Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.; Hammer, B.A.G.; Müllen, K. Conjugated Polymers—Problems and Promises. Prog. Polym. Sci. 2020, 100, 101179. [Google Scholar] [CrossRef]
- Pankow, R.M.; Thompson, B.C. The Development of Conjugated Polymers as the Cornerstone of Organic Electronics. Polymer 2020, 207, 122874. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Durbin, M.M.; Stingelin, N. Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules 2021, 54, 5304–5320. [Google Scholar] [CrossRef]
- Stingelin, N. Establishing the Thermal Phase Behavior and Its Influence on Optoelectronic Properties of Semiconducting Polymers. In Conjugated Polymers: Properties, Processing, and Applications; Reynolds, J.R., Thompson, B.C., Skotheim, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sirringhaus, H.; Tessler, N.; Friend, R.H. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280, 1741–1744. [Google Scholar] [CrossRef] [PubMed]
- Hildner, R.; Lemmer, U.; Scherf, U.; van Heel, M.; Köhler, J. Revealing the Electron–Phonon Coupling in a Conjugated Polymer by Single-Molecule Spectroscopy. Adv. Mater. 2007, 19, 1978–1982. [Google Scholar] [CrossRef]
- Máthé, L.; Grosu, I. Transport Through a Quantum Dot with Electron-Phonon Interaction. Mater. Today Proc. 2018, 5, 15878–15887. [Google Scholar] [CrossRef]
- Milián-Medina, B.; Gierschner, J. “Though It Be but Little, It Is Fierce”: Excited State Engineering of Conjugated Organic Materials by Fluorination. J. Phys. Chem. Lett. 2017, 8, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Arango, A.C.; Carter, S.A.; Brock, P.J. Charge Transfer in Photovoltaics Consisting of Interpenetrating Networks of Conjugated Polymer and TiO2 Nanoparticles. Appl. Phys. Lett. 1999, 74, 1698–1700. [Google Scholar] [CrossRef]
- Babel, A.; Zhu, Y.; Cheng, K.-F.; Chen, W.-C.; Jenekhe, S.A. High Electron Mobility and Ambipolar Charge Transport in Binary Blends of Donor and Acceptor Conjugated Polymers. Adv. Funct. Mater. 2007, 17, 2542–2549. [Google Scholar] [CrossRef]
- Dong, H.; Hu, W. Multilevel Investigation of Charge Transport in Conjugated Polymers. Acc. Chem. Res. 2016, 49, 2435–2443. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef]
- Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y. Synthesis and Absorption Spectra of Poly(3-(Phenylenevinyl)Thiophene)s with Conjugated Side Chains. Macromolecules 2006, 39, 594–603. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Wang, J.-Y.; Pei, J. Controlling Morphology and Microstructure of Conjugated Polymers via Solution-State Aggregation. Prog. Polym. Sci. 2023, 136, 101626. [Google Scholar] [CrossRef]
- Ma, J.; He, Q.; Xue, Z.; Sou, H.L.; Han, Y.; Zhong, H.; Pietrangelo, A.; Heeney, M.; Fei, Z. Regulation of Microstructure and Charge Transport Properties of Cyclopentadiene-Based Conjugated Polymers via Side-Chain Engineering. J. Mater. Chem. C 2024, 12, 3549–3556. [Google Scholar] [CrossRef]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Zhigadlo, N.D.; Kumar, A.; Baklar, M.A.; Karpinski, J.; Smith, P.; Kreouzis, T.; Stingelin, N. Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-Hexylthiophene). Macromolecules 2011, 44, 1221–1225. [Google Scholar] [CrossRef]
- Hagler, T.W.; Pakbaz, K.; Voss, K.F.; Heeger, A.J. Enhanced Order and Electronic Delocalization in Conjugated Polymers Oriented by Gel Processing in Polyethylene. Phys. Rev. B 1991, 44, 8652–8666. [Google Scholar] [CrossRef]
- Panzer, F.; Bässler, H.; Köhler, A. Temperature Induced Order–Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. J. Phys. Chem. Lett. 2016, 8, 114–125. [Google Scholar] [CrossRef]
- Panzer, F.; Sommer, M.; Bässler, H.; Thelakkat, M.; Köhler, A. Spectroscopic Signature of Two Distinct H-Aggregate Species in Poly(3-Hexylthiophene). Macromolecules 2015, 48, 1543–1553. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhen, S.; Mo, D.; Lin, K.; Ming, S.; Wang, Z.; Liu, C.; Xu, J.; Yao, Y.; Duan, X.; et al. Design and Synthesis of 9,9-dioctyl-9H-fluorene Based Electrochromic Polymers. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 325–334. [Google Scholar] [CrossRef]
- Jin, J.-K.; Kwon, S.-K.; Kim, Y.-H.; Shin, D.-C.; You, H.; Jung, H.-T. Synthesis and Device Performance of a Highly Efficient Fluorene-Based Blue Emission Polymer Containing Bulky 9,9-Dialkylfluorene Substituents. Macromolecules 2009, 42, 6339–6347. [Google Scholar] [CrossRef]
- Ng, M.-F.; Sun, S.L.; Zhang, R.Q. A Comparative Study of Optical Properties of Poly(9,9-Dioctylfluorene) and Poly(p-Phenylenevinylene) Oligomers. J. Appl. Phys. 2005, 97, 103513. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A. Energy Transfer Mechanism and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Nanocomposite Thin Films. Opt. Mater. 2017, 72, 644–649. [Google Scholar] [CrossRef]
- Chen, P.; Yang, G.; Liu, T.; Li, T.; Wang, M.; Huang, W. Optimization of Opto-electronic Property and Device Efficiency of Polyfluorenes by Tuning Structure and Morphology. Polym. Int. 2006, 55, 473–490. [Google Scholar] [CrossRef]
- Zhou, Q.; Hou, Q.; Zheng, L.; Deng, X.; Yu, G.; Cao, Y. Fluorene-Based Low Band-Gap Copolymers for High Performance Photovoltaic Devices. Appl. Phys. Lett. 2004, 84, 1653–1655. [Google Scholar] [CrossRef]
- Yingying, S.; Shuai, W.; Ziye, W.; Yongqiang, W.; Yunlong, L.; Shuhong, L.; Xiaochen, D.; Wenjun, W. Enhanced Performance of Solution Processed OLED Devices Based on PFO Induced TADF Emission Layers. J. Lumin. 2024, 266, 120274. [Google Scholar] [CrossRef]
- Lin, C.; Chen, P.; Xiong, Z.; Liu, D.; Wang, G.; Meng, Y.; Song, Q. Interfacial Engineering with Ultrathin Poly (9,9-Di-n-Octylfluorenyl-2,7-Diyl) (PFO) Layer for High Efficient Perovskite Light-Emitting Diodes. Nanotechnology 2018, 29, 075203. [Google Scholar] [CrossRef]
- Gioti, M.; Foris, V.; Kyriazopoulos, V.; Mekeridis, E.; Laskarakis, A.; Logothetidis, S. Optical and Electrical Characterization of Blended Active Materials for White OLEDs (WOLEDs). Mater. Today Proc. 2021, 37, A32–A38. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Rahmati, M.; Pahlevani, M.; Welch, G.C. Solution Processed Red Organic Light-Emitting-Diodes Using an N-Annulated Perylene Diimide Fluorophore. J. Mater. Chem. C 2020, 8, 2314–2319. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, C.; Niu, Q.; Peng, J.; Cao, Y. Enhanced Green Electrophosphorescence by Using Polyfluorene Host via Interfacial Energy Transfer from Polyvinylcarbazole. Org. Electron. 2008, 9, 1002–1009. [Google Scholar] [CrossRef]
- Wan, L.; Shi, X.; Wade, J.; Campbell, A.J.; Fuchter, M.J. Strongly Circularly Polarized Crystalline and β-Phase Emission from Poly(9,9-dioctylfluorene)-Based Deep-Blue Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2100066. [Google Scholar] [CrossRef]
- Brunner, P.-L.M.; Laliberté, D.; Dang, M.T.; Wantz, G.; Wuest, J.D. Dependence of the Performance of Light-Emitting Diodes on the Molecular Weight of the Electroluminescent Polymer PFO-MEH-PPV. Can. J. Chem. 2020, 98, 575–581. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, Y.-C.; Hsieh, H.-C.; Hsu, L.-C.; Yang, W.-C.; Isono, T.; Satoh, T.; Chen, W.-C. Improving the Performance of Photonic Transistor Memory Devices Using Conjugated Block Copolymers as a Floating Gate. J. Mater. Chem. C 2021, 9, 1259–1268. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Campoy-Quiles, M. Rapid and High-Resolution Patterning of Microstructure and Composition in Organic Semiconductors Using ‘Molecular Gates’. Nat. Commun. 2020, 11, 3610. [Google Scholar] [CrossRef] [PubMed]
- Krinichnyi, V.I.; Yudanova, E.I.; Denisov, N.N.; Konkin, A.A.; Ritter, U.; Wessling, B.; Konkin, A.L.; Bogatyrenko, V.R. Impact of Spin-Exchange Interaction on Charge Transfer in Dual-Polymer Photovoltaic Composites. J. Phys. Chem. C 2020, 124, 10852–10869. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhu, S.; Li, L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS Appl. Bio Mater. 2021, 4, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, J.; Zhao, J.; Zhang, J.; Yuan, R.; Chen, S. A Novel Aptamer Biosensor Based on Polydopamine Quenched Electrochemiluminescence of Polyfluorene Nanoparticles for Amyloid-β Oligomers Detection. Sens. Actuators B Chem. 2022, 368, 132204. [Google Scholar] [CrossRef]
- Liu, D.; Yang, G.; Zhang, X.; Chen, S.; Yuan, R. A Novel Potential-Regulated Ratiometric Electrochemiluminescence Sensing Strategy Based on Poly(9,9-Di-n-Octylfluorenyl-2,7-Diyl) Polymer Nanoparticles for microRNA Detection. Sens. Actuators B Chem. 2021, 329, 129210. [Google Scholar] [CrossRef]
- Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. ACS Appl. Mater. Interfaces 2016, 8, 18969–18977. [Google Scholar] [CrossRef]
- Sonar, P.; Grimsdale, A.C.; Heeney, M.; Shkunov, M.; McCulloch, I.; Müllen, K. A Study of the Effects Metal Residues in Poly(9,9-Dioctylfluorene) Have on Field-Effect Transistor Device Characteristics. Synth. Met. 2007, 157, 872–875. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, X.; Wang, Y.; Luo, J.; Xu, Z.; Chen, Y.; Feng, Z.; Wang, Y. Hybrid Fabrication of Flexible Fully Printed Carbon Nanotube Field-Effect Transistors. J. Mater. Sci. Mater. Electron. 2023, 34, 2147. [Google Scholar] [CrossRef]
- Terra, I.A.A.; Sanfelice, R.C.; Valente, G.T.; Correa, D.S. Optical Sensor Based on Fluorescent PMMA/PFO Electrospun Nanofibers for Monitoring Volatile Organic Compounds. J. Appl. Polym. Sci. 2018, 135, 46128. [Google Scholar] [CrossRef]
- Giovanella, U.; Botta, C.; Galeotti, F.; Vercelli, B.; Battiato, S.; Pasini, M. Perfluorinated Polymer with Unexpectedly Efficient Deep Blue Electroluminescence for Full-Colour OLED Displays and Light Therapy Applications. J. Mater. Chem. C 2013, 1, 5322. [Google Scholar] [CrossRef]
- Como, E.D.; Borys, N.J.; Strohriegl, P.; Walter, M.J.; Lupton, J.M. Formation of a Defect-Free p-Electron System in Single b-Phase Polyfluorene Chains. J. Am. Chem. Soc. 2011, 133, 3690–3692. [Google Scholar] [CrossRef] [PubMed]
- Scherf, U.; List, E.J. Semiconducting Polyfluorenes—Towards Reliable Structure–Property Relationships. Adv. Mater. 2002, 14, 477–487. [Google Scholar] [CrossRef]
- Neher, D. Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365–1385. [Google Scholar] [CrossRef]
- Ariu, M.; Sims, M.; Rahn, M.; Hill, J.; Fox, A.; Lidzey, D.; Oda, M.; Cabanillas-Gonzalez, J.; Bradley, D. Exciton Migration in β-Phase Poly (9,9-Dioctylfluorene). Phys. Rev. B 2003, 67, 195333. [Google Scholar] [CrossRef]
- Khan, A.L.T.; Banach, M.J.; Köhler, A. Control of β-Phase Formation in Polyfluorene Thin Films via Franck–Condon Analysis. Synth. Met. 2003, 139, 905–907. [Google Scholar] [CrossRef]
- Zhang, Q.; Chi, L.; Hai, G.; Fang, Y.; Li, X.; Xia, R.; Huang, W.; Gu, E. An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties. Molecules 2017, 22, 315. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Chander, N.; Kim, J.; Bradley, D.D. Spectroscopic Properties of Poly (9,9-dioctylfluorene) Thin Films Possessing Varied Fractions of Β-phase Chain Segments: Enhanced Photoluminescence Efficiency via Conformation Structuring. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Chunwaschirasiri, W.; Tanto, B.; Huber, D.; Winokur, M. Chain Conformations and Photoluminescence of Poly (Di-n-Octylfluorene). Phys. Rev. Lett. 2005, 94, 107402. [Google Scholar] [CrossRef] [PubMed]
- Grell, M.; Bradley, D.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E.; Soliman, M. Chain Geometry, Solution Aggregation and Enhanced Dichroism in the Liquidcrystalline Conjugated Polymer Poly (9,9-dioctylfluorene). Acta Polym. 1998, 49, 439–444. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Morphology and Structure of the β Phase Crystals of Monodisperse Polyfluorenes. Macromolecules 2013, 46, 3025–3030. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Stavrinou, P.N.; Bradley, D.D.C.; Smith, P. Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-Dioctylfluorene). J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, Z.; Liu, B.; Li, T.; Lu, D. From Starting Formation to the Saturation Content of the β-Phase in Poly (9,9-Dioctylfluorene) Toluene Solutions. J. Phys. Chem. C 2017, 121, 14443–14450. [Google Scholar] [CrossRef]
- Chew, K.W.; Abdul Rahim, N.A.; Teh, P.L.; Abdul Hisam, N.S.; Alias, S.S. Thermal Degradation of Photoluminescence Poly(9,9-Dioctylfluorene) Solvent-Tuned Aggregate Films. Polymers 2022, 14, 1615. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; He, Q.; Guan, Y.; Liao, J.; He, Y.; Luo, X.; Cao, W.; Cui, Z.; Jia, S.; Liu, A.; et al. Influence of Molecular Weight and the Change of Solvent Solubility on β Conformation and Chains Condensed State Structure for Poly (9,9-Dioctylfluorene) (PFO) in Solution. Polymer 2022, 240, 124471. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Zhang, H.; Ren, J.; Bai, Z.; Li, X.; Ma, T.; Lu, D. Effect of Conjugated Polymer Poly (9,9-Dioctylfluorene) (PFO) Molecular Weight Change on the Single Chains, Aggregation and β Phase. Polymer 2016, 103, 299–306. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Guan, Y.; He, Q.; Cheng, D.; Almásy, L.; Lu, D.; Kjelstrup-Hansen, J.; Knaapila, M. The Development of Poly(9,9-Dioctylfluorene) from Solutions to Solution Processed Films in Terms of β-Conformation: Perspective of Molecular Weight and Solvent Quality. Polymer 2024, 295, 126748. [Google Scholar] [CrossRef]
- Caruso, M.E.; Anni, M. Real-Time Investigation of Solvent Swelling Induced β-Phase Formation in Poly(9,9-Dioctylfluorene). Phys. Rev. B 2007, 76, 054207. [Google Scholar] [CrossRef]
- Anni, M. Dual Band Amplified Spontaneous Emission in the Blue in Poly(9,9-Dioctylfluorene) Thin Films with Phase Separated Glassy and β-Phases. Opt. Mater. 2019, 96, 109313. [Google Scholar] [CrossRef]
- Kitts, C.C.; Vanden Bout, D.A. The Effect of Solvent Quality on the Chain Morphology in Solutions of Poly(9,9′-Dioctylfluorene). Polymer 2007, 48, 2322–2330. [Google Scholar] [CrossRef]
- Botiz, I. Prominent Processing Techniques to Manipulate Semiconducting Polymer Microstructures. J. Mater. Chem. C 2023, 11, 364–405. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, Z.; Wang, Z.; He, T. Study on the Single Crystals of Poly(3-Octylthiophene) Induced by Solvent-Vapor Annealing. J. Phys. Chem. B 2009, 113, 14604–14610. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent Annealing” Effect in Polymer Sollar Cells Based on Poly(3-Hexylthiophene) and Methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [Google Scholar] [CrossRef]
- Morgan, B.; Dadmun, M.D. The Importance of Solvent Quality on the Modification of Conjugated Polymer Conformation and Thermodynamics with Illumination. Soft Matter 2017, 13, 2773–2780. [Google Scholar] [CrossRef]
- Winokur, M.J.; Slinker, J.; Huber, D.L. Structure, Photophysics, and the Order-Disorder Transition to the β Phase in Poly(9,9-(Di-n,n-Octyl)Fluorene). Phys. Rev. B 2003, 67, 184106. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xu, Y.; Han, Y. Fibrillar Morphology of Derivatives of Poly(3-Alkylthiophene)s by Solvent Vapor Annealing: Effects of Conformational Transition and Conjugate Length. J. Phys. Chem. B 2013, 117, 5996–6006. [Google Scholar] [CrossRef]
- Hüttner, S.; Sommer, M.; Chiche, A.; Krausch, G.; Steiner, U.; Thelakkat, M. Controlled Solvent Vapour Annealing for Polymer Electronics. Soft Matter 2009, 5, 4206–4211. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B 2010, 114, 7452–7460. [Google Scholar] [CrossRef] [PubMed]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Simon, S.; Botiz, I. Self-Assembly of Block Copolymers on Surfaces Exposed to Space-Confined Solvent Vapor Annealing. Polymer 2023, 273, 125881. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Crystallization of Poly(Ethylene Oxide)-Based Triblock Copolymers in Films Swollen-Rich in Solvent Vapors. Coatings 2023, 13, 918. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers 2023, 15, 1900. [Google Scholar] [CrossRef] [PubMed]
- Babuțan, M.; Botiz, I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics 2024, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The Influence of Protic Non-Solvents Present in the Environment on Structure Formation of Poly(γ-Benzyl-L-Glutamate in Organic Solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Thomann, R.; Heck, B.; Shokri, R.; Stille, W.; Reiter, G. Crystallization of Poly(γ-Benzyl L-Glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules 2013, 46, 1470–1476. [Google Scholar] [CrossRef]
- Botiz, I.; Codescu, M.-A.; Farcau, C.; Leordean, C.; Astilean, S.; Silva, C.; Stingelin, N. Convective Self-Assembly of π-Conjugated Oligomers and Polymers. J. Mater. Chem. C 2017, 5, 2513–2518. [Google Scholar] [CrossRef]
- Dias, F.B.; Morgado, J.; Maçanita, A.L.; da Costa, F.P.; Burrows, H.D.; Monkman, A.P. Kinetics and Thermodynamics of Poly(9,9-Dioctylfluorene) β-Phase Formation in Dilute Solution. Macromolecules 2006, 39, 5854–5864. [Google Scholar] [CrossRef]
- Sims, M.; Bradley, D.D.C.; Ariu, M.; Koeberg, M.; Asimakis, A.; Grell, M.; Lidzey, D.G. Understanding the Origin of the 535 Nm Emission Band in Oxidized Poly(9,9-Dioctylfluorene): The Essential Role of Inter-Chain/Inter-Segment Interactions. Adv. Funct. Mater. 2004, 14, 765–781. [Google Scholar] [CrossRef]
- Hamilton, I.; Chander, N.; Cheetham, N.J.; Suh, M.; Dyson, M.; Wang, X.; Stavrinou, P.N.; Cass, M.; Bradley, D.D.C.; Kim, J.-S. Controlling Molecular Conformation for Highly Efficient and Stable Deep-Blue Copolymer Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 11070–11082. [Google Scholar] [CrossRef] [PubMed]
- Morgado, J.; Alcácer, L.; Charas, A. Poly(9,9-Dioctylfluorene)-Based Light-Emitting Diodes with Pure β-Phase Emission. Appl. Phys. Lett. 2007, 90, 201110. [Google Scholar] [CrossRef]
- Khan, A.L.T.; Sreearunothai, P.; Herz, L.M.; Banach, M.J.; Köhler, A. Morphology-Dependent Energy Transfer within Polyfluorene Thin Films. Phys. Rev. B 2004, 69, 085201. [Google Scholar] [CrossRef]
- Cadby, A.; Lane, P.; Mellor, H.; Martin, S.; Grell, M.; Giebeler, C.; Bradley, D.; Wohlgenannt, M.; An, C.; Vardeny, Z. Film Morphology and Photophysics of Polyfluorene. Phys. Rev. B 2000, 62, 15604. [Google Scholar] [CrossRef]
- Rothe, C.; King, S.; Dias, F.; Monkman, A. Triplet Exciton State and Related Phenomena in the β-Phase of Poly (9,9-Dioctyl) Fluorene. Phys. Rev. B 2004, 70, 195213. [Google Scholar] [CrossRef]
- Ahmad, F.H.; Hassan, Z.; Lim, W.F. Investigation on Structural, Morphological, Optical, and Current-Voltage Characteristics of Polyfluorene with Dissimilar Composition Spin Coated on ITO. Optik 2021, 242, 167034. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Wang, Y.; Lu, W.; Wang, R.; Fan, L.; Xu, Y.; Lou, H.; Zhang, X. Controllable β-Phase Formation in Poly(9,9-Dioctylfluorene) by Dip-Coating for Blue Polymer Light-Emitting Diodes. Thin Solid Films 2022, 746, 139118. [Google Scholar] [CrossRef]
- Liu, B.; Bai, Z.; Li, T.; Liu, Y.; Li, X.; Zhang, H.; Lu, D. Discovery and Structure Characteristics of the Intermediate-State Conformation of Poly(9,9-Dioctylfluorene) (PFO) in the Dynamic Process of Conformation Transformation and Its Effects on Carrier Mobility. RSC Adv. 2020, 10, 492–500. [Google Scholar] [CrossRef]
- Palacios, R.; Formentin, P.; Martinez-Ferrero, E.; Pallarès, J.; Marsal, L. β-Phase Morphology in Ordered Poly(9,9-Dioctylfluorene) Nanopillars by Template Wetting Method. Nanoscale Res. Lett. 2010, 6, 35. [Google Scholar] [CrossRef]
- Ariu, M.; Lidzey, D.G.; Bradley, D.D.C. Influence of Film Morphology on the Vibrational Spectra of Dioctyl Substituted Polyfluorene (PFO). Synth. Met. 2000, 111–112, 607–610. [Google Scholar] [CrossRef]
- Rajamanickam, S.; Mohammad, S.M.; Hassan, Z.; Omar, A.F.; Muhammad, A. Investigations into Ag Nanoparticles–Carbon–Poly(9,9-Di-n-Octylfluorenyl-2,7-Diyl) (PFO) Composite: Morphological, Structural, Optical, and Electrical Characterization. Polym. Bull. 2022, 79, 9111–9130. [Google Scholar] [CrossRef]
- Ariu, M.; Lidzey, D.G.; Lavrentiev, M.; Bradley, D.D.C.; Jandke, M.; Strohriegl, P. A Study of the Different Structural Phases of the Polymer Poly(9,9′-Dioctyl Fluorene) Using Raman Spectroscopy. Synth. Met. 2001, 116, 217–221. [Google Scholar] [CrossRef]
- Lukaszczuk, P.; Borowiak-Palen, E.; Rümmeli, M.H.; Kalenczuk, R.J. Single-Walled Carbon Nanotubes Modified by PFO: An Optical Absorption and Raman Spectroscopic Investigation. Phys. Status Solidi B 2009, 246, 2699–2703. [Google Scholar] [CrossRef]
Material | Solvent | Abs. λ (nm) | PL λ (nm) | Area Ratio a | SW λ0-0 Peak Ratio b | LW λ0-1 Peak Ratio c |
---|---|---|---|---|---|---|
PFO105k | tetrahydrofuran | - | λ0-0 = 440 | 1.824 | 2.705 | 2.475 |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
toluene | λg = 397 | λ0-0 = 440 | 1.747 | 2.501 | 2.325 | |
λβ = 431 | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 1.706 | 2.474 | 2.319 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 391 | λ0-0 = 426 | - | - | - | |
- | λ0-1 = 445 | |||||
PFO63k | tetrahydrofuran | - | λ0-0 = 439 | 1.659 | 2.581 | 2.033 |
- | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
toluene | λg = 397 | λ0-0 = 439 | 1.676 | 2.533 | 2.066 | |
λβ = 431 | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 1.612 | 2.402 | 2.094 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 392 | λ0-0 = 424 | - | - | - | |
- | λ0-1 = 445 | |||||
PFO14k | tetrahydrofuran | - | λ0-0 = 440 | 1.886 | 2.068 | 2.504 |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
toluene | λg = 398 | λ0-0 = 439 | 1.952 | 2.404 | 2.359 | |
λβ = 431 | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 2.179 | 2.291 | 2.664 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 393 | λ0-0 = 426 | - | - | - | |
- | λ0-1 = 444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todor-Boer, O.; Farcău, C.; Botiz, I. Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers 2024, 16, 2278. https://doi.org/10.3390/polym16162278
Todor-Boer O, Farcău C, Botiz I. Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers. 2024; 16(16):2278. https://doi.org/10.3390/polym16162278
Chicago/Turabian StyleTodor-Boer, Otto, Cosmin Farcău, and Ioan Botiz. 2024. "Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure" Polymers 16, no. 16: 2278. https://doi.org/10.3390/polym16162278
APA StyleTodor-Boer, O., Farcău, C., & Botiz, I. (2024). Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers, 16(16), 2278. https://doi.org/10.3390/polym16162278