Technical-Economical Study on the Optimization of FDM Parameters for the Manufacture of PETG and ASA Parts
Abstract
1. Introduction
- -
- CAD conceptualization;
- -
- Saving the CAD model and converting it into STL format;
- -
- Generating the G-Code file;
- -
- Equipment preparation, construction, extraction and use of parts.
2. Materials and Methods
3. Results and Discussion
3.1. Applications of Value Analysis for Analyzing the Mechanical Behavior of PETG and ASA 3D-Printed Samples
3.1.1. Tensile Testing
3.1.2. Compressive Testing
3.2. Optimization of FDM Parameters Based on Value Analysis for Improving the 3D Printing Efficiency for Samples Made of PETG and ASA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amaya-Rivas, J.L.; Perero, B.S.; Helguero, C.G.; Hurel, J.L.; Peralta, J.M.; Flores, F.A.; Alvarado, J.D. Future trends of additive manufacturing in medical applications: An overview. Heliyon 2024, 10, e26641. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Rathee, S. Additive manufacturing: Recent trends, applications and future outlooks. Prog. Addit. Manuf. 2021, 7, 261–287. [Google Scholar] [CrossRef]
- D’addona, D.; Raykar, S.J.; Singh, D.; Kramar, D. Multi Objective Optimization of Fused Deposition Modeling Process Parameters with Desirability Function. Procedia CIRP 2021, 99, 707–710. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Tănase, M.; Portoacă, A.I. Innovative Strategies for Technical-Economical Optimization of FDM Production. Polymers 2023, 15, 3787. [Google Scholar] [CrossRef] [PubMed]
- Kothandaraman, L.; Balasubramanian, N.K. Optimization of FDM printing parameters for square lattice structures: Improving mechanical characteristics. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Sheoran, A.J.; Kumar, H. Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Mater. Today: Proc. 2020, 21, 1659–1672. [Google Scholar] [CrossRef]
- Ghosh, M.; D’souza, N.A. Improved Mechanical Performance in FDM Cellular Frame Structures through Partial Incorporation of Faces. Polymers 2024, 16, 1340. [Google Scholar] [CrossRef] [PubMed]
- Hassine, S.B.H.; Chatti, S.; Louhichi, B.; Seibi, A. Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process. Polymers 2024, 16, 1562. [Google Scholar] [CrossRef] [PubMed]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Study on the Evaluation of the Compression Behavior of PLA Lattice Structures Manufactured by FDM. Eng. Technol. Appl. Sci. Res. 2023, 13, 11801–11806. [Google Scholar] [CrossRef]
- Tagliaferri, V.; Trovalusci, F.; Guarino, S.; Venettacci, S. Environmental and Economic Analysis of FDM, SLS and MJF Additive Manufacturing Technologies. Materials 2019, 12, 4161. [Google Scholar] [CrossRef]
- Ponticelli, G.S.; Venettacci, S.; Tagliaferri, F.; Guarino, S. Fused deposition modelling for aeronautics: Techno-economic and environmental assessment for overhead locker supports replacement. Int. J. Adv. Manuf. Technol. 2023, 128, 3817–3840. [Google Scholar] [CrossRef]
- Amithesh, S.R.; Shanmugasundaram, B.; Kamath, S.; Adhithyan, S.S.; Murugan, R. Analysis of dimensional quality in FDM printed Nylon 6 parts. Prog. Addit. Manuf. 2023, 9, 1–14. [Google Scholar] [CrossRef]
- Ciornei, M.; Iacobici, R.I.; Savu, I.D.; Simion, D. FDM 3D Printing Process—Risks and Environmental Aspects. Key Eng. Mater. 2021, 890, 152–156. [Google Scholar] [CrossRef]
- Zhai, C.; Wang, J.; Tu, Y.; Chang, G.; Ren, X.; Ding, C. Robust optimization of 3D printing process parameters considering process stability and production efficiency. Addit. Manuf. 2023, 71, 103588. [Google Scholar] [CrossRef]
- Wei, H.; Tang, L.; Qin, H.; Wang, H.; Chen, C.; Li, Y.; Wang, C. Optimizing FDM 3D printing parameters for improved tensile strength using the Takagi–Sugeno fuzzy neural network. Mater. Today Commun. 2024, 38, 108268. [Google Scholar] [CrossRef]
- Fountas, N.A.; Zaoutsos, S.; Chaidas, D.; Kechagias, J.D.; Vaxevanidis, N.M. Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials. Mater. Today Proc. 2023, 93, 824–830. [Google Scholar] [CrossRef]
- Ermergen, T.; Taylan, F. Investigation of DOE model analyses for open atmosphere laser polishing of additively manufactured Ti-6Al-4V samples by using ANOVA. Opt. Laser Technol. 2024, 168, 109832. [Google Scholar] [CrossRef]
- Singh, D.P.; Dwivedi, V.K.; Agarwal, M. Application of the DoE approach to the fabrication of cast Al2O3-LM6 composite material and evaluation of its mechanical and microstructural properties. Mater. Today Proc. 2023; ISSN 2214-7853. [Google Scholar] [CrossRef]
- Singh, B.J.; Kalra, G. Mixture DoE: A strategic approach for multi-response optimization of AA1100 metal-matrix hybrid composites. Mater. Today Proc. 2021, 50, 1480–1495. [Google Scholar] [CrossRef]
- Nyabadza, A.; Mc Donough, L.M.; Manikandan, A.; Ray, A.B.; Plouze, A.; Muilwijk, C.; Freeland, B.; Vazquez, M.; Brabazon, D. Mechanical and antibacterial properties of FDM additively manufactured PLA parts. Results Eng. 2024, 21, 101744. [Google Scholar] [CrossRef]
- Fountas, N.A.; Papantoniou, I.; Kechagias, J.D.; Manolakos, D.E.; Vaxevanidis, N.M. Modeling and optimization of flexural properties of FDM-processed PET-G specimens using RSM and GWO algorithm. Eng. Fail. Anal. 2022, 138, 106340. [Google Scholar] [CrossRef]
- Sandhu, G.S.; Sandhu, K.S.; Boparai, K.S. Effect of extrudate geometry on surface finish of FDM printed ABS parts. Mater. Today Proc. 2024. ISSN 2214-7853. [Google Scholar] [CrossRef]
- Kumar, M.P.; Saravanakumar, K.; Kumar, C.A.; Saravanakumar, R.; Abimanyu, B. Experimental investigation of the process parameters and print orientation on the dimensional accuracy of fused deposition modelling (FDM) processed carbon fiber reinforced ABS polymer parts. Mater. Today Proc. 2024, 98, 166–173. [Google Scholar] [CrossRef]
- Camposeco-Negrete, C. Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Prog. Addit. Manuf. 2020, 5, 59–65. [Google Scholar] [CrossRef]
- Jatti, V.S.; Sapre, M.S.; Jatti, A.V.; Khedkar, N.K.; Jatti, V.S. Mechanical Properties of 3D-Printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor. Appl. Syst. Innov. 2022, 5, 112. [Google Scholar] [CrossRef]
- Rivera-López, F.; Pavón, M.M.L.; Correa, E.C.; Molina, M.H. Effects of Nozzle Temperature on Mechanical Properties of Polylactic Acid Specimens Fabricated by Fused Deposition Modeling. Polymers 2024, 16, 1867. [Google Scholar] [CrossRef] [PubMed]
- Almuflih, A.S.; Abas, M.; Khan, I.; Noor, S. Parametric Optimization of FDM Process for PA12-CF Parts Using Integrated Response Surface Methodology, Grey Relational Analysis, and Grey Wolf Optimization. Polymers 2024, 16, 1508. [Google Scholar] [CrossRef] [PubMed]
- Van, C.N.; Le Hoang, A.; Long, C.D.; Hoang, D.N. Surface Roughness in Metal Material Extrusion 3D Printing: The Influence of Printing Orientation and the Development of a Predictive Model. Eng. Technol. Appl. Sci. Res. 2023, 13, 11672–11676. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Theoretical-Experimental Study on the Influence of FDM Parameters on the Dimensions of Cylindrical Spur Gears Made of PLA. Eng. Technol. Appl. Sci. Res. 2023, 13, 10471–10477. [Google Scholar] [CrossRef]
- Dev, S.; Srivastava, R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength. Mater. Today Proc. 2020, 26, 1995–1999. [Google Scholar] [CrossRef]
- Iacob, D.V. Stadiul Actual al Cercetărilor în Domeniul Fabricației Additive. Ph.D. Thesis, Mechanical Engineering Department, Petroleum-Gas University, Ploiesti, Romania, May 2024. [Google Scholar]
- Zisopol, D.G. Ingineria Valorii; Editura Universitătății Petrol-Gaze din Ploiești: Ploiesti, Romania, 2004; ISBN 973-7965-96-5. [Google Scholar]
- Zisopol, D.G.; Nae, I.; Portoaca, A.I.; Ramadan, I. A Theoretical and Experimental Research on the Influence of FDM Parameters on Tensile Strength and Hardness of Parts Made of Polylactic Acid. Eng. Technol. Appl. Sci. Res. 2021, 11, 7458–7463. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Nae, I.; Portoaca, A.I. Compression Behavior of FFF Printed Parts Obtained by Varying Layer Height and Infill Percentage. Eng. Technol. Appl. Sci. Res. 2022, 12, 9747–9751. [Google Scholar] [CrossRef]
- Ramadan, S.; Altwarah, Q.; Abu-Shams, M.; Alkurdi, D. Optimizing tensile strength and energy consumption for FDM through Mixed-Integer Nonlinear Multi-objective optimization and design of experiments. Heliyon 2024, 10, e30164. [Google Scholar] [CrossRef]
- Le, L.; Rabsatt, M.A.; Eisazadeh, H.; Torabizadeh, M. Reducing print time while minimizing loss in mechanical properties in consumer FDM parts. Int. J. Light. Mater. Manuf. 2022, 5, 197–212. [Google Scholar] [CrossRef]
- Rahman, M.; Sultana, J.; Bin Rayhan, S.; Ahmed, A. Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: An experimental approach by Taguchi method. Int. J. Adv. Manuf. Technol. 2023, 129, 1329–1343. [Google Scholar] [CrossRef]
- Belarbi, B.; Ghernaout, M.E.A.; Benabdallah, T. Implementation of a New Geometrical Qualification (DQ) Method for an Open Access Fused Filament Fabrication 3D Printer. Eng. Technol. Appl. Sci. Res. 2019, 9, 4182–4187. [Google Scholar] [CrossRef]
- Park, H.S.; Tran, N.H.; Hoang, V.T.; Bui, V.H. Development of a Prediction System for 3D Printed Part Deformation. Eng. Technol. Appl. Sci. Res. 2022, 12, 9450–9457. [Google Scholar] [CrossRef]
- Subramonian, S.; Kadirgama, K.; Al-Obaidi, A.S.M.; Salleh, M.S.M.; Vatesh, U.K.; Pujari, S.; Rao, D.; Ramasamy, D. Artificial Neural Network Performance Modeling and Evaluation of Additive Manufacturing 3D Printed Parts. Eng. Technol. Appl. Sci. Res. 2023, 13, 11677–11684. [Google Scholar] [CrossRef]
- Anh, N.T.; Quynh, N.X.; Tung, T.T. Study on Topology Optimization Design for Additive Manufacturing. Eng. Technol. Appl. Sci. Res. 2024, 14, 14437–14441. [Google Scholar] [CrossRef]
- Ziółkowski, M.; Dyl, T. Possible Applications of Additive Manufacturing Technologies in Shipbuilding: A Review. Machines 2020, 8, 84. [Google Scholar] [CrossRef]
- Kanishka, K.; Acherjee, B. Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges. J. Manuf. Process. 2023, 107, 574–619. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Dusanapudi, S.; Krupakaran, R.; Srinivas, A.; Nikhil, K.S.; Vamshi, T. Optimization and experimental analysis of mechanical properties and porosity on FDM based 3D printed ABS sample. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soleyman, E.; Bashi, M.F.M.; Aberoumand, M.; Soltanmohammadi, K.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D printing and annealing of PETG composites reinforced with short carbon fibers. Phys. Scr. 2024, 99, 055957. [Google Scholar] [CrossRef]
- Mirasadi, K.; Rahmatabadi, D.; Ghasemi, I.; Khodaei, M.; Baniassadi, M.; Baghani, M. Investigating the Effect of ABS on the Mechanical Properties, Morphology, Printability, and 4D Printing of PETG-ABS Blends. Macromol. Mater. Eng. 2024, 309, 2400038. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Study on the Influence of FDM Parameters on the Tensile Behavior of Samples made of PET-G. Eng. Technol. Appl. Sci. Res. 2024, 14, 13487–13492. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Study on the Influence of FDM Parameters on the Compressive Behavior of PET-G Parts. Eng. Technol. Appl. Sci. Res. 2024, 14, 13592–13597. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Study on the Influence of FDM Parameters on the Tensile Behavior of Samples made of ASA. Eng. Technol. Appl. Sci. Res. 2024, 14, 15975–15980. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Study on the influence of FDM parameters on the compressive behavior of ASA parts. Eng. Technol. Appl. Sci. Res. 2024, preprint. [Google Scholar]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2022.
- ISO 604:2002; Plastics: Determination of Compressive Properties. ISO: Geneva, Switzerland, 2002.
- Available online: https://3dkordo.eu/en/product/filament-everfil-petg-s10-diam-175mm-color-flame-red-weight-100kg-netto (accessed on 15 June 2024).
- Available online: https://3dkordo.eu/en/product/filament-everfil-asa-l01-diam-175mm-color-red-weight-100kg-netto (accessed on 15 June 2024).
- Zisopol, D.G. The Place and Role of Value Analysis in the Restructuring of Production (Case Study). Econ. Insights Trends Chall. 2012, 1, 27–35. [Google Scholar]
- Minescu, M.; Zisopol, D.G. Sudarea Țevilor şi Fitingurilor din Polietilenă de Înaltă Densitate (HDPE Pipe & Fittings Welding); UPG Ploieşti Publishing House: Ploiesti, Romania, 2021. [Google Scholar]
- Zisopol, D.G.; Dumitrescu, A. Ecotehnologie. Studii de caz; Editura Universității Petrol-Gaze din Ploiești: Ploiesti, Romania, 2021. [Google Scholar]
- Zisopol, D. Tehnologii Industriale și de Construcții. Aplicații Practice și Studii de Caz; Editura Universității din Ploiești: Ploiesti, Romania, 2003. [Google Scholar]
- Eurostat Statistics Explained. Electricity Price Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics (accessed on 15 June 2024).
- Available online: https://ultimaker.com/software/ultimaker-cura/ (accessed on 10 June 2024).
- Available online: https://www.minitab.com/en-us/ (accessed on 15 June 2024).
Technology Name | Draw | Components | Details |
---|---|---|---|
Stereolitograpgy, (SL). | 1—laser generator; 2—optic system; 3—galvanometric mirror; 4—laser beam; 5—construction platform; 6—piece; 7—blade. | Advantages: + high accuracy of parts; + high print speed. Disadvantages: - laborious post-processing of printed parts; - fragility of parts. | |
Digital exposure of light, (DEL). | 1—digital projector; 2—UV light; 3—resin; 4—piece; 5—construction platform. | Advantages: + high quality of surfaces; + high print speed. Disadvantages: - high-cost materials; - limited print volume. | |
Layered manufacturing by laminating layers, (LMLL). | 1—driven roller; 2—driving roller; 3—construction platform; 4—laser beam; 5—laser generator; 6—galvanometric mirror; 7—heated roller. | Advantages: + high-accuracy parts; + high-stability structures. Disadvantages: - significant loss of material. - laborious post-processing of printed objects. | |
Thermoplastic extrusion, (TE). | 1—coil with material; 2—filament; 3—extruder; 4—extrusion nozzle; 5—piece; 6—construction platform. | Advantages: + simple technology; + low-cost materials and equipment. Disadvantages: - poor-quality surfaces of parts; - low printing speed. | |
Selective laser sinterising, (SLS). | 1—laser generator; 2—laser beam; 3—galvanometer 4—construction platform; 5—raw material container; 6—blade. | Advantages: + high-resistance parts; + good precision of parts. Disadvantages: - poor quality of surfaces poor; - high-cost equipment and materials. | |
3D inkjet printing (3DP). | 1—scraper blade; 2—enclosure with raw material; 3—work platform; 4—print head; 5—binder tank; 6—track. | Advantages: + high printing speed; + reduced costs for materials and equipment. Disadvantages: - fragile parts; - poor quality of surfaces poor. | |
Selective laser melting, (SLM). | 1—laser generator; 2—laser beam; 3—galvanometer 4—construction platform; 5—raw material container; 6—blade. | Advantages: + use of high-performance materials; + high resistance of parts. Disadvantages: - high-cost equipment and materials; - long duration required for cooling parts. | |
Polyjet printing with photopolymers, (PJP). | 1—liquid polymer tanks; 2—print head; 3—construction platform; 4—piece; 5—piece support. | Advantages: + good precision; + simple post-processing operations. Disadvantages: - weak resistance of parts; - high-cost materials. |
Printing Parameters | PETG | ASA |
---|---|---|
Part orientation, Po | X–Y | X–Y |
Extruder temperature, Et | 250 °C | 240 °C |
Platform temperature, Pt | 70 °C | 90 °C |
Printing speed, Ps | 30 mm/s | 30 mm/s |
Infill pattern, Ip | Grid | Grid |
Layer height, Lh | 0.10/0.15/0.20 mm | 0.10/0.15/0.20 mm |
Infill density, Id | 50/75/100% | 50/75/100% |
Plate adhesion, Pa | Brim | Brim |
Materials | Recommended Printing Parameters | Physical Properties | |||
---|---|---|---|---|---|
Extruder Temperature, (°C) | Platform Temperature, (°C) | Density, (g/cm3) | Flexural Modulus, (MPa) | Charpy Impact Strength, (kJ/m2) | |
PETG ASA | 220–250 240–260 | 70–90 90–110 | 1.29 1.07 | 2200 2100 | 33 23 |
Mechanical Test | Testing Condition | Sample Dimensions |
---|---|---|
Tensile | ASTM D638-14 [52] speed 5 mm/min | |
Compression | ISO 604:2002 [53] speed 10 mm/min |
Sample Set | Lh, (mm) | Id, (%) | , (Euro) | , (Euro) | , (Euro) |
---|---|---|---|---|---|
1 | 0.10 | 100% | 0.99 | 1.01 | 2.00 |
2 | 75% | 0.86 | 0.69 | 1.55 | |
3 | 50% | 0.73 | 0.60 | 1.33 | |
4 | 0.15 | 100% | 0.99 | 0.63 | 1.63 |
5 | 75% | 0.86 | 0.48 | 1.34 | |
6 | 50% | 0.73 | 0.43 | 1.16 | |
7 | 0.20 | 100% | 0.99 | 0.51 | 1.51 |
8 | 75% | 0.86 | 0.35 | 1.22 | |
9 | 50% | 0.73 | 0.31 | 1.04 |
Sample Set | Lh, (mm) | Id, (%) | , (Euro) | , (Euro) | , (Euro) |
---|---|---|---|---|---|
1 | 0.10 | 100% | 1.04 | 1.01 | 2.05 |
2 | 75% | 0.90 | 0.69 | 1.59 | |
3 | 50% | 0.76 | 0.60 | 1.36 | |
4 | 0.15 | 100% | 1.04 | 0.63 | 1.67 |
5 | 75% | 0.90 | 0.48 | 1.38 | |
6 | 50% | 0.76 | 0.43 | 1.19 | |
7 | 0.20 | 100% | 1.04 | 0.51 | 1.55 |
8 | 75% | 0.90 | 0.35 | 1.26 | |
9 | 50% | 0.76 | 0.31 | 1.07 |
Sample Set | Ultimate Tensile Strength, (MPa) | , (Euro) | Vi/Cp |
---|---|---|---|
1 | 28.25 | 2.00 | 14.11 |
2 | 22.66 | 1.55 | 14.64 |
3 | 18.76 | 1.33 | 14.10 |
4 | 25.34 | 1.63 | 15.56 |
5 | 19.85 | 1.34 | 14.82 |
6 | 16.61 | 1.16 | 14.38 |
7 | 24.29 | 1.51 | 16.11 |
8 | 18.72 | 1.22 | 15.40 |
9 | 15.48 | 1.04 | 14.87 |
Sample Set | Ultimate Tensile Strength, (MPa) | , (Euro) | Vi/Cp |
---|---|---|---|
1 | 43.24 | 2.05 | 21.12 |
2 | 26.01 | 1.59 | 16.39 |
3 | 22.69 | 1.36 | 16.63 |
4 | 40.13 | 1.67 | 23.98 |
5 | 23.46 | 1.38 | 17.01 |
6 | 20.87 | 1.19 | 17.56 |
7 | 39.87 | 1.55 | 25.66 |
8 | 21.46 | 1.26 | 17.09 |
9 | 18.82 | 1.07 | 17.51 |
Sample Set | Lh, (mm) | Id, (%) | , (Euro) | , (Euro) | , (Euro) |
---|---|---|---|---|---|
1 | 0.10 | 100% | 0.22 | 0.29 | 0.51 |
2 | 75% | 0.22 | 0.19 | 0.41 | |
3 | 50% | 0.22 | 0.16 | 0.38 | |
4 | 0.15 | 100% | 0.22 | 0.20 | 0.42 |
5 | 75% | 0.22 | 0.13 | 0.35 | |
6 | 50% | 0.22 | 0.11 | 0.33 | |
7 | 0.20 | 100% | 0.22 | 0.15 | 0.37 |
8 | 75% | 0.22 | 0.10 | 0.32 | |
9 | 50% | 0.22 | 0.08 | 0.30 |
Sample Set | Lh, (mm) | Id, (%) | , (Euro) | , (Euro) | , (Euro) |
---|---|---|---|---|---|
1 | 0.10 | 100% | 0.23 | 0.29 | 0.52 |
2 | 75% | 0.23 | 0.19 | 0.42 | |
3 | 50% | 0.23 | 0.16 | 0.39 | |
4 | 0.15 | 100% | 0.23 | 0.20 | 0.43 |
5 | 75% | 0.23 | 0.13 | 0.36 | |
6 | 50% | 0.23 | 0.11 | 0.34 | |
7 | 0.20 | 100% | 0.23 | 0.15 | 0.38 |
8 | 75% | 0.23 | 0.10 | 0.33 | |
9 | 50% | 0.23 | 0.08 | 0.31 |
Sample Set | Compressive Strength, (MPa) | , (Euro) | Vi/Cp |
---|---|---|---|
1 | 30.33 | 0.51 | 59.07 |
2 | 19.83 | 0.41 | 48.30 |
3 | 14.06 | 0.38 | 37.19 |
4 | 30.57 | 0.42 | 72.55 |
5 | 20.22 | 0.35 | 57.60 |
6 | 12.20 | 0.33 | 37.03 |
7 | 29.20 | 0.37 | 78.35 |
8 | 19.82 | 0.32 | 62.22 |
9 | 11.27 | 0.30 | 37.28 |
Sample Set | Compressive Strength, (MPa) | , (Euro) | Vi/Cp |
---|---|---|---|
1 | 38.04 | 0.52 | 72.65 |
2 | 28.58 | 0.42 | 67.94 |
3 | 16.42 | 0.39 | 42.30 |
4 | 34.43 | 0.43 | 79.78 |
5 | 25.85 | 0.36 | 71.59 |
6 | 15.04 | 0.34 | 44.32 |
7 | 37.68 | 0.38 | 98.45 |
8 | 28.54 | 0.33 | 86.86 |
9 | 16.45 | 0.31 | 52.66 |
Response | Goal | Lower | Target | Weight | Importance | ||
---|---|---|---|---|---|---|---|
Vi/Cp | PETG | ASA | PETG | ASA | |||
Tensile [MPa/EUR] | Maximum | 14.10 | 16.39 | 16.11 | 25.66 | 1 | 1 |
Compression [MPa/EUR] | 37.03 | 42.30 | 78.35 | 98.45 |
Printing Parameters | Material | ||
---|---|---|---|
Layer Height, (mm) | Infill Density, (%) | PETG | ASA |
Composite Desirability | Composite Desirability | ||
0.10 | 100 | 0.453350 | 0.56643 |
75 | 0.168040 | 0.29452 | |
50 | 0.000000 | 0.01430 | |
0.15 | 100 | 0.696297 | 0.80768 |
75 | 0.405383 | 0.44291 | |
50 | 0.066163 | 0.05602 | |
100 | 0.917938 | 1.00000 | |
0.20 | 75 | 0.615557 | 0.59118 |
50 | 0.275221 | 0.09752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacob, D.V.; Zisopol, D.G.; Minescu, M. Technical-Economical Study on the Optimization of FDM Parameters for the Manufacture of PETG and ASA Parts. Polymers 2024, 16, 2260. https://doi.org/10.3390/polym16162260
Iacob DV, Zisopol DG, Minescu M. Technical-Economical Study on the Optimization of FDM Parameters for the Manufacture of PETG and ASA Parts. Polymers. 2024; 16(16):2260. https://doi.org/10.3390/polym16162260
Chicago/Turabian StyleIacob, Dragos Valentin, Dragos Gabriel Zisopol, and Mihail Minescu. 2024. "Technical-Economical Study on the Optimization of FDM Parameters for the Manufacture of PETG and ASA Parts" Polymers 16, no. 16: 2260. https://doi.org/10.3390/polym16162260
APA StyleIacob, D. V., Zisopol, D. G., & Minescu, M. (2024). Technical-Economical Study on the Optimization of FDM Parameters for the Manufacture of PETG and ASA Parts. Polymers, 16(16), 2260. https://doi.org/10.3390/polym16162260