Shear Bond Strength of Clear Aligner Attachment Using 4-META/MMA-TBB Resin Cement on Glazed Monolithic Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Sample Preparation
2.3. Data Collection
2.3.1. Surface Characterization (Scanning Electron Microscopy Observation)
2.3.2. Shear Bond Strength
2.3.3. Mode of Failure
2.4. Data Analysis Strategies
3. Results
3.1. Shear Bond Strength
3.2. Mode of Failure
4. Discussion
4.1. Shear Bond Strength
4.2. Mode of Failure
5. Conclusions
- The highest shear bond strength (SBS) is achieved when a clear aligner attachment is bonded to a glazed monolithic zirconia surface using 4-META/MMA-TBB resin cement (Superbond C&B) in combination with a silane coupling agent.
- The use of 4-META/MMA-TBB resin cement (Superbond C&B) alone for bonding clear aligner attachments to glazed monolithic zirconia surfaces presents a groundbreaking innovation by eliminating the need for additional silane coupling agents while achieving high shear bond strength (SBS) without damaging the surface. This method streamlines clinical procedures, reduces potential errors, and maintains the integrity of the zirconia surface, offering a simplified and effective bonding solution.
- Traditional methods requiring multiple bonding agents and silane treatments are more time-consuming and prone to procedural errors. Therefore, the exclusive use of Superbond C&B is a significant advancement in dental restorative practices, providing both durability and stability for attachments, and the use of bonding agents alone is not recommended.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sjögren, G.; Lantto, R.; Granberg, A.; Sundström, B.O.; Tillberg, A. Clinical examination of leucite-reinforced glass-ceramic crowns (Empress) in general practice: A retrospective study. Int. J. Prosthodont. 1999, 12, 122–128. [Google Scholar] [PubMed]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of Fracture Load of the Four Translucent Zirconia Crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef] [PubMed]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Manicone, P.F.; Rossi Iommetti, P.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Al-Amleh, B.; Lyons, K.; Swain, M. Clinical trials in zirconia: A systematic review. J. Oral Rehabil. 2010, 37, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Komine, F.; Strub, J.R.; Matsumura, H. Bonding between layering materials and zirconia frameworks. Jpn. Dent. Sci. Rev. 2012, 48, 153–161. [Google Scholar] [CrossRef]
- Aksoy, G.; Polat, H.; Polat, M.; Coskun, G. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces. Colloids Surf. B Biointerfaces 2006, 53, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.M.M.; Contreras, L.P.C.; Bueno, M.G.; Campos, T.M.B.; Bresciani, E.; Valera, M.C.; Melo, R.M. The Wear Performance of Glazed and Polished Full Contour Zirconia. Braz. Dent. J. 2019, 30, 511–518. [Google Scholar] [CrossRef]
- Kim, Y. Study on the perception of orthodontic treatment according to age: A questionnaire survey. Korean J. Orthod. 2017, 47, 215–221. [Google Scholar] [CrossRef]
- Pacheco-Pereira, C.; Brandelli, J.; Flores-Mir, C. Patient satisfaction and quality of life changes after Invisalign treatment. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 834–841. [Google Scholar] [CrossRef]
- Miller, K.B.; McGorray, S.P.; Womack, R.; Quintero, J.C.; Perelmuter, M.; Gibson, J.; Dolan, T.A.; Wheeler, T.T. A comparison of treatment impacts between Invisalign aligner and fixed appliance therapy during the first week of treatment. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 302.e1–302.e9. [Google Scholar] [CrossRef] [PubMed]
- Kesling, H.D. Coordinating the predetermined pattern and tooth positioner with conventional treatment. Am. J. Orthod. Oral Surg. 1946, 32, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Azaripour, A.; Weusmann, J.; Mahmoodi, B.; Peppas, D.; Gerhold-Ay, A.; Van Noorden, C.J.F.; Willershausen, B. Braces versus Invisalign®: Gingival parameters and patients’ satisfaction during treatment: A cross-sectional study. BMC Oral Health 2015, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Kidner, G. Interceptive Orthodontics: A Practical Guide to Occlusal Management. J. Orthod. 2016, 43, 84. [Google Scholar] [CrossRef] [PubMed]
- Riva, Y.R.; Rahman, S.F. Dental composite resin: A review. AIP Conf. Proc. 2019, 2193, 020011. [Google Scholar] [CrossRef]
- Dasy, H.; Dasy, A.; Asatrian, G.; Rózsa, N.; Lee, H.F.; Kwak, J.H. Effects of variable attachment shapes and aligner material on aligner retention. Angle Orthod. 2015, 85, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Xiong, G.; Lin, Z.; Huang, X. An analysis of influencing factors of attachment loss in clear aligner treatment. Chin. J. Orthod. 2018, 25, 12–16. [Google Scholar]
- Juntavee, N.; Juntavee, A.; Wongnara, K.; Klomklorm, P.; Khechonnan, R. Shear bond strength of ceramic bracket bonded to different surface-treated ceramic materials. J. Clin. Exp. Dent. 2018, 10, e1167–e1176. [Google Scholar] [CrossRef]
- Grewal Bach, G.K.; Torrealba, Y.; Lagravère, M.O. Orthodontic bonding to porcelain: A systematic review. Angle Orthod. 2014, 84, 555–560. [Google Scholar] [CrossRef]
- Sirirungrojying, S.; Saito, K.; Hayakawa, T.; Kasai, K. Efficacy of using self-etching primer with a 4-META/MMA-TBB resin cement in bonding orthodontic brackets to human enamel and effect of saliva contamination on shear bond strength. Angle Orthod. 2004, 74, 251–258. [Google Scholar] [CrossRef]
- Urapepon, S. Effect of cement film thickness on shear bond strengths of two resin cements. Mahidol Dent. J. 2014, 34, 122–128. [Google Scholar]
- Okamoto, Y.; Takahata, K.; Saeki, K. Studies on the Behavior of Partially Oxidized Tributylborane as a Radical Initiator for Methyl Methacrylate (MMA) Polymerization. Chem. Lett. 1998, 27, 1247–1248. [Google Scholar] [CrossRef]
- Nakagawa, K.; Saita, M.; Ikeda, T.; Hirota, M.; Park, W.; Lee, M.C.; Ogawa, T. Biocompatibility of 4-META/MMA-TBB resin used as a dental luting agent. J. Prosthet. Dent. 2015, 114, 114–121. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Terata, R.; Yoshinaka, S.; Nakashima, K.; Kubota, M. Effect of resinous temporary material on tensile bond strength of resin luting cement to tooth substrate. Dent. Mater. J. 1996, 15, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, I.R. A Review of Direct Orthodontic Bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Jung, H.K.; Choi, I.K.; Kwon, T.Y. Orthodontic bracket bonding to glazed full-contour zirconia. Restor. Dent. Endod. 2016, 41, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Riowruangsanggoon, D.; Riddhabhaya, A.; Niyomtham, N.; Sirisoontorn, I. Shear Bond Strength of Polypropylene Fiber in Orthodontic Adhesive on Glazed Monolithic Zirconia. Polymers 2022, 14, 4627. [Google Scholar] [CrossRef]
- Shinagawa, J.; Inoue, G.; Nikaido, T.; Ikeda, M.; Burrow, M.F.; Tagami, J. Early bond strengths of 4-META/MMA-TBB resin cements to CAD/CAM resin composite. Dent. Mater. J. 2019, 38, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, C.; Ma, S.Q.; Liu, Z.H.; Zang, C.C.; Zhang, W.Y.; Sun, Y.C. High bonding strength between zirconia and composite resin based on combined surface treatment for dental restorations. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020928655. [Google Scholar] [CrossRef]
- Kiong, M.; Ashari, A.; Zamani, N.S.M.; How, R.A.W.M.; Wahab, R.M.A.; Mohamed, A.M.F.S.; Lee, H.J.; Mokhtar, M.H.H. Effect of attachment flash on clear aligner force delivery: An in vitro study. BMC Oral Health 2024, 24, 538. [Google Scholar] [CrossRef]
- ISO/TS 11405:2015 (E); Dental materials—Testing of adhesion to tooth structure. International Organization for Standardization: Geneva, Switzerland, 2015.
- Piemjai, M.; Waleepitackdej, O.; Garcia-Godoy, F. Marginal Micro-Seal and Tensile Bond Strength of a Biopolymer Hybrid Layer Coupled with Dental Prosthesis Using a Primerless-Wet System. Polymers 2023, 15, 283. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- de Carvalho, R.F.; Cotes, C.; Kimpara, E.T.; Leite, F.P.; Özcan, M. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic. Braz. Dent. J. 2015, 26, 44–49. [Google Scholar] [CrossRef]
- Srisomboonkamon, P. Microtensile bond strength between zirconia\nceramics to resin composite using different resin\ncements\n. Chulalongkorn Univ. Dent. J. 2019, 42, 11–22. [Google Scholar] [CrossRef]
- Özcan, M.; Cura, C.; Valandro, L.F. Early bond strength of two resin cements to Y-TZP ceramic using MPS or MPS/4-META silanes. Odontology 2011, 99, 62–67. [Google Scholar] [CrossRef]
- Brum, R.; Mazur, R.; Almeida, J.; Borges, G.; Caldas, D. The influence of surface standardization of lithium disilicate glass ceramic on bond strength to a dual resin cement. Oper. Dent. 2011, 36, 478–485. [Google Scholar] [CrossRef]
- Erdemir, U.; Sancakli, H.S.; Sancakli, E.; Eren, M.M.; Ozel, S.; Yucel, T.; Yildiz, E. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. J. Adv. Prosthodont. 2014, 6, 434–443. [Google Scholar] [CrossRef]
- Filho, A.M.; Vieira, L.C.; Araújo, E.; Monteiro Júnior, S. Effect of different ceramic surface treatments on resin microtensile bond strength. J. Prosthodont. 2004, 13, 28–35. [Google Scholar] [CrossRef]
- Della Bona, A.; Anusavice, K.J. Microstructure, composition, and etching topography of dental ceramics. Int. J. Prosthodont. 2002, 15, 159–167. [Google Scholar]
- Douara, Y.; Kader, S.; Kassem, H.; Mowafy, M. Evaluation of the shear bond strength of ceramic orthodontic brackets to glazed monolithic zirconia using different bonding protocols. Egypt. Orthod. J. 2019, 56, 9–20. [Google Scholar] [CrossRef]
- Blakey, R.; Mah, J. Effects of surface conditioning on the shear bond strength of orthodontic brackets bonded to temporary polycarbonate crowns. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Cetik, S.; Ha, T.H.; Sitri, L.; Duterme, H.; Pham, V.; Atash, R. Comparison of Shear Strength of Metal and Ceramic Orthodontic Brackets Cemented to Zirconia Depending on Surface Treatment: An In Vitro Study. Eur. J. Dent. 2019, 13, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Gursel, A.; Mohamad, A.A.; Firdaus, M.; Mohd Nazeri, M.F. Adhesion Mechanism and Failure Modes in Adhesively Bonded Joints. In Proceedings of the International Conference on Material Science and Technology in Kızılcahamam/ANKARA (IMSTEC), Ankara, Turkey, 18–20 October 2019. [Google Scholar]
- Thurmond, J.W.; Barkmeier, W.W.; Wilwerding, T.M. Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain. J. Prosthet. Dent. 1994, 72, 355–359. [Google Scholar] [CrossRef] [PubMed]
Group | n | Mean ± SD | Max | Min |
---|---|---|---|---|
SiSU | 10 | 33.25 ± 4.57 a | 38.92 | 26.69 |
SU | 10 | 22.88 ± 1.29 b | 25.04 | 21.32 |
SiB | 10 | 17.72 ± 2.46 c | 20.53 | 14.54 |
Si | 10 | 16.58 ± 2.56 c | 20.75 | 13.52 |
B | 10 | 4.55 ± 0.99 d | 5.53 | 2.73 |
Group | SiSU | SU | SiB | Si | B |
---|---|---|---|---|---|
SiSU | - | 10.37 * | 15.53 * | 16.67 * | 28.7 * |
SU | - | 5.16 * | 6.30 * | 18.32 * | |
SiB | - | 1.14 | 13.16 * | ||
Si | - | 12.02 * | |||
B | - |
Group | n | ARI Score 1 | |||
---|---|---|---|---|---|
0 (%) | 1 (%) | 2 (%) | 3(%) | ||
SiSU | 10 | 0 (0) | 4 (40) | 5 (50) | 1(10) |
SU | 10 | 0 (0) | 6 (60) | 4 (40) | 0(0) |
SiB | 10 | 0 (0) | 8 (80) | 2 (20) | 0(0) |
Si | 10 | 0 (0) | 8 (80) | 2 (20) | 0(0) |
B | 10 | 10 (100) | 0 (0) | 0 (0) | 0(0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitasnoraset, K.; Riddhabhaya, A.; Sessirisombat, C.; Hotokezaka, H.; Yoshida, N.; Sirisoontorn, I. Shear Bond Strength of Clear Aligner Attachment Using 4-META/MMA-TBB Resin Cement on Glazed Monolithic Zirconia. Polymers 2024, 16, 1988. https://doi.org/10.3390/polym16141988
Nitasnoraset K, Riddhabhaya A, Sessirisombat C, Hotokezaka H, Yoshida N, Sirisoontorn I. Shear Bond Strength of Clear Aligner Attachment Using 4-META/MMA-TBB Resin Cement on Glazed Monolithic Zirconia. Polymers. 2024; 16(14):1988. https://doi.org/10.3390/polym16141988
Chicago/Turabian StyleNitasnoraset, Kasidit, Apiwat Riddhabhaya, Chidchanok Sessirisombat, Hitoshi Hotokezaka, Noriaki Yoshida, and Irin Sirisoontorn. 2024. "Shear Bond Strength of Clear Aligner Attachment Using 4-META/MMA-TBB Resin Cement on Glazed Monolithic Zirconia" Polymers 16, no. 14: 1988. https://doi.org/10.3390/polym16141988
APA StyleNitasnoraset, K., Riddhabhaya, A., Sessirisombat, C., Hotokezaka, H., Yoshida, N., & Sirisoontorn, I. (2024). Shear Bond Strength of Clear Aligner Attachment Using 4-META/MMA-TBB Resin Cement on Glazed Monolithic Zirconia. Polymers, 16(14), 1988. https://doi.org/10.3390/polym16141988