Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Separation of Bamboo Fibrous and Parenchymal Tissues
2.3. Preparation of LCNF
2.4. Preparation of LCNF and MOF-LCNF Films
2.5. Characterization
3. Results and Discussion
3.1. Chemical Composition and Yield of LCSR Samples
3.2. FTIR Analysis
3.3. Effect of Homogenization on the Crystallinity of LCNF
3.4. Effect of Homogenization on the Viscosity of LCNF Sol.
3.5. Morphology Analysis
3.6. Thermal Stability
3.7. Mechanical Properties of Films
3.8. Optical Property of Films
3.9. Antibacterial Activity of MOF-LCNF Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Pereira, A.D.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Mokhena, T.C.; Sadiku, E.R.; Mochane, M.J.; Ray, S.S.; John, M.J.; Mtibe, A. Mechanical Properties of Cellulose Nanofibril Papers and Their Bionanocomposites: A Review. Carbohydr. Polym. 2021, 273, 118507. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Zhu, J.; Li, N.; Yin, Y. Fabrication of Wood-Inspired Nanocellulose-Based Aerogels for Efficient Adsorption and Filtration Removal of Congo Red. Ind. Crops Prod. 2023, 205, 117482. [Google Scholar] [CrossRef]
- Ren, D.; Wang, Y.; Wang, H.; Xu, D.; Wu, X. Fabrication of Nanocellulose Fibril-Based Composite Film from Bamboo Parenchyma Cell for Antimicrobial Food Packaging. Int. J. Biol. Macromol. 2022, 210, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ding, C.; Wang, B.; Rong, L.; Mao, Z.; Feng, X. Green, Chemical-Free, and High-Yielding Extraction of Nanocellulose from Waste Cotton Fabric Enabled by Electron Beam Irradiation. Int. J. Biol. Macromol. 2024, 267, 131461. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.; Yu, W. Effects of Extraction Methods on Morphology, Structure and Properties of Bamboo Cellulose. Ind. Crops Prod. 2021, 169, 113640. [Google Scholar] [CrossRef]
- Rusch, F.; Wastowski, A.D.; de Lira, T.S.; Moreira, K.C.C.S.R.; de Moraes Lúcio, D. Description of the Component Properties of Species of Bamboo: A Review. Biomass Convers. Biorefinery 2023, 13, 2487–2495. [Google Scholar] [CrossRef]
- Okahisa, Y.; Furukawa, Y.; Ishimoto, K.; Narita, C.; Intharapichai, K.; Ohara, H. Comparison of Cellulose Nanofiber Properties Produced from Different Parts of the Oil Palm Tree. Carbohydr. Polym. 2018, 198, 313–319. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Qing, Y.; Wang, H.; Li, X. A Comparison Study on the Characteristics of Nanofibrils Isolated from Fibers and Parenchyma Cells in Bamboo. Materials 2020, 13, 237. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Jiang, Z.; Li, W.; Yu, Y. A Comparison Study on the Preparation of Nanocellulose Fibrils from Fibers and Parenchymal Cells in Bamboo (Phyllostachys pubescens). Ind. Crops Prod. 2015, 71, 80–88. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Comparison of the Characteristics of Cellulose Microfibril Aggregates Isolated from Fiber and Parenchyma Cells of Moso Bamboo (Phyllostachys pubescens). Cellulose 2010, 17, 271–277. [Google Scholar] [CrossRef]
- Ren, W.; Guo, F.; Zhu, J.; Cao, M.; Wang, H.; Yu, Y. A Comparative Study on the Crystalline Structure of Cellulose Isolated from Bamboo Fibers and Parenchyma Cells. Cellulose 2021, 28, 5993–6005. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Guo, Y.; Zhao, J.; Qu, Y. Preparation of Nanocellulose Crystal from Bleached Pulp with an Engineering Cellulase and Co-Production of Ethanol. Carbohydr. Polym. 2023, 301, 120291. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.; Jawaid, M.; Abu-Jdayil, B. Extraction of Lignin-Containing Nanocellulose Fibrils from Date Palm Waste Using a Green Solvent. Int. J. Biol. Macromol. 2024, 267, 131540. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, L.; Yan, M.; Wang, K.; Jiang, J. Screw Extrusion Pretreatment for High-Yield Lignocellulose Nanofibrils (LCNF) Production from Wood Biomass and Non-Wood Biomass. Carbohydr. Polym. 2022, 277, 118897. [Google Scholar] [CrossRef] [PubMed]
- Solala, I.; Iglesias, M.C.; Peresin, M.S. On the Potential of Lignin-Containing Cellulose Nanofibrils (LCNFs): A Review on Properties and Applications. Cellulose 2020, 27, 1853–1877. [Google Scholar] [CrossRef]
- Huang, Y.; Nair, S.S.; Chen, H.; Fei, B.; Yan, N.; Feng, Q. Lignin-Rich Nanocellulose Fibrils Isolated from Parenchyma Cells and Fiber Cells of Western Red Cedar Bark. ACS Sustain. Chem. Eng. 2019, 7, 15607–15616. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Venditti, R.; Jur, J.; Gorga, R.E.; Pawlak, J.J. Cellulose-Lignin Biodegradable and Flexible UV Protection Film. ACS Sustain. Chem. Eng. 2017, 5, 625–631. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Cheng, J.; Xia, Y.; Duan, C.; Zhong, R.; Zhao, X.; Li, X.; Ni, Y. Nanolignin-Containing Cellulose Nanofibrils (LCNF)-Enabled Multifunctional Ratiometric Fluorescent Bio-Nanocomposite Films for Food Freshness Monitoring. Food Chem. 2024, 453, 139673. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, L.; Wan, Z.; Bu, X.; Deng, Q.; Li, D.; Chen, C.; Xu, Z. Efficient Ultraviolet Blocking Film on the Lignin-Rich Lignocellulosic Nanofibril from Bamboo. Int. J. Biol. Macromol. 2023, 250, 126059. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Toivakka, M.; Xu, C. Current Progress in Functionalization of Cellulose Nanofibers (CNFs) for Active Food Packaging. Int. J. Biol. Macromol. 2024, 267, 131490. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Ren, H.; Jin, J.; He, H.; Jin, P.; Wu, Z.; Zheng, Y. Research Progress of Nanocellulose-Based Food Packaging. Trends Food Sci. Technol. 2024, 143, 104289. [Google Scholar] [CrossRef]
- Dong, Y.; Xie, Y.; Ma, X.; Yan, L.; Yu, H.-Y.; Yang, M.; Abdalkarim, S.Y.H.; Jia, B. Multi-Functional Nanocellulose Based Nanocomposites for Biodegradable Food Packaging: Hybridization, Fabrication, Key Properties and Application. Carbohydr. Polym. 2023, 321, 121325. [Google Scholar] [CrossRef] [PubMed]
- Firmanda, A.; Fahma, F.; Warsiki, E.; Syamsu, K.; Arnata, I.W.; Sartika, D.; Suryanegara, L.; Qanytah; Suyanto, A. Antimicrobial Mechanism of Nanocellulose Composite Packaging Incorporated with Essential Oils. Food Control 2023, 147, 109617. [Google Scholar] [CrossRef]
- Pan, P.; Yan, X. Preparation of Antibacterial Nanosilver Solution Microcapsules and Their Impact on the Performance of Andoung Wood Surface Coating. Polymers 2023, 15, 1722. [Google Scholar] [CrossRef]
- Su, M.; Zhang, R.; Li, H.; Jin, X.; Li, J.; Yue, X.; Qin, D. In Situ Deposition of MOF199 onto Hierarchical Structures of Bamboo and Wood and Their Antibacterial Properties. RSC Adv. 2019, 9, 40277–40285. [Google Scholar] [CrossRef]
- Su, M.; Zhang, R.; Li, J.; Jin, X.; Zhang, X.; Qin, D. Tailoring Growth of MOF199 on Hierarchical Surface of Bamboo and Its Antibacterial Property. Cellulose 2021, 28, 11713–11727. [Google Scholar] [CrossRef]
- Han, D.; Liu, X.; Wu, S. Metal Organic Framework-Based Antibacterial Agents and Their Underlying Mechanisms. Chem. Soc. Rev. 2022, 51, 7138–7169. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chang, L.; Hu, Y.; Xu, S.; Liang, Z.; Ren, X.; Mei, X.; Chen, Z. Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 18194–18208. [Google Scholar] [CrossRef]
- Duncan, M.; Wheatley, P.; Coghill, E.; Vornholt, S.; Warrender, S.; Megson, I.; Morris, R. Antibacterial Efficacy from NO-Releasing MOF–Polymer Films. Mater. Adv. 2020, 1, 2509–2519. [Google Scholar] [CrossRef]
- Dou, J.; Bian, H.; Yelle, D.J.; Ago, M.; Vajanto, K.; Vuorinen, T.; Zhu, J.Y. Lignin Containing Cellulose Nanofibril Production from Willow Bark at 80 °C Using a Highly Recyclable Acid Hydrotrope. Ind. Crops Prod. 2019, 129, 15–23. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-Intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Loader, N.J.; Robertson, I.; Barker, A.C.; Switsur, V.R.; Waterhouse, J.S. An Improved Technique for the Batch Processing of Small Wholewood Samples to α-Cellulose. Chem. Geol. 1997, 136, 313–317. [Google Scholar] [CrossRef]
- Wise, L.E.; Ratliff, E.K. Quantitative Isolation of Hemicelluloses and Summative Analysis of Wood. Anal. Chem. 1947, 19, 459–462. [Google Scholar] [CrossRef]
- Silverstein, R.A.; Chen, Y.; Sharma-Shivappa, R.R.; Boyette, M.D.; Osborne, J. A Comparison of Chemical Pretreatment Methods for Improving Saccharification of Cotton Stalks. Bioresour. Technol. 2007, 98, 3000–3011. [Google Scholar] [CrossRef]
- Victorin, M.; Davidsson, Å.; Wallberg, O. Characterization of Mechanically Pretreated Wheat Straw for Biogas Production. BioEnergy Res. 2020, 13, 833–844. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Q.; Pan, S.; Li, Y.; Jin, Y.; Yang, H.; Li, T.; Zhang, Q. Facile Isolation of Cellulose Nanofibers from Soybean Residue. Carbohydr. Polym. Technol. Appl. 2021, 2, 100172. [Google Scholar] [CrossRef]
- Suopajärvi, T.; Ricci, P.; Karvonen, V.; Ottolina, G.; Liimatainen, H. Acidic and Alkaline Deep Eutectic Solvents in Delignification and Nanofibrillation of Corn Stalk, Wheat Straw, and Rapeseed Stem Residues. Ind. Crops Prod. 2020, 145, 111956. [Google Scholar] [CrossRef]
- French, A.D.; Santiago Cintrón, M. Cellulose Polymorphy, Crystallite Size, and the Segal Crystallinity Index. Cellulose 2013, 20, 583–588. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, L.; Yu, Y.; Lu, J.; Chen, X.; Liu, L. Low-Cost, Scale Production of Nanocellulose from Bamboo Wastes via a Recyclable and Stable Strategy. Biomass Convers. Biorefinery 2024, 2, 1–10. [Google Scholar] [CrossRef]
- Zhuo, X.; Liu, C.; Pan, R.; Dong, X.; Li, Y. Nanocellulose Mechanically Isolated from Amorpha Fruticosa Linn. ACS Sustain. Chem. Eng. 2017, 5, 4414–4420. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Pignon, F. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Biomacromolecules 2016, 17, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, K.; Dufresne, A.; Magnin, A.; Mortha, G.; Kaddami, H. Control of Size and Viscoelastic Properties of Nanofibrillated Cellulose from Palm Tree by Varying the TEMPO-Mediated Oxidation Time. Carbohydr. Polym. 2014, 99, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef] [PubMed]
- Al Mahrouqi, D.; Vinogradov, J.; Jackson, M.D. Zeta Potential of Artificial and Natural Calcite in Aqueous Solution. Adv. Colloid. Interface Sci. 2017, 240, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhang, L.; Ma, J.; Lu, H.; Zhou, X. Stable Suspensions of Lignocellulose Nanofibrils (LCNFs) Dispersed in Organic Solvents. ACS Sustain. Chem. Eng. 2020, 8, 15989–15997. [Google Scholar] [CrossRef]
- Xu, K.; Li, Q.; Xie, L.; Shi, Z.; Su, G.; Harper, D.; Tang, Z.; Zhou, J.; Du, G.; Wang, S. Novel Flexible, Strong, Thermal-Stable, and High-Barrier Switchgrass-Based Lignin-Containing Cellulose Nanofibrils/Chitosan Biocomposites for Food Packaging. Ind. Crops Prod. 2022, 179, 114661. [Google Scholar] [CrossRef]
- Oliaei, E.; Berthold, F.; Berglund, L.A.; Lindström, T. Eco-Friendly High-Strength Composites Based on Hot-Pressed Lignocellulose Microfibrils or Fibers. ACS Sustain. Chem. Eng. 2021, 9, 1899–1910. [Google Scholar] [CrossRef]
Samples | α-Cellulose (%) | Hemicellulose (%) | Klason Lignin (%) | Total Yield (%) |
---|---|---|---|---|
F | 45.14 ± 1.42 | 28.76 ± 1.19 | 23.27 ± 0.88 | - |
F-LCSR | 62.65 ± 3.14 | 4.31 ± 1.44 | 31.38 ± 1.25 | 65.75 ± 2.16 |
P | 34.62 ± 1.25 | 39.14 ± 1.38 | 21.33 ± 1.07 | - |
P-LCSR | 60.10 ± 2.17 | 5.24 ± 3.04 | 30.71 ± 2.06 | 61.61 ± 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, J.; Bao, G.; Qin, D.; Jin, X. Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films. Polymers 2024, 16, 1829. https://doi.org/10.3390/polym16131829
Zhang X, Li J, Bao G, Qin D, Jin X. Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films. Polymers. 2024; 16(13):1829. https://doi.org/10.3390/polym16131829
Chicago/Turabian StyleZhang, Xiaofeng, Jingpeng Li, Gege Bao, Daochun Qin, and Xiaobei Jin. 2024. "Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films" Polymers 16, no. 13: 1829. https://doi.org/10.3390/polym16131829
APA StyleZhang, X., Li, J., Bao, G., Qin, D., & Jin, X. (2024). Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films. Polymers, 16(13), 1829. https://doi.org/10.3390/polym16131829