Ultraviolet Grafting of Bismuth Oxide Enhances the Photocatalytic Performance of PVDF Membrane and Improves the Problem of Membrane Fouling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVDF-g-BA Membrane
2.3. Characterization
2.4. Membrane Anti-Fouling Performance and Mechanism Testing
3. Results and Discussion
3.1. Evaluation of Membrane Properties
3.1.1. Characteristics of Modified PVDF Membranes
3.1.2. Filtering Performance of Membranes
3.1.3. Anti-Fouling Performance
3.2. Adsorption Mechanism
3.2.1. Capacity of Physical Adsorption
The Attraction of Van der Waals
Electrostatic Attraction
3.2.2. Capacity of Chemical Adsorption
3.2.3. Dynamic Analysis
3.3. Photocatalytic Self-Cleaning Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alvi, M.A.; Al-Ghamdi, A.A.; ShaheerAkhtar, M. Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Mater. Lett. 2017, 204, 12–15. [Google Scholar] [CrossRef]
- Houas, A. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Mekasuwandumrong, O.; Pawinrat, P.; Praserthdam, P.; Panpranot, J. Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chem. Eng. J. 2010, 164, 77–84. [Google Scholar] [CrossRef]
- Nassar, M.M.; Magdy, Y.H. Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem. Eng. J. 1997, 66, 223–226. [Google Scholar] [CrossRef]
- Yang, L.Y.; Dong, S.Y.; Sun, J.H.; Feng, J.L.; Wu, Q.H.; Sun, S.P. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst. J. Hazard Mater. 2010, 179, 438–443. [Google Scholar] [CrossRef]
- Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 2007, 85, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A.; Gupta, V.K. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 2012, 89, 245–251. [Google Scholar] [CrossRef]
- Sharma, J.; Sukriti; Anand, P.; Pruthi, V.; Chaddha, A.S.; Bhatia, J.; Kaith, B.S. RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies. Mater. Chem. Phys. 2017, 196, 270–283. [Google Scholar] [CrossRef]
- Lin, B.; Yang, G.; Yang, B.; Zhao, Y. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Appl. Catal. B Environ. 2016, 198, 276–285. [Google Scholar] [CrossRef]
- Wang, R.; Cao, L. Facile synthesis of a novel visible-light-driven AgVO3/BiVO4 heterojunction photocatalyst and mechanism insight. J. Alloys Compd. 2017, 722, 445–451. [Google Scholar] [CrossRef]
- Zambianchi, M.; Durso, M.; Liscio, A.; Treossi, E.; Bettini, C.; Capobianco, M.L.; Aluigi, A.; Kovtun, A.; Ruani, G.; Corticelli, F.; et al. Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water. Chem. Eng. J. 2017, 326, 130–140. [Google Scholar] [CrossRef]
- Leontie, L.; Caraman, M.; Visinoiu, A.; Rusu, G.I. On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Film. 2005, 473, 230–235. [Google Scholar] [CrossRef]
- Li, B.R.; Chu, J.Y.; Li, Y.; Meng, M.J.; Cui, Y.H.; Li, Q.D.; Feng, Y.H. Preparation and Performance of Visible-Light-Driven Bi2O3/ZnS Heterojunction Functionalized Porous CA Membranes for Effective Degradation of Rhodamine B. Phys. Status Solidi A-Appl. Mat. 2018, 215, 10. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Roy, S.; Bhalani, D.V.; Jewrajk, S.K. Surface segregation of segmented amphiphilic copolymer of poly (dimethylsiloxane) and poly(ethylene glycol) on poly(vinylidene fluoride) blend membrane for oil-water emulsion separation. Sep. Purif. Technol. 2020, 232, 13. [Google Scholar] [CrossRef]
- Zou, X.Y.; Li, M.S.; Xiao, H.F.; Zhou, S.Y.; Chen, C.L.; Zhao, Y.J. Simulation study on real laminar assembly of g-C3N4 high performance free standing membrane with bio-based materials. Sep. Purif. Technol. 2022, 278, 10. [Google Scholar] [CrossRef]
- Li, B.; Meng, M.; Cui, Y.; Wu, Y.; Zhang, Y.; Dong, H.; Zhu, Z.; Feng, Y.; Wu, C. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem. Eng. J. 2019, 365, 405–414. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Z.; Wang, J.; Wang, S. A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite. Membr. Water Treat. 2012, 3, 35–49. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, T.; Shi, J.; Teng, K.; Wang, W.; Ma, M.; Li, J.; Qian, X.; Li, C.; Fan, J. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J. Membr. Sci. 2016, 520, 281–293. [Google Scholar] [CrossRef]
- Naz, A.; Sattar, R.; Siddiq, M. Polymer membranes for biofouling mitigation: A review. Polym.-Plast. Technol. Mater. 2019, 58, 1829–1854. [Google Scholar] [CrossRef]
- Liu, D.; Yin, J.L.; Tang, H.; Wang, H.; Liu, S.S.; Huang, T.T.; Fang, S.S.; Zhu, K.X.; Xie, Z.L. Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement. Sep. Purif. Technol. 2021, 279, 10. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Gohil, J.M.; Mohanty, S.; Nayak, S.K. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A 2018, 6, 313–333. [Google Scholar] [CrossRef]
- Jeong, E.; Byun, J.; Bayarkhuu, B.; Hong, S.W. Hydrophilic photocatalytic membrane via grafting conjugated polyelectrolyte for visible-light-driven biofouling control. Appl. Catal. B-Environ. 2021, 282, 10. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S. Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: Fabrication, characterization and performance. Sep. Purif. Technol. 2020, 240, 12. [Google Scholar] [CrossRef]
- Shao, D.D.; Yang, W.J.; Xiao, H.F.; Wang, Z.Y.; Zhou, C.; Cao, X.L.; Sun, S.P. Self-Cleaning Nanofiltration Membranes by Coordinated Regulation of Carbon Quantum Dots and Polydopamine. ACS Appl. Mater. Interfaces 2020, 12, 580–590. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, Q.; Gao, Q.; Wan, S.Y.; Yao, P.; Zhu, X.S. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl. Catal. B-Environ. 2020, 267, 12. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials 2020, 13, 14. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; He, A.; Yang, S.J.; Wu, G.P.; Darling, S.B.; Xu, Z.K. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment. Adv. Funct. Mater. 2017, 27, 8. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Zereshki, S.; Mansourpanah, Y. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. [Google Scholar] [CrossRef]
- Zou, H.; Ren, X.; Zhang, J. Fabrication of a Bi2O3 Surface-Modified Polyvinylidene Fluoride Membrane via an Ultraviolet Photografting Method: Improving Hydrophilicity and Degree of Acrylic Acid Grafting. Ind. Eng. Chem. Res. 2020, 59, 6580–6588. [Google Scholar] [CrossRef]
- Zhivulin, V.E.; Pesin, L.A.; Belenkov, E.A.; Greshnyakov, V.A.; Zlobina, N.; Brzhezinskaya, M. Ageing of chemically modified poly(vinylidene fluoride) film: Evolution of triple carbon-carbon bonds infrared absorption. Polym. Degrad. Stab. 2020, 172, 9. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, B.; Fang, L.; Ling, F.; Gao, J.; Wu, F.; Zhang, X. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere 2016, 152, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Lei, C.; Zhu, X.; Le, Y.; Zhu, B.; Yu, J.; Ho, W. Hierarchically porous NiO–Al2O3 nanocomposite with enhanced Congo red adsorption in water. RSC Adv. 2016, 6, 10272–10279. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ma, W.H.; Chen, C.C.; Ji, H.W.; Zhao, J.C. Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review. Chem. Eng. J. 2011, 170, 353–362. [Google Scholar] [CrossRef]
- Cao, L.; Yang, C.J.; Zhang, B.G.; Lv, K.L.; Li, M.; Deng, K.J. Synergistic photocatalytic performance of cobalt tetra(2-hydroxymethyl-1, 4-dithiin)porphyrazine loaded on zinc oxide nanoparticles. J. Hazard. Mater. 2018, 359, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Huang, X.; Liu, C.; Ren, X.; Zhang, J. Highly Efficient Oxygen-Activated Self-Cleaning Membranes Prepared by Grafting a Metal-Organic Framework-Derived Catalyst. ACS Appl. Mater. Interfaces 2022, 14, 20930–20942. [Google Scholar] [CrossRef]
- Shuai, Y.; Huang, X.; Zhang, B.; Xiang, L.; Xu, H.; Ye, Q.; Lu, J.; Zhang, J. MOF-5@Ni Derived ZnO@Ni3ZnC0.7/PMS System for Organic Matter Removal: A Thorough Understanding of the Adsorption–Degradation Process. Engineering 2023, 24, 253–263. [Google Scholar] [CrossRef]
Membrane | Bi2O3 (mg) | AA (mg) | Bi Grafting (%) | AA Grafting (%) |
---|---|---|---|---|
M1 | 0 | 21.40 | 0 | 5.02 |
M4 | 8.86 | 44.94 | 3.57 | 10.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Kong, Y.; Xia, G.; Ren, X.; Zhang, J. Ultraviolet Grafting of Bismuth Oxide Enhances the Photocatalytic Performance of PVDF Membrane and Improves the Problem of Membrane Fouling. Polymers 2024, 16, 2322. https://doi.org/10.3390/polym16162322
Liu C, Kong Y, Xia G, Ren X, Zhang J. Ultraviolet Grafting of Bismuth Oxide Enhances the Photocatalytic Performance of PVDF Membrane and Improves the Problem of Membrane Fouling. Polymers. 2024; 16(16):2322. https://doi.org/10.3390/polym16162322
Chicago/Turabian StyleLiu, Chang, Yuxuan Kong, Guojiang Xia, Xiancheng Ren, and Jing Zhang. 2024. "Ultraviolet Grafting of Bismuth Oxide Enhances the Photocatalytic Performance of PVDF Membrane and Improves the Problem of Membrane Fouling" Polymers 16, no. 16: 2322. https://doi.org/10.3390/polym16162322
APA StyleLiu, C., Kong, Y., Xia, G., Ren, X., & Zhang, J. (2024). Ultraviolet Grafting of Bismuth Oxide Enhances the Photocatalytic Performance of PVDF Membrane and Improves the Problem of Membrane Fouling. Polymers, 16(16), 2322. https://doi.org/10.3390/polym16162322