Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.; Hammer, B.A.G.; Müllen, K. Conjugated Polymers—Problems and Promises. Prog. Polym. Sci. 2020, 100, 101179. [Google Scholar] [CrossRef]
- Pankow, R.M.; Thompson, B.C. The Development of Conjugated Polymers as the Cornerstone of Organic Electronics. Polymer 2020, 207, 122874. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Cooper, A.I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Durbin, M.M.; Stingelin, N. Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules 2021, 54, 5304–5320. [Google Scholar] [CrossRef]
- Stingelin, N. Establishing the Thermal Phase Behavior and Its Influence on Optoelectronic Properties of Semiconducting Polymers. In Conjugated Polymers: Properties, Processing, and Applications; Reynolds, J.R., Thompson, B.C., Skotheim, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sirringhaus, H.; Tessler, N.; Friend, R.H. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280, 1741–1744. [Google Scholar] [CrossRef] [PubMed]
- Hildner, R.; Lemmer, U.; Scherf, U.; van Heel, M.; Köhler, J. Revealing the Electron–Phonon Coupling in a Conjugated Polymer by Single-Molecule Spectroscopy. Adv. Mater. 2007, 19, 1978–1982. [Google Scholar] [CrossRef]
- Máthé, L.; Grosu, I. Transport Through a Quantum Dot with Electron-Phonon Interaction. Mater. Today Proc. 2018, 5, 15878–15887. [Google Scholar] [CrossRef]
- Milián-Medina, B.; Gierschner, J. “Though It Be but Little, It Is Fierce”: Excited State Engineering of Conjugated Organic Materials by Fluorination. J. Phys. Chem. Lett. 2017, 8, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Arango, A.C.; Carter, S.A.; Brock, P.J. Charge Transfer in Photovoltaics Consisting of Interpenetrating Networks of Conjugated Polymer and TiO2 Nanoparticles. Appl. Phys. Lett. 1999, 74, 1698–1700. [Google Scholar] [CrossRef]
- Babel, A.; Zhu, Y.; Cheng, K.-F.; Chen, W.-C.; Jenekhe, S.A. High Electron Mobility and Ambipolar Charge Transport in Binary Blends of Donor and Acceptor Conjugated Polymers. Adv. Funct. Mater. 2007, 17, 2542–2549. [Google Scholar] [CrossRef]
- Dong, H.; Hu, W. Multilevel Investigation of Charge Transport in Conjugated Polymers. Acc. Chem. Res. 2016, 49, 2435–2443. [Google Scholar] [CrossRef]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef]
- Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y. Synthesis and Absorption Spectra of Poly(3-(Phenylenevinyl)Thiophene)s with Conjugated Side Chains. Macromolecules 2006, 39, 594–603. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Wang, J.-Y.; Pei, J. Controlling Morphology and Microstructure of Conjugated Polymers via Solution-State Aggregation. Prog. Polym. Sci. 2023, 136, 101626. [Google Scholar] [CrossRef]
- Ma, J.; He, Q.; Xue, Z.; Sou, H.L.; Han, Y.; Zhong, H.; Pietrangelo, A.; Heeney, M.; Fei, Z. Regulation of Microstructure and Charge Transport Properties of Cyclopentadiene-Based Conjugated Polymers via Side-Chain Engineering. J. Mater. Chem. C 2024, 12, 3549–3556. [Google Scholar] [CrossRef]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Zhigadlo, N.D.; Kumar, A.; Baklar, M.A.; Karpinski, J.; Smith, P.; Kreouzis, T.; Stingelin, N. Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-Hexylthiophene). Macromolecules 2011, 44, 1221–1225. [Google Scholar] [CrossRef]
- Hagler, T.W.; Pakbaz, K.; Voss, K.F.; Heeger, A.J. Enhanced Order and Electronic Delocalization in Conjugated Polymers Oriented by Gel Processing in Polyethylene. Phys. Rev. B 1991, 44, 8652–8666. [Google Scholar] [CrossRef]
- Panzer, F.; Bässler, H.; Köhler, A. Temperature Induced Order–Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. J. Phys. Chem. Lett. 2016, 8, 114–125. [Google Scholar] [CrossRef]
- Panzer, F.; Sommer, M.; Bässler, H.; Thelakkat, M.; Köhler, A. Spectroscopic Signature of Two Distinct H-Aggregate Species in Poly(3-Hexylthiophene). Macromolecules 2015, 48, 1543–1553. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhen, S.; Mo, D.; Lin, K.; Ming, S.; Wang, Z.; Liu, C.; Xu, J.; Yao, Y.; Duan, X.; et al. Design and Synthesis of 9,9-dioctyl-9H-fluorene Based Electrochromic Polymers. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 325–334. [Google Scholar] [CrossRef]
- Jin, J.-K.; Kwon, S.-K.; Kim, Y.-H.; Shin, D.-C.; You, H.; Jung, H.-T. Synthesis and Device Performance of a Highly Efficient Fluorene-Based Blue Emission Polymer Containing Bulky 9,9-Dialkylfluorene Substituents. Macromolecules 2009, 42, 6339–6347. [Google Scholar] [CrossRef]
- Ng, M.-F.; Sun, S.L.; Zhang, R.Q. A Comparative Study of Optical Properties of Poly(9,9-Dioctylfluorene) and Poly(p-Phenylenevinylene) Oligomers. J. Appl. Phys. 2005, 97, 103513. [Google Scholar] [CrossRef]
- Al-Asbahi, B.A. Energy Transfer Mechanism and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Nanocomposite Thin Films. Opt. Mater. 2017, 72, 644–649. [Google Scholar] [CrossRef]
- Chen, P.; Yang, G.; Liu, T.; Li, T.; Wang, M.; Huang, W. Optimization of Opto-electronic Property and Device Efficiency of Polyfluorenes by Tuning Structure and Morphology. Polym. Int. 2006, 55, 473–490. [Google Scholar] [CrossRef]
- Zhou, Q.; Hou, Q.; Zheng, L.; Deng, X.; Yu, G.; Cao, Y. Fluorene-Based Low Band-Gap Copolymers for High Performance Photovoltaic Devices. Appl. Phys. Lett. 2004, 84, 1653–1655. [Google Scholar] [CrossRef]
- Yingying, S.; Shuai, W.; Ziye, W.; Yongqiang, W.; Yunlong, L.; Shuhong, L.; Xiaochen, D.; Wenjun, W. Enhanced Performance of Solution Processed OLED Devices Based on PFO Induced TADF Emission Layers. J. Lumin. 2024, 266, 120274. [Google Scholar] [CrossRef]
- Lin, C.; Chen, P.; Xiong, Z.; Liu, D.; Wang, G.; Meng, Y.; Song, Q. Interfacial Engineering with Ultrathin Poly (9,9-Di-n-Octylfluorenyl-2,7-Diyl) (PFO) Layer for High Efficient Perovskite Light-Emitting Diodes. Nanotechnology 2018, 29, 075203. [Google Scholar] [CrossRef]
- Gioti, M.; Foris, V.; Kyriazopoulos, V.; Mekeridis, E.; Laskarakis, A.; Logothetidis, S. Optical and Electrical Characterization of Blended Active Materials for White OLEDs (WOLEDs). Mater. Today Proc. 2021, 37, A32–A38. [Google Scholar] [CrossRef]
- Dayneko, S.V.; Rahmati, M.; Pahlevani, M.; Welch, G.C. Solution Processed Red Organic Light-Emitting-Diodes Using an N-Annulated Perylene Diimide Fluorophore. J. Mater. Chem. C 2020, 8, 2314–2319. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, C.; Niu, Q.; Peng, J.; Cao, Y. Enhanced Green Electrophosphorescence by Using Polyfluorene Host via Interfacial Energy Transfer from Polyvinylcarbazole. Org. Electron. 2008, 9, 1002–1009. [Google Scholar] [CrossRef]
- Wan, L.; Shi, X.; Wade, J.; Campbell, A.J.; Fuchter, M.J. Strongly Circularly Polarized Crystalline and β-Phase Emission from Poly(9,9-dioctylfluorene)-Based Deep-Blue Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2100066. [Google Scholar] [CrossRef]
- Brunner, P.-L.M.; Laliberté, D.; Dang, M.T.; Wantz, G.; Wuest, J.D. Dependence of the Performance of Light-Emitting Diodes on the Molecular Weight of the Electroluminescent Polymer PFO-MEH-PPV. Can. J. Chem. 2020, 98, 575–581. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, Y.-C.; Hsieh, H.-C.; Hsu, L.-C.; Yang, W.-C.; Isono, T.; Satoh, T.; Chen, W.-C. Improving the Performance of Photonic Transistor Memory Devices Using Conjugated Block Copolymers as a Floating Gate. J. Mater. Chem. C 2021, 9, 1259–1268. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Campoy-Quiles, M. Rapid and High-Resolution Patterning of Microstructure and Composition in Organic Semiconductors Using ‘Molecular Gates’. Nat. Commun. 2020, 11, 3610. [Google Scholar] [CrossRef] [PubMed]
- Krinichnyi, V.I.; Yudanova, E.I.; Denisov, N.N.; Konkin, A.A.; Ritter, U.; Wessling, B.; Konkin, A.L.; Bogatyrenko, V.R. Impact of Spin-Exchange Interaction on Charge Transfer in Dual-Polymer Photovoltaic Composites. J. Phys. Chem. C 2020, 124, 10852–10869. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhu, S.; Li, L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS Appl. Bio Mater. 2021, 4, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, J.; Zhao, J.; Zhang, J.; Yuan, R.; Chen, S. A Novel Aptamer Biosensor Based on Polydopamine Quenched Electrochemiluminescence of Polyfluorene Nanoparticles for Amyloid-β Oligomers Detection. Sens. Actuators B Chem. 2022, 368, 132204. [Google Scholar] [CrossRef]
- Liu, D.; Yang, G.; Zhang, X.; Chen, S.; Yuan, R. A Novel Potential-Regulated Ratiometric Electrochemiluminescence Sensing Strategy Based on Poly(9,9-Di-n-Octylfluorenyl-2,7-Diyl) Polymer Nanoparticles for microRNA Detection. Sens. Actuators B Chem. 2021, 329, 129210. [Google Scholar] [CrossRef]
- Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. ACS Appl. Mater. Interfaces 2016, 8, 18969–18977. [Google Scholar] [CrossRef]
- Sonar, P.; Grimsdale, A.C.; Heeney, M.; Shkunov, M.; McCulloch, I.; Müllen, K. A Study of the Effects Metal Residues in Poly(9,9-Dioctylfluorene) Have on Field-Effect Transistor Device Characteristics. Synth. Met. 2007, 157, 872–875. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, X.; Wang, Y.; Luo, J.; Xu, Z.; Chen, Y.; Feng, Z.; Wang, Y. Hybrid Fabrication of Flexible Fully Printed Carbon Nanotube Field-Effect Transistors. J. Mater. Sci. Mater. Electron. 2023, 34, 2147. [Google Scholar] [CrossRef]
- Terra, I.A.A.; Sanfelice, R.C.; Valente, G.T.; Correa, D.S. Optical Sensor Based on Fluorescent PMMA/PFO Electrospun Nanofibers for Monitoring Volatile Organic Compounds. J. Appl. Polym. Sci. 2018, 135, 46128. [Google Scholar] [CrossRef]
- Giovanella, U.; Botta, C.; Galeotti, F.; Vercelli, B.; Battiato, S.; Pasini, M. Perfluorinated Polymer with Unexpectedly Efficient Deep Blue Electroluminescence for Full-Colour OLED Displays and Light Therapy Applications. J. Mater. Chem. C 2013, 1, 5322. [Google Scholar] [CrossRef]
- Como, E.D.; Borys, N.J.; Strohriegl, P.; Walter, M.J.; Lupton, J.M. Formation of a Defect-Free p-Electron System in Single b-Phase Polyfluorene Chains. J. Am. Chem. Soc. 2011, 133, 3690–3692. [Google Scholar] [CrossRef] [PubMed]
- Scherf, U.; List, E.J. Semiconducting Polyfluorenes—Towards Reliable Structure–Property Relationships. Adv. Mater. 2002, 14, 477–487. [Google Scholar] [CrossRef]
- Neher, D. Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365–1385. [Google Scholar] [CrossRef]
- Ariu, M.; Sims, M.; Rahn, M.; Hill, J.; Fox, A.; Lidzey, D.; Oda, M.; Cabanillas-Gonzalez, J.; Bradley, D. Exciton Migration in β-Phase Poly (9,9-Dioctylfluorene). Phys. Rev. B 2003, 67, 195333. [Google Scholar] [CrossRef]
- Khan, A.L.T.; Banach, M.J.; Köhler, A. Control of β-Phase Formation in Polyfluorene Thin Films via Franck–Condon Analysis. Synth. Met. 2003, 139, 905–907. [Google Scholar] [CrossRef]
- Zhang, Q.; Chi, L.; Hai, G.; Fang, Y.; Li, X.; Xia, R.; Huang, W.; Gu, E. An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties. Molecules 2017, 22, 315. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Chander, N.; Kim, J.; Bradley, D.D. Spectroscopic Properties of Poly (9,9-dioctylfluorene) Thin Films Possessing Varied Fractions of Β-phase Chain Segments: Enhanced Photoluminescence Efficiency via Conformation Structuring. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Chunwaschirasiri, W.; Tanto, B.; Huber, D.; Winokur, M. Chain Conformations and Photoluminescence of Poly (Di-n-Octylfluorene). Phys. Rev. Lett. 2005, 94, 107402. [Google Scholar] [CrossRef] [PubMed]
- Grell, M.; Bradley, D.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E.; Soliman, M. Chain Geometry, Solution Aggregation and Enhanced Dichroism in the Liquidcrystalline Conjugated Polymer Poly (9,9-dioctylfluorene). Acta Polym. 1998, 49, 439–444. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Morphology and Structure of the β Phase Crystals of Monodisperse Polyfluorenes. Macromolecules 2013, 46, 3025–3030. [Google Scholar] [CrossRef]
- Perevedentsev, A.; Stavrinou, P.N.; Bradley, D.D.C.; Smith, P. Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-Dioctylfluorene). J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, Z.; Liu, B.; Li, T.; Lu, D. From Starting Formation to the Saturation Content of the β-Phase in Poly (9,9-Dioctylfluorene) Toluene Solutions. J. Phys. Chem. C 2017, 121, 14443–14450. [Google Scholar] [CrossRef]
- Chew, K.W.; Abdul Rahim, N.A.; Teh, P.L.; Abdul Hisam, N.S.; Alias, S.S. Thermal Degradation of Photoluminescence Poly(9,9-Dioctylfluorene) Solvent-Tuned Aggregate Films. Polymers 2022, 14, 1615. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; He, Q.; Guan, Y.; Liao, J.; He, Y.; Luo, X.; Cao, W.; Cui, Z.; Jia, S.; Liu, A.; et al. Influence of Molecular Weight and the Change of Solvent Solubility on β Conformation and Chains Condensed State Structure for Poly (9,9-Dioctylfluorene) (PFO) in Solution. Polymer 2022, 240, 124471. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Zhang, H.; Ren, J.; Bai, Z.; Li, X.; Ma, T.; Lu, D. Effect of Conjugated Polymer Poly (9,9-Dioctylfluorene) (PFO) Molecular Weight Change on the Single Chains, Aggregation and β Phase. Polymer 2016, 103, 299–306. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Guan, Y.; He, Q.; Cheng, D.; Almásy, L.; Lu, D.; Kjelstrup-Hansen, J.; Knaapila, M. The Development of Poly(9,9-Dioctylfluorene) from Solutions to Solution Processed Films in Terms of β-Conformation: Perspective of Molecular Weight and Solvent Quality. Polymer 2024, 295, 126748. [Google Scholar] [CrossRef]
- Caruso, M.E.; Anni, M. Real-Time Investigation of Solvent Swelling Induced β-Phase Formation in Poly(9,9-Dioctylfluorene). Phys. Rev. B 2007, 76, 054207. [Google Scholar] [CrossRef]
- Anni, M. Dual Band Amplified Spontaneous Emission in the Blue in Poly(9,9-Dioctylfluorene) Thin Films with Phase Separated Glassy and β-Phases. Opt. Mater. 2019, 96, 109313. [Google Scholar] [CrossRef]
- Kitts, C.C.; Vanden Bout, D.A. The Effect of Solvent Quality on the Chain Morphology in Solutions of Poly(9,9′-Dioctylfluorene). Polymer 2007, 48, 2322–2330. [Google Scholar] [CrossRef]
- Botiz, I. Prominent Processing Techniques to Manipulate Semiconducting Polymer Microstructures. J. Mater. Chem. C 2023, 11, 364–405. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, Z.; Wang, Z.; He, T. Study on the Single Crystals of Poly(3-Octylthiophene) Induced by Solvent-Vapor Annealing. J. Phys. Chem. B 2009, 113, 14604–14610. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “Solvent Annealing” Effect in Polymer Sollar Cells Based on Poly(3-Hexylthiophene) and Methanofullerenes. Adv. Funct. Mater. 2007, 17, 1636–1644. [Google Scholar] [CrossRef]
- Morgan, B.; Dadmun, M.D. The Importance of Solvent Quality on the Modification of Conjugated Polymer Conformation and Thermodynamics with Illumination. Soft Matter 2017, 13, 2773–2780. [Google Scholar] [CrossRef]
- Winokur, M.J.; Slinker, J.; Huber, D.L. Structure, Photophysics, and the Order-Disorder Transition to the β Phase in Poly(9,9-(Di-n,n-Octyl)Fluorene). Phys. Rev. B 2003, 67, 184106. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Xu, Y.; Han, Y. Fibrillar Morphology of Derivatives of Poly(3-Alkylthiophene)s by Solvent Vapor Annealing: Effects of Conformational Transition and Conjugate Length. J. Phys. Chem. B 2013, 117, 5996–6006. [Google Scholar] [CrossRef]
- Hüttner, S.; Sommer, M.; Chiche, A.; Krausch, G.; Steiner, U.; Thelakkat, M. Controlled Solvent Vapour Annealing for Polymer Electronics. Soft Matter 2009, 5, 4206–4211. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B 2010, 114, 7452–7460. [Google Scholar] [CrossRef] [PubMed]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Simon, S.; Botiz, I. Self-Assembly of Block Copolymers on Surfaces Exposed to Space-Confined Solvent Vapor Annealing. Polymer 2023, 273, 125881. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Crystallization of Poly(Ethylene Oxide)-Based Triblock Copolymers in Films Swollen-Rich in Solvent Vapors. Coatings 2023, 13, 918. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers 2023, 15, 1900. [Google Scholar] [CrossRef] [PubMed]
- Babuțan, M.; Botiz, I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics 2024, 9, 396. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The Influence of Protic Non-Solvents Present in the Environment on Structure Formation of Poly(γ-Benzyl-L-Glutamate in Organic Solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Thomann, R.; Heck, B.; Shokri, R.; Stille, W.; Reiter, G. Crystallization of Poly(γ-Benzyl L-Glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules 2013, 46, 1470–1476. [Google Scholar] [CrossRef]
- Botiz, I.; Codescu, M.-A.; Farcau, C.; Leordean, C.; Astilean, S.; Silva, C.; Stingelin, N. Convective Self-Assembly of π-Conjugated Oligomers and Polymers. J. Mater. Chem. C 2017, 5, 2513–2518. [Google Scholar] [CrossRef]
- Dias, F.B.; Morgado, J.; Maçanita, A.L.; da Costa, F.P.; Burrows, H.D.; Monkman, A.P. Kinetics and Thermodynamics of Poly(9,9-Dioctylfluorene) β-Phase Formation in Dilute Solution. Macromolecules 2006, 39, 5854–5864. [Google Scholar] [CrossRef]
- Sims, M.; Bradley, D.D.C.; Ariu, M.; Koeberg, M.; Asimakis, A.; Grell, M.; Lidzey, D.G. Understanding the Origin of the 535 Nm Emission Band in Oxidized Poly(9,9-Dioctylfluorene): The Essential Role of Inter-Chain/Inter-Segment Interactions. Adv. Funct. Mater. 2004, 14, 765–781. [Google Scholar] [CrossRef]
- Hamilton, I.; Chander, N.; Cheetham, N.J.; Suh, M.; Dyson, M.; Wang, X.; Stavrinou, P.N.; Cass, M.; Bradley, D.D.C.; Kim, J.-S. Controlling Molecular Conformation for Highly Efficient and Stable Deep-Blue Copolymer Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 11070–11082. [Google Scholar] [CrossRef] [PubMed]
- Morgado, J.; Alcácer, L.; Charas, A. Poly(9,9-Dioctylfluorene)-Based Light-Emitting Diodes with Pure β-Phase Emission. Appl. Phys. Lett. 2007, 90, 201110. [Google Scholar] [CrossRef]
- Khan, A.L.T.; Sreearunothai, P.; Herz, L.M.; Banach, M.J.; Köhler, A. Morphology-Dependent Energy Transfer within Polyfluorene Thin Films. Phys. Rev. B 2004, 69, 085201. [Google Scholar] [CrossRef]
- Cadby, A.; Lane, P.; Mellor, H.; Martin, S.; Grell, M.; Giebeler, C.; Bradley, D.; Wohlgenannt, M.; An, C.; Vardeny, Z. Film Morphology and Photophysics of Polyfluorene. Phys. Rev. B 2000, 62, 15604. [Google Scholar] [CrossRef]
- Rothe, C.; King, S.; Dias, F.; Monkman, A. Triplet Exciton State and Related Phenomena in the β-Phase of Poly (9,9-Dioctyl) Fluorene. Phys. Rev. B 2004, 70, 195213. [Google Scholar] [CrossRef]
- Ahmad, F.H.; Hassan, Z.; Lim, W.F. Investigation on Structural, Morphological, Optical, and Current-Voltage Characteristics of Polyfluorene with Dissimilar Composition Spin Coated on ITO. Optik 2021, 242, 167034. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Wang, Y.; Lu, W.; Wang, R.; Fan, L.; Xu, Y.; Lou, H.; Zhang, X. Controllable β-Phase Formation in Poly(9,9-Dioctylfluorene) by Dip-Coating for Blue Polymer Light-Emitting Diodes. Thin Solid Films 2022, 746, 139118. [Google Scholar] [CrossRef]
- Liu, B.; Bai, Z.; Li, T.; Liu, Y.; Li, X.; Zhang, H.; Lu, D. Discovery and Structure Characteristics of the Intermediate-State Conformation of Poly(9,9-Dioctylfluorene) (PFO) in the Dynamic Process of Conformation Transformation and Its Effects on Carrier Mobility. RSC Adv. 2020, 10, 492–500. [Google Scholar] [CrossRef]
- Palacios, R.; Formentin, P.; Martinez-Ferrero, E.; Pallarès, J.; Marsal, L. β-Phase Morphology in Ordered Poly(9,9-Dioctylfluorene) Nanopillars by Template Wetting Method. Nanoscale Res. Lett. 2010, 6, 35. [Google Scholar] [CrossRef]
- Ariu, M.; Lidzey, D.G.; Bradley, D.D.C. Influence of Film Morphology on the Vibrational Spectra of Dioctyl Substituted Polyfluorene (PFO). Synth. Met. 2000, 111–112, 607–610. [Google Scholar] [CrossRef]
- Rajamanickam, S.; Mohammad, S.M.; Hassan, Z.; Omar, A.F.; Muhammad, A. Investigations into Ag Nanoparticles–Carbon–Poly(9,9-Di-n-Octylfluorenyl-2,7-Diyl) (PFO) Composite: Morphological, Structural, Optical, and Electrical Characterization. Polym. Bull. 2022, 79, 9111–9130. [Google Scholar] [CrossRef]
- Ariu, M.; Lidzey, D.G.; Lavrentiev, M.; Bradley, D.D.C.; Jandke, M.; Strohriegl, P. A Study of the Different Structural Phases of the Polymer Poly(9,9′-Dioctyl Fluorene) Using Raman Spectroscopy. Synth. Met. 2001, 116, 217–221. [Google Scholar] [CrossRef]
- Lukaszczuk, P.; Borowiak-Palen, E.; Rümmeli, M.H.; Kalenczuk, R.J. Single-Walled Carbon Nanotubes Modified by PFO: An Optical Absorption and Raman Spectroscopic Investigation. Phys. Status Solidi B 2009, 246, 2699–2703. [Google Scholar] [CrossRef]
Material | Solvent | Abs. λ (nm) | PL λ (nm) | Area Ratio a | SW λ0-0 Peak Ratio b | LW λ0-1 Peak Ratio c |
---|---|---|---|---|---|---|
PFO105k | tetrahydrofuran | - | λ0-0 = 440 | 1.824 | 2.705 | 2.475 |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
toluene | λg = 397 | λ0-0 = 440 | 1.747 | 2.501 | 2.325 | |
λβ = 431 | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 1.706 | 2.474 | 2.319 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 391 | λ0-0 = 426 | - | - | - | |
- | λ0-1 = 445 | |||||
PFO63k | tetrahydrofuran | - | λ0-0 = 439 | 1.659 | 2.581 | 2.033 |
- | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
toluene | λg = 397 | λ0-0 = 439 | 1.676 | 2.533 | 2.066 | |
λβ = 431 | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 1.612 | 2.402 | 2.094 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 392 | λ0-0 = 424 | - | - | - | |
- | λ0-1 = 445 | |||||
PFO14k | tetrahydrofuran | - | λ0-0 = 440 | 1.886 | 2.068 | 2.504 |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
toluene | λg = 398 | λ0-0 = 439 | 1.952 | 2.404 | 2.359 | |
λβ = 431 | λ0-1 = 466 | |||||
- | λfd = 500 | |||||
chloroform | - | λ0-0 = 440 | 2.179 | 2.291 | 2.664 | |
- | λ0-1 = 467 | |||||
- | λfd = 500 | |||||
reference | λg = 393 | λ0-0 = 426 | - | - | - | |
- | λ0-1 = 444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todor-Boer, O.; Farcău, C.; Botiz, I. Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers 2024, 16, 2278. https://doi.org/10.3390/polym16162278
Todor-Boer O, Farcău C, Botiz I. Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers. 2024; 16(16):2278. https://doi.org/10.3390/polym16162278
Chicago/Turabian StyleTodor-Boer, Otto, Cosmin Farcău, and Ioan Botiz. 2024. "Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure" Polymers 16, no. 16: 2278. https://doi.org/10.3390/polym16162278
APA StyleTodor-Boer, O., Farcău, C., & Botiz, I. (2024). Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure. Polymers, 16(16), 2278. https://doi.org/10.3390/polym16162278