Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substances and Reagents
2.2. Preparation of IND—SD Hydrogel Formulations
2.3. Scanning Electron Microscopy (SEM)
2.4. Physicochemical Characterization
2.5. Viscosity Study
2.6. Solubility Study
2.7. In Vitro Drug Release
2.8. Cytotoxicity Analysis of Hydrogel Formulations
2.9. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characterization of Hydrogels
3.2. Physicochemical Characterization of IND—SD Hydrogels
3.3. Viscosity Study of Hydrogels
3.4. Solubility Study of Solid Dispersions
3.5. In Vitro Release Profile Study of Hydrogels
3.6. Cytotoxicity Analysis of Hydrogel Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsuge, K.; Inazuma, T.; Shimamoto, A.; Sugimoto, Y. Molecular mechanisms underlying prostaglandin E2-exacerbated in-flammation and immune diseases. Int. Immunol. 2019, 31, 597–606. [Google Scholar] [CrossRef]
- Siddique, S.; Ahmad, K.R.; Nawaz, S.K.; Raza, A.R.; Ahmad, S.N.; Ali, R.; Inayat, I.; Suleman, S.; Kanwal, M.A.; Usman, M. Evaluation of the anti-inflammatory, analgesic, anti-pyretic and anti-ulcerogenic potentials of synthetic indole derivatives. Sci. Rep. 2023, 13, 8639. [Google Scholar] [CrossRef]
- Inaoka, M.; Kimishima, M.; Takahashi, R.; Shiohara, T. Non-steroidal anti-inflammatory drugs selectively inhibit cytokine production by NK cells and γδ T cells. Exp. Dermatol. 2006, 12, 981–990. [Google Scholar] [CrossRef]
- Yuan, M.; Niu, J.; Xiao, Q.; Ya, H.; Zhang, Y.; Fan, Y.; Li, X. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 2022, 29, 1232–1242. [Google Scholar] [CrossRef]
- Rannou, F.; Pelletier, J.P.; Martel-Pelletier, J. Efficacy and safety of topical NSAIDs in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin. Arthritis Rheum. 2016, 45, 18–21. [Google Scholar] [CrossRef]
- Colombo, M.; Minussi, C.; Orthmann, S.; Staufenbiel, S.; Bodmeier, R. Preparation of amorphous indomethacin nanoparticles by aqueous wet bead milling and in situ measurement of their increased saturation solubility. Eur. J. Pharm. Biopharm. 2018, 125, 159–168. [Google Scholar] [CrossRef]
- Ewing, A.V.; Clarke, G.S.; Kazarian, S.G. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging. Eur. J. Pharm. Sci. 2014, 60, 64–71. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.N.; He, Y.; Duan, B.Y.; Yang, G.Y.; Ma, W.D.; Zhang, Y.H. Factors affecting the dissolution of indo-methacin solid dispersions. AAPS Pharm. SciTech. 2017, 18, 3258–3273. [Google Scholar] [CrossRef]
- El-Badry, M.; Fetih, G.; Fathy, M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi. Pharm. J 2009, 17, 217–225. [Google Scholar] [CrossRef]
- Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C.T.; Cárdenas, J.; Schabes-Retchkiman, P. Solubility enhance-ment of a poorly water soluble drug by forming solid dispersions using mechanochemical activation. Ind. J. Pharm. Sci. 2012, 74, 505. [Google Scholar] [CrossRef]
- Ji, Y.; Paus, R.; Prudic, A.; Lübbert, C.; Sadowski, G. A novel approach for analyzing the dissolution mechanism of solid dispersions. Pharm. Res. 2015, 32, 2559–2578. [Google Scholar] [CrossRef]
- Xie, T.; Gao, W.; Taylor, L.S. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersatura-tion, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int. J. Pharm. 2017, 531, 313–323. [Google Scholar] [CrossRef]
- Martínez, L.M.; Videa, M.; Silva, T.L.; Castro, S.; Caballero, A.; Lara-Díaz, V.J.; Castorena-Torres, F. Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur. J. Pharm. Biopharm. 2017, 119, 243–252. [Google Scholar] [CrossRef]
- Bertoni, S.; Albertini, B.; Ferraro, L.; Beggiato, S.; Dalpiaz, A.; Passerini, N. Exploring the use of spray congealing to produce solid dispersions with enhanced indomethacin bioavailability: In vitro characterization and in vivo study. Eur. J. Pharm. Bi-opharm. 2019, 139, 132–141. [Google Scholar] [CrossRef]
- Xi, Z.; Zhang, W.; Fei, Y.; Cui, M.; Xie, L.; Chen, L.; Xu, L. Evaluation of the solid dispersion system engineered from meso-porous silica and polymers for the poorly water soluble drug indomethacin: In vitro and in vivo. Pharmaceutics 2020, 12, 144. [Google Scholar] [CrossRef]
- Bejaoui, M.; Kalfat, R.; Galai, H. The effect of adding PVP to the binary solid dispersion (indomethacin: Kaolin) on the for-mation of physically stable amorphous drug. J. Pharm. Innov. 2021, 17, 736–746. [Google Scholar] [CrossRef]
- Chiang, C.W.; Tang, S.; Mao, C.; Chen, Y. Effect of Buffer pH and Concentration on the Dissolution Rates of Sodium Indo-methacin–Copovidone and Indomethacin–Copovidone Amorphous Solid Dispersions. Mol. Pharm. 2023, 12, 6451–6462. [Google Scholar] [CrossRef]
- Kwon, J.; Giri, B.R.; Song, E.S.; Bae, J.; Lee, J.; Kim, D.W. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics 2019, 11, 461. [Google Scholar] [CrossRef]
- Torrado-Salmerón, C.; Guarnizo-Herrero, V.; Henriques, J.; Seiça, R.; Sena, C.M.; Torrado-Santiago, S. Multiparticulate Systems of Ezetimibe Micellar System and Atorvastatin Solid Dispersion Efficacy of Low-Dose Ezetimibe/Atorvastatin on High-Fat Diet-Induced Hyperlipidemia and Hepatic Steatosis in Diabetic Rats. Pharmaceutics 2021, 13, 421. [Google Scholar] [CrossRef]
- Mai, N.N.; Otsuka, Y.; Kawano, Y.; Hanawa, T. Preparation and characterization of solid dispersions composed of curcumin, hydroxypropyl cellulose and/or sodium dodecyl sulfate by grinding with vibrational ball milling. Pharmaceuticals 2020, 13, 383. [Google Scholar] [CrossRef]
- Alencar, L.J.; Medeiros, G.C.; Sobrinho, J.L.; Lee, P.I.; Soares, M.F. Amorphous solid dispersions in high-swelling, low-substituted hydroxypropyl cellulose for enhancing the delivery of poorly soluble drugs. Int. J. Pharm. 2023, 642, 123122. [Google Scholar] [CrossRef]
- Tsai, T.S.; Pillay, V.; Choonara, Y.E.; Dutoit, L.C.; Modi, G.; Naidoo, D.; Kumar, P. A polyvinyl alcohol-polyaniline based electro-conductive hydrogel for controlled stimuli-actuable release of indomethacin. Polymers 2011, 3, 150–172. [Google Scholar] [CrossRef]
- Delmar, K.; Bianco-Peled, H. Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr. Polym. 2016, 136, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Macor, L.P.; Colombi, S.; Tamarit, J.L.; Engel, E.; Pérez-Madrigal, M.M.; García-Torres, J.; Alemán, C. Immediate-sustained lactate release using alginate hydrogel assembled to proteinase K/polymer electrospun fibers. Int. J. Biol. Macromol. 2023, 238, 124117. [Google Scholar] [CrossRef] [PubMed]
- S-Verma, V.; Sakure, K.; Badawi, H. Xanthan gum a versatile biopolymer: Current status and future prospectus in hydro gel drug delivery. Curr. Chem. Biol. 2017, 11, 10–20. [Google Scholar] [CrossRef]
- Levina, M.; Rajabi-Siahboomi, A.R. The influence of excipients on drug release from hydroxypropyl methylcellulose ma-trices. J. Pharm. Sci. 2004, 93, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- De Jaeghere, W.; De Beer, T.; Van Bocxlaer, J.; Remon, J.P.; Vervaet, C. Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int. J. Pharm 2015, 492, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pironi, A.M.; Melero, A.; Eloy, J.O.; Guillot, A.J.; Santos, K.P.; Chorilli, M. Solid dispersions included in poloxamer hydrogels have favorable rheological properties for topical application and enhance the in vivo antiinflammatory effect of ursolic acid. J. Drug Deliv. Sci. 2022, 74, 103602. [Google Scholar] [CrossRef]
- Zhang, M.; Zhuang, B.; Du, G.; Han, G.; Jin, Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J. Pharm. Pharmacol 2019, 71, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Nabi, B.; Ahmad, S.; Baboota, S.; Ali, J. Polysaccharide-based amorphous solid dispersions (ASDs) for improving solubility and bioavailability of drugs. In Polysaccharide Carriers for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 271–317. [Google Scholar] [CrossRef]
- Riccio, B.V.F.; Nascimento, A.L.C.S.D.; Meneguin, A.B.; Rodero, C.F.; Santos, K.P.; Sábio, R.M.; Chorilli, M. Solid dis-persions incorporated into PVP films for the controlled release of trans-resveratrol: Development, physicochemical and in vitro characterizations and in vivo cutaneous anti-inflammatory evaluation. Pharmaceutics 2022, 14, 1149. [Google Scholar] [CrossRef]
- Jana, S.; Ali, S.A.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Development of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design (QbD)” Approach. Chem. Eng. Res. Des. 2014, 92, 2095–2105. [Google Scholar] [CrossRef]
- Dahma, Z.; Torrado-Salmerón, C.; Álvarez-Álvarez, C.; Guarnizo-Herrero, V.; Martínez-Alonso, B.; Torrado, G.; de la Torre-Iglesias, P.M. Topical Meloxicam Hydroxypropyl Guar Hydrogels Based on Low-Substituted Hydroxypropyl Cellulose Solid Dispersions. Gels 2024, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Escribano, A.; Fonseca-Berzal, C.; Martínez-Montiel, M.; Álvarez-Márquez, M.; Gómez-Núñez, M.; Lacueva-Arnedo, M.; Espinosa-Buitrago, T.; Martín-Pérez, T.; Escario, J.A.; Merino-Montiel, P.; et al. Thio-and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J. Enzym. Inhib. Med. 2022, 37, 781–791. [Google Scholar] [CrossRef]
- Ibáñez-Escribano, A.; Meneses-Marcel, A.; Marrero-Ponce, Y.; Nogal-Ruiz, J.J.; Arán, V.J.; Gómez-Barrio, A.; Escario, J.A. A sequential procedure for rapid and accurate identification of putative trichomonacidal agents. J. Microbiol. Methods 2014, 105, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; Vela, N.; Cumella, J.; Nogal-Ruiz, J.J.; Escario, J.A.; da Silva, P.B.; Batista, M.M.; Soeiro, M.D.N.C.; Sifontes-Rodríguez, S.; et al. Antichagasic, Leishmanicidal, and Trichomonacidal Activity of 2-Benzyl-5-nitroindazole-Derived Amines. ChemMedChem 2018, 13, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- S’ari, M.; Blade, H.; Cosgrove, S.; Drummond-Brydson, R.; Hondow, N.; Hughes, L.P.; Brown, A. Characterization of Amorphous Solid Dispersions and Identification of Low Levels of Crystallinity by Transmission Electron Microscopy. Mol. Pharm. 2021, 18, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.X.; Canafístula, F.V.; Ferreira, C.R.; Fernandes, L.V.; Araújo, A.R.; Ribeiro, F.O.; Souza, J.M.; Lima, I.C.; Assreuy, A.M.; Silva, D.A.; et al. Hydrogels dressings based on guar gum and chitosan: Inherent action against resistant bacteria and fast wound closure. Int. J. Biol. Macromol. 2023, 253, 127281. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Zhang, J.; Zhang, Z.; Zhang, L. Study of blend films from chitosan and hydroxypropyl guar gum. J. Appl. Polym. Sci 2003, 90, 1991–1995. [Google Scholar] [CrossRef]
- Svoboda, R.; Koutná, N.; Košťálová, D.; Krbal, M.; Komersová, A. Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage. Molecules 2023, 28, 1568. [Google Scholar] [CrossRef]
- Thakral, S.; Suryanarayanan, R. Salt formation during freeze-drying-an approach to enhance indomethacin dissolution. Pharm. Res. 2015, 32, 3722–3731. [Google Scholar] [CrossRef]
- Rojek, B.; Gazda, M.; Wesolowski, M. Quantification of compatibility between polymeric excipients and atenolol using princi-pal component analysis and hierarchical cluster analysis. AAPS PharmSciTech 2022, 23, 3. [Google Scholar] [CrossRef]
- Nayak, B.R.; Singh, R.P. Synthesis and characterization of grafted hydroxypropyl guar gum by ceric ion induced initiation. Eur. Pol. J. 2001, 37, 1655–1666. [Google Scholar] [CrossRef]
- Mohapatra, S.; Samanta, S.; Kothari, K.; Mistry, P.; Suryanarayanan, R. Effect of polymer molecular weight on the crystalli-zation behavior of indomethacin amorphous solid dispersions. Cryst. Growth Des. 2017, 17, 3142–3150. [Google Scholar] [CrossRef]
- Sarode, A.L.; Malekar, S.A.; Cote, C.; Worthen, D.R. Hydroxypropyl cellulose stabilizes amorphous solid dispersions of the poorly water soluble drug felodipine. Carbohydr. Polym. 2014, 112, 512–519. [Google Scholar] [CrossRef] [PubMed]
- López-Manzanara, C.; Torres-Pabón, N.S.; Laguna, A.; Torrado, G.; Torre-Iglesias, P.M.; Torrado-Santiago, S.; Torrado-Salmerón, C. Development of Chitosan/Sodium Carboxymethylcellulose Complexes to Improve the Simvastatin Release Rate: Polymer/Polymer and Drug/Polymer Interactions’ Effects on Kinetic Models. Polymers 2023, 15, 4184. [Google Scholar] [CrossRef]
- Mamidi, H.K.; Rohera, B.D. Application of thermodynamic phase diagrams and Gibbs free energy of mixing for screening of polymers for their use in amorphous solid dispersion formulation of a non-glass-forming drug. J. Pharm. Sci. 2021, 110, 2703–2717. [Google Scholar] [CrossRef]
- Mikolaszek, B.; Jamrógiewicz, M.; Mojsiewicz-Pieńkowska, K.; Sznitowska, M. Microscopic and Spectroscopic Imaging and Thermal Analysis of Acrylates, Silicones and Active Pharmaceutical Ingredients in Adhesive Transdermal Patches. Polymers 2022, 14, 2888. [Google Scholar] [CrossRef]
- Kitano, H.; Imai, M.; Sudo, K.; Ide, M. Hydrogen-bonded network structure of water in aqueous solution of sulfobetaine polymers. J. Phys. Chem. 2002, 43, 11391–11396. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, Y.; Wang, K.; Zhang, C. The adsorption behavior of hydroxypropyl guar gum onto quartz sand. J. Mol. Liq. 2018, 258, 10–17. [Google Scholar] [CrossRef]
- Singh, S.; Thakur, G.; Avadhani, K. Transport of indomethacin from kappa-carrageenan based nanogel. J. Bioeng. Biomed. Sci. 2016, 6, 2. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Liu, R.; Long, L.; Xu, J.; Chen, M.; Qiu, H. Preparation of a fast water-based UV cured polyurethane-acrylate wood coating and the effect of coating amount on the surface properties of oak (Quercus alba L.). Polymers 2019, 11, 1414. [Google Scholar] [CrossRef]
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 2015, 93, 1–49. [Google Scholar] [CrossRef]
- Marin, Ş.; Mihaela, V.; Irina, T.; Mădălina, G.A.K.; Mariana, F.; Dinu-Pîrvu, C.; Vasile, P. Development and characterization of indomethacin loaded polyvinil alcohol-collagen smart hydrogels for burns injuries. In International Conference on Advanced Materials and Systems; The National Research & Development Institute for Textiles and Leather-INCDTP: Bucharest, Romania, 2016; pp. 281–286. [Google Scholar]
- Mikušová, V.; Ferková-JŽigrayová, D.; Krchňák, D.; Mikuš, P. Comparative Study of Polysaccharide-Based Hydrogels: Rheo-logical and Texture Properties and Ibuprofen Release. Gels 2022, 8, 168. [Google Scholar] [CrossRef]
- Malkin, A.; Kulichikhin, V.; Ilyin, S. A modern look on yield stress fluids. Rheol. Acta 2017, 56, 177–188. [Google Scholar] [CrossRef]
- Tripathi, D.; Mishra, S.; Ai, A.K.; Sahoo, J.; Sharma, D.K.; Singh, Y. Curcumin-loaded hydrotropic solid dispersion topical gel development and evaluation: A greener approach towards Transdermal delivery of drugs. Curr. Green Chem. 2022, 9, 26–39. [Google Scholar] [CrossRef]
- Gabbay, R.S.; Kenett, R.S.; Scaffaro, R.; Rubinstein, A. Synchronizing the release rates of salicylate and indomethacin from degradable chitosan hydrogel and its optimization by definitive screening design. Eur. J. Pharm. Sci 2018, 125, 102–109. [Google Scholar] [CrossRef]
- Jakubowska, E.; Lulek, J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions–A review. J. Drug. Deliv. Sci. Technol. 2021, 62, 102357. [Google Scholar] [CrossRef]
- Nair, A.R.; Lakshman, Y.D.; Anand VS, K.; Sree, K.N.; Bhat, K.; Dengale, S.J. Overview of extensively employed poly-meric carriers in solid dispersion technology. AAPS PharmSciTech 2020, 21, 309. [Google Scholar] [CrossRef]
- Tascon-Otero, E.; Torre-Iglesias, P.; Garcia-Rodriguez, J.J.; Peña, M.; Alvarez-Alvarez, C. Enhancement of the Dissolution Rate of Indomethacin by Solid Dispersions in Low-substituted Hydroxypropyl Cellulose. Ind. J. Pharm. Sci. 2019, 81, 824–833. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
Formulations | Unspecific cytotoxicity | |||
---|---|---|---|---|
Vero | Macrophages | L929 | HeLa | |
IND—RM | 0 | 8.04 ± 0.26 | 11.87 ± 1.45 | 4.81 ± 0.26 |
HIND—RM | 0 | 7.90 ± 1.44 | 10.85 ± 0.34 | 25.97 ± 0.83 |
HPM—1:2.5 | 0 | 5.07 ± 0.86 | 15.18 ± 1.82 | 7.46 ± 2.29 |
HSD—1:2.5 | 6.74 ± 1.13 | 8.62 ± 1.09 | 10.95 ± 0.50 | 9.46 ± 1.47 |
H—HPG | 0 | 0 | 10.38 ± 2.24 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahma, Z.; Ibáñez-Escribano, A.; Fonseca-Berzal, C.; García-Rodríguez, J.J.; Álvarez-Álvarez, C.; Torrado-Salmerón, C.; Torrado-Santiago, S.; de la Torre-Iglesias, P.M. Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers 2024, 16, 2174. https://doi.org/10.3390/polym16152174
Dahma Z, Ibáñez-Escribano A, Fonseca-Berzal C, García-Rodríguez JJ, Álvarez-Álvarez C, Torrado-Salmerón C, Torrado-Santiago S, de la Torre-Iglesias PM. Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers. 2024; 16(15):2174. https://doi.org/10.3390/polym16152174
Chicago/Turabian StyleDahma, Zaid, Alexandra Ibáñez-Escribano, Cristina Fonseca-Berzal, Juan José García-Rodríguez, Covadonga Álvarez-Álvarez, Carlos Torrado-Salmerón, Santiago Torrado-Santiago, and Paloma Marina de la Torre-Iglesias. 2024. "Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin" Polymers 16, no. 15: 2174. https://doi.org/10.3390/polym16152174
APA StyleDahma, Z., Ibáñez-Escribano, A., Fonseca-Berzal, C., García-Rodríguez, J. J., Álvarez-Álvarez, C., Torrado-Salmerón, C., Torrado-Santiago, S., & de la Torre-Iglesias, P. M. (2024). Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers, 16(15), 2174. https://doi.org/10.3390/polym16152174