liu, Z.Z.; Wang, Q.W. Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chem. Eng. J. 2019, 368, 359–368. [Google Scholar] [CrossRef]
- Cao, Y.D.; Liu, Z.Z.; Zheng, B.X.; Ou, R.X.; Fan, Q.; Li, L.P.; Guo, C.G.; Liu, T.; Wang, Q.W. Synthesis of lignin-based polyols via thiol-ene chemistry for high-performance polyurethane anticorrosive coating. Compos. Part B Eng. 2020, 200, 108295. [Google Scholar] [CrossRef]
- Puumala, L.S.; Fatehi, P. Dispersion performance of hydroxypropyl sulfonated lignin in aluminum oxide suspension. Sep. Purif. Technol. 2021, 276, 119247. [Google Scholar] [CrossRef]
- Pinto, J.A.; Prieto, M.A.; Ferreira, I.C.; Belgacem, M.N.; Rodrigues, A.E.; Barreiro, M.F. Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). Ind. Crops Prod. 2020, 153, 112542. [Google Scholar] [CrossRef]
- Araujo, T.R.; Bresolin, D.; de Oliveira, D.; Sayer, C.; de Araújo, P.H.H.; de Oliveira, J.V. Conventional lignin functionalization for polyurethane applications and a future vision in the use of enzymes as an alternative method. Eur. Polym. J. 2023, 188, 111934. [Google Scholar] [CrossRef]
- Gouveia, J.R.; da Costa, C.L.; Tavares, L.B.; dos Santos, D.J. Synthesis of lignin-based polyurethanes: A mini-review. Mini-Rev. Org. Chem. 2019, 16, 345–352. [Google Scholar] [CrossRef]
- Hwang, U.; Lee, B.; Oh, B.; Shin, H.S.; Lee, S.S.; Kang, S.G.; Kim, D.; Park, J.; Shin, S.; Suhr, J.; et al. Hydrophobic lignin/polyurethane composite foam: An eco-friendly and easily reusable oil sorbent. Eur. Polym. J. 2022, 165, 110971. [Google Scholar] [CrossRef]
- Shayesteh, K.; Mohammadzadeh, G.; Zamanloo, M. Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer. Int. J. Biol. Macromol. 2020, 163, 1810–1820. [Google Scholar] [CrossRef]
- de Oliveira, D.R.; Avelino, F.; Mazzetto, S.E.; Lomonaco, D. Microwave-assisted selective acetylation of Kraft lignin: Acetic acid as a sustainable reactant for lignin valorization. Int. J. Biol. Macromol. 2020, 164, 1536–1544. [Google Scholar] [CrossRef]
- Xu, C.A.; Qu, Z.C.; Lu, M.G.; Meng, H.F.; Chen, B.; Jiao, E.X.; Zhang, E.D.; Wu, K.; Shi, J. Effect of modified bamboo lignin replacing part of C5 petroleum resin on properties of polyurethane/polysiloxane pressure sensitive adhesive and its application on the wood substrate. J. Colloid Interface Sci. 2021, 602, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, J.; Wang, W.; Lin, L.; Lv, R.X.; Zhang, S.Q.; Ma, J.H. Demethylation of lignin with mild conditions and preparation of green adhesives to reduce formaldehyde emissions and health risks. Int. J. Biol. Macromol. 2023, 242, 124462. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Z.H.; Wang, X.; Sheng, Y.Y.; Liu, Y. Demethylation of ethanol organosolv lignin by Na2SO3 for enhancing antioxidant performance. Sustain. Chem. Pharm. 2023, 36, 101312. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Park, B.D. Probing the Relationship between Chemical Structure and Thermal Degradation Behavior of Acetone Fractionated Kraft Lignin. J. Anal. Appl. Pyrolysis 2023, 172, 106028. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wang, Z.W.; Gao, S.; Tong, Y.X.; Le, X.; Hu, N.W.; Yan, Q.S.; Zhou, X.G.; He, Y.R.; Wang, L. Isolation and fractionation of the tobacco stalk lignin for customized value-added utilization. Front. Bioeng. Biotechnol. 2022, 9, 811287. [Google Scholar] [CrossRef]
- Cao, H.; Liu, R.L.; Li, B.; Wu, Y.L.; Wang, K.; Yang, Y.M.; Li, A.J.; Zhuang, Y.; Cai, D.; Qin, P.Y. Biobased rigid polyurethane foam using gradient acid precipitated lignin from the black liquor: Revealing the relationship between lignin structural features and polyurethane performances. Ind. Crops Prod. 2022, 177, 114480. [Google Scholar] [CrossRef]
- Zhang, J.B.; Ge, Y.Y.; Li, Z.L. Synchronous catalytic depolymerization of alkaline lignin to monophenols with in situ-converted hierarchical zeolite for bio-polyurethane production. Int. J. Biol. Macromol. 2022, 215, 477–488. [Google Scholar] [CrossRef]
- Liu, R.L.; Yang, Y.M.; Wu, Y.L.; Zhu, M.Y.; Su, C.S.; Wang, Y.K.; Yao, Z.T.; Zhao, J.B.; Cao, H.; Cai, D. Rigid polyurethane foams refined by the lignin oligomers from catalytic upstream biorefining process. Sustain. Mater. Technol. 2023, 35, e00577. [Google Scholar] [CrossRef]
- Gang, H.; Lee, D.; Choi, K.Y.; Kim, H.N.; Ryu, H.; Lee, D.S.; Kim, B.G. Development of high performance polyurethane elastomers using vanillin-based green polyol chain extender originating from lignocellulosic biomass. ACS Sustain. Chem. Eng. 2017, 5, 4582–4588. [Google Scholar] [CrossRef]
- Shi, J.; Wang, S.Z.; Li, H.L.; Song, G.Y. Herbaceous plants-derived hydroxycinnamic units for constructing recyclable and controllable copolyesters. Green Chem. 2023, 25, 2458–2465. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of biomass lignin to high-value polyurethane: A review. J. Bio-Resour. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, Q.; Jiang, G.; Teng, D. Preparation and properties of lignin-based polyurethane materials. Arab. J. Chem. 2024, 17, 105471. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhang, X.Y.; Kang, S.M.; Liu, Y.N.; Bushra, R.; Guo, J.Q.; Zhu, W.Y.; Khan, M.R.; Jin, Y.C.; Song, J.L. Preparation of biodegradable recycled fiber composite film using lignin-based polyurethane emulsion as strength agent. Ind. Crops Prod. 2023, 197, 116512. [Google Scholar] [CrossRef]
- Wang, Q.H.; Xia, T.; Wu, W.L.; Zhao, J.Q.; Xue, X.L.; Ao, C.H.; Zhang, J.; Deng, X.Y.; Zhang, X.M.; Zhang, W.; et al. Flexible, all-solid-state supercapacitors derived from waste polyurethane foams. Chem. Eng. J. 2022, 431, 133228. [Google Scholar] [CrossRef]
- Gong, H.; Xu, Z.J.; Yang, Y.; Xu, Q.C.; Li, X.Y.; Cheng, X.; Huang, Y.R.; Zhang, F.; Zhao, J.Z.; Li, S.Y.; et al. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 2020, 169, 112567. [Google Scholar] [CrossRef]
- Ma, X.Z.; Wang, X.L.; Zhao, H.L.; Cui, M.H.; Xu, X.B.; Kong, F.F.; Chen, P.; Yan, N.; Zhu, J.; Chen, J. Lignin-based adaptable covalently cross-linked fabric for flexible sensors. Mater. Chem. Front. 2024. [Google Scholar] [CrossRef]
- Li, S.; Miao, Y.N.; Zhang, M.; Reheman, A.; Huang, L.L.; Chen, L.H.; Wu, H. Anti-UV antibacterial conductive lignin-copolymerized hydrogel for pressure sensing. J. For. Eng. 2022, 7, 114–123. [Google Scholar]
- Shi, Y.F.; Zhong, Y.Y.; Sun, Z.; Ma, X.Z.; Li, S.Q.; Wang, F.; An, Y.P.; Luo, Q.; Zhu, J.; Chen, J.; et al. One-step foam assisted synthesis of robust superhydrophobic lignin-based magnetic foams for highly efficient oil-water separation and rapid solar-driven heavy oil removal. J. Water Process Eng. 2022, 46, 102643. [Google Scholar] [CrossRef]
- Lv, W.R.; Wu, J.L.; Ma, X.Z.; Xu, X.B.; Wang, X.L.; Zhu, J.; Yan, N.; Chen, J. Superhydrophobic polyurethane foam based on castor oil and lignin with SiC nanoparticles for efficient and recyclable oil-water separation. J. Water Process Eng. 2024, 59, 104897. [Google Scholar] [CrossRef]
- Wu, J.L.; Ma, X.Z.; Gnanasekar, P.; Wang, F.; Zhu, J.; Yan, N.; Chen, J. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO2 nanoparticles for efficient oil adsorption and separation. Sci. Total Environ. 2023, 860, 160276. [Google Scholar] [CrossRef]
- Li, J.R.; Xu, X.B.; Ma, X.Z.; Cui, M.H.; Wang, X.L.; Chen, J.; Zhu, J.; Chen, J. Antimicrobial Nonisocyanate Polyurethane Foam Derived from Lignin for Wound Healing. ACS Appl. Biol. Mater. 2024, 7, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.H.; Li, S.Q.; Ma, X.Z.; Wang, J.G.; Wang, X.L.; Chen, J.; Zhu, J.; Chen, J. Sustainable Janus lignin-based polyurethane biofoams with robust antibacterial activity and long-term biofilm resistance. Int. J. Biol. Macromol. 2024, 256, 128088. [Google Scholar] [CrossRef]
- Li, S.Q.; Zhang, Y.S.; Ma, X.Z.; Qiu, S.H.; Chen, J.; Lu, G.M.; Jia, Z.; Zhu, J.; Yang, Q.; Wei, Y. Antimicrobial lignin-based polyurethane/Ag composite foams for improving wound healing. Biomacromolecules 2022, 23, 1622–1632. [Google Scholar] [CrossRef]
- Carriço, C.S.; Fraga, T.; Pasa, V.M.D. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 2016, 85, 53–61. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.Z.; Wu, J.L.; Chao, Y.Y.; Xiao, P.; Zhu, J.; Chen, J. Flexible, recyclable and sensitive piezoresistive sensors enabled by lignin polyurethane-based conductive foam. Mater. Adv. 2023, 4, 586–595. [Google Scholar] [CrossRef]
- Pan, G.F.; Wang, Z.; Gong, X.B.; Wang, Y.F.; Ge, X.; Xing, R.G. Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal–ligand bonds between the cerium (III) triflate and phloretin. Chem. Eng. J. 2022, 446, 137228. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Wang, H.; Du, J.H.; Liu, X.C.; Pan, G.Y.; Yin, X.S.; Lin, W.J.; Liu, X.F.; Sun, Y.J.; Yi, G.B.; et al. High-strength, self-reinforcing and recyclable multifunctional lignin-based polyurethanes based on multi-level dynamic cross-linking. Chem. Eng. J. 2023, 473, 145423. [Google Scholar] [CrossRef]
- Du, J.H.; Wang, H.; Huang, Z.Y.; Liu, X.C.; Yin, X.S.; Wu, J.X.; Lin, W.J.; Lin, X.F.; Yi, G.B. Construction and mechanism study of lignin-based polyurethane with high strength and high self-healing properties. Int. J. Biol. Macromol. 2023, 248, 125925. [Google Scholar] [CrossRef]
- Yang, W.J.; Zhu, Y.L.; Liu, T.X.; Puglia, D.; Kenny, J.M.; Xu, P.W.; Zhang, R.; Ma, P.M. Multiple Structure Reconstruction by Dual Dynamic Crosslinking Strategy Inducing Self-Reinforcing and Toughening the Polyurethane/Nanocellulose Elastomers. Adv. Funct. Mater. 2023, 33, 2213294. [Google Scholar] [CrossRef]
- Li, X.X.; Chen, X.; Zhang, S.W.; Yin, Y.J.; Wang, C.X. UV-resistant transparent lignin-based polyurethane elastomer with repeatable processing performance. Eur. Polym. J. 2021, 159, 110763. [Google Scholar] [CrossRef]
- Huang, J.H.; Wang, H.X.; Liu, W.F.; Huang, J.H.; Yang, D.J.; Qiu, X.Q.; Zhao, L.; Hu, F.C.; Feng, Y.X. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin. Int. J. Biol. Macromol. 2023, 225, 1505–1516. [Google Scholar] [CrossRef]
- Dong, F.H.; Yang, X.X.; Guo, L.Z.; Qian, Y.H.; Sun, P.H.; Huang, Z.; Xu, X.; Liu, H. A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. J. Colloid Interface Sci. 2023, 631, 239–248. [Google Scholar] [CrossRef]
- Deng, W.; Jin, L.; Zhang, B.; Chen, Y.; Mao, L.; Zhang, H.; Yang, W. A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale 2016, 8, 16302–16306. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.W.; Zhang, H.X.; Zhang, Q.N.; Li, S.Q.; Luo, B.; Sha, J.L.; Liu, H.B. Novel stretchable fiber-shaped fluidic nanogenerators fabricated from carbonized lignin/thermoplastic polyurethane. Ind. Crops Prod. 2022, 186, 115240. [Google Scholar] [CrossRef]
- Wang, H.B.; Xu, J.H.; Li, K.J.; Dong, Y.; Du, Z.L.; Wang, S. Highly stretchable, self-healable, and self-adhesive ionogels with efficient antibacterial performances for a highly sensitive wearable strain sensor. J. Mater. Chem. B 2022, 10, 1301–1307. [Google Scholar] [CrossRef]
- Oveissi, F.; Naficy, S.; Le, T.Y.L.; Fletcher, D.F.; Dehghani, F. Tough and processable hydrogels based on lignin and hydrophilic polyurethane. ACS Appl. Biol. Mater. 2018, 1, 2073–2081. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J.; Liu, B.J.; Zhang, C.C.; Zhao, Q.; Sun, Z.Y.; Cao, H.; Zhu, G.S. Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Compos. Commun. 2021, 24, 100616. [Google Scholar] [CrossRef]
Preparation Method | Material | Description of the Preparation Method | PU Properties |
---|---|---|---|
Liquefaction | Enzymatically hydrolyzed lignin (EL), Polyethylene glycol 400 (PEG-400), Glycerol, Hexamethylene diisocyanate (HDI). | PEG-400 and glycerol as co-solvents. | Excellent mechanical stability, degradability [40]. |
Eucalyptus globulus, PEG-400, Glycerol, H2SO4 (Sulfuric acid). | PEG-400, glycerol, and sulfuric acid as co-solvents. | Increased tensile strength and elongation at break [41]. | |
Bamboo, Methanol, H2SO4, Methylene Diphenyl diisocyanate (MDI). | Liquefaction using a microwave. | Improved thermal stability, used for building insulation [42]. | |
Bamboo, Methanol, H2SO4, MDI. | H2SO4 as a catalyst, liquefaction using a microwave. | Excellent flame retardancy, insulation properties, and thermal stability [43]. | |
hydromethylation | Acetic acid lignin (AAL), Formaldehyde, PEG-200, Toluene-2,4-diisocyanate (TDI). | Lignin can chemically react with formaldehyde. | Enhanced mechanical properties, thermal stability, and tensile strength [44]. |
hydroxypropyl | Sawdust, Epichlorohydrin (ECH), Isophorone diamine (IPDA), DMF. | Fractionated oligomers for hydroxypropyl. | Excellent heat stability, antimicrobial properties, UV resistance [45]. |
Rapeseed oil-based polyol (RP), Lignin-based polyol (LP), Peracetic acid. | Fractionated oligomers for hydroxypropyl. | Improved thermal stability and degradation properties [46]. | |
Rapeseed oil-based polyol (RP), Lignin-based polyol (LP), Peracetic acid. | Fractionated oligomers for hydroxypropyl. | Excellent thermal conductivity, thermal insulation materials [47]. | |
Rapeseed oil-based polyol (RP), Lignin-based polyol (LP), Peracetic acid. | Fractionated oligomers for hydroxypropyl. | Excellent heat stability and compressive strength [48]. | |
Demethylation | AAL, DMF, Hydrobromic acid, PEG, TDI. | Catalytic demethylation of lignin by heating with HBr in DMF solvent. | Rubber-like tensile properties and improved thermo-oxidative stability [39]. |
Acetylation | Eucalyptus wood (KL), PEG, Acetic anhydride, Tetrahydrofuran (THF), MDI. | React lignin with Acetylation at 80 °C for 48 h. | Enhance modulus of elasticity and excellent bonding properties [49]. |
Fractionation | Alkaline lignin, Ethyl acetate (AR), Ethanol, Hydrochloric acid, PEG, HDI. | Fractionated lignin using ethyl acetate, ethanol, and acetone. | Improved the mechanical properties [29]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Huang, M.; Zhou, X.; Luo, R.; Li, L.; Li, X. Research Status of Lignin-Based Polyurethane and Its Application in Flexible Electronics. Polymers 2024, 16, 2340. https://doi.org/10.3390/polym16162340
Hu J, Huang M, Zhou X, Luo R, Li L, Li X. Research Status of Lignin-Based Polyurethane and Its Application in Flexible Electronics. Polymers. 2024; 16(16):2340. https://doi.org/10.3390/polym16162340
Chicago/Turabian StyleHu, Jingbo, Mengmeng Huang, Xing Zhou, Rubai Luo, Lu Li, and Xiaoning Li. 2024. "Research Status of Lignin-Based Polyurethane and Its Application in Flexible Electronics" Polymers 16, no. 16: 2340. https://doi.org/10.3390/polym16162340
APA StyleHu, J., Huang, M., Zhou, X., Luo, R., Li, L., & Li, X. (2024). Research Status of Lignin-Based Polyurethane and Its Application in Flexible Electronics. Polymers, 16(16), 2340. https://doi.org/10.3390/polym16162340