Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of TPA-CH POP
2.3. Design of the TPA-CH POP-SH Nanocomposite
2.4. Gas Uptake Studies
2.4.1. Isotherms
2.4.2. The Selective Assessments
3. Results
3.1. Structure and Characteristics of TPA-CH POP
3.2. Structure and Characteristics of TPA-CH POP-SH Nanocomposite
3.3. Gas Uptake Investigations
3.4. Isotherms of CO2 Uptake and Standard Enthalpy Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gür, T.M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Anwar, M.; Fayyaz, A.; Sohail, N.; Khokhar, M.; Baqar, M.; Khan, W.; Rasool, K.; Rehan, M.; Nizami, A. CO2 capture and storage: A way forward for sustainable environment. J. Environ. Manag. 2018, 226, 131–144. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 2017, 7, 243–249. [Google Scholar] [CrossRef]
- Du, W.-T.; Chen, S.-Y.; Kuo, S.-W. Mesoporous phenolic/carbon materials templated by CO2-based PEO-b-PCHC diblock copolymers through mediated competitive intermolecular hydrogen bonding interactions for CO2 capture. J. CO2 Util. 2024, 80, 102702. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of carbon dioxide for post-combustion capture: A review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Das, A.; Peu, S.D.; Hossain, M.S.; Nahid, M.M.A.; Karim, F.R.B.; Chowdhury, H.; Porag, M.H.; Argha, D.B.P.; Saha, S.; Islam, A.R.M.T. Advancements in adsorption based carbon dioxide capture technologies-A comprehensive review. Heliyon 2023, 9, e22341. [Google Scholar] [CrossRef]
- Goren, A.Y.; Erdemir, D.; Dincer, I. Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research. Environ. Res. 2024, 240, 117503. [Google Scholar] [CrossRef] [PubMed]
- Ramar, V.; Balraj, A. Critical review on carbon-based nanomaterial for carbon capture: Technical challenges, opportunities, and future perspectives. Energy Fuels 2022, 36, 13479–13505. [Google Scholar] [CrossRef]
- Ejaz, M.; Mohamed, M.G.; Chen, Y.-T.; Zhang, K.; Kuo, S.-W. Porous carbon materials augmented with heteroatoms derived from hyperbranched biobased benzoxazine resins for enhanced CO2 adsorption and exceptional supercapacitor Performance. J. Energy Storage 2024, 78, 110166. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Chen, W.-C.; Kuo, S.-W. Enhanced thermal and porous properties of double-decker-shaped polyhedral silsesquioxane-bismaleimide (DDSQ-BMI) nanocomposites for high-performance CO2 storage and supercapacitors. Polym. Chem. 2024, 15, 553–564. [Google Scholar] [CrossRef]
- Dziejarski, B.; Serafin, J.; Andersson, K.; Krzyżyńska, R. CO2 capture materials: A review of current trends and future challenges. Mater. Today Sustain. 2023, 24, 100483. [Google Scholar] [CrossRef]
- Kuan, Y.-L.; Du, W.-T.; Kuo, S.-W. Effect of polyhedral oligomeric silsesquioxane (POSS) nanoparticle on the miscibility and hydrogen bonding behavior of CO2 based poly (cyclohexene carbonate) copolymers. J. Taiwan Inst. Chem. Eng. 2023, 153, 105214. [Google Scholar] [CrossRef]
- Du, J.; Ouyang, H.; Tan, B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem. Asian J. 2021, 16, 3833–3850. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Sun, Y.; Che, S.; Yang, X.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S. Porous organic polymers for post-combustion carbon capture. Adv. Mater. 2017, 29, 1700229. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Fritz, P.W.; Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022, 51, 9831–9852. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.G.; EL-Mahdy, A.F.M.; Kotp, M.G.; Kuo, S.-W. Advances in porous organic polymers: Syntheses, structures, and diverse applications. Mater. Adv. 2022, 3, 707–733. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Kotp, M.G. Magnetic polyaniline-chitosan nanocomposite decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Mol. Catal. 2017, 439, 72–80. [Google Scholar] [CrossRef]
- Kotp, M.G.; Torad, N.L.; Lüder, J.; El-Amir, A.; Chaikittisilp, W.; Yamauchi, Y.; EL-Mahdy, A.F.M. A phenazine conjugated microporous polymer-based quartz crystal microbalance for sensitive detection of formaldehyde vapors at room temperature: An experiment and density functional theory study. J. Mater. Chem. A 2023, 11, 764–774. [Google Scholar] [CrossRef]
- Kotp, M.G.; Kuo, S.-W.; EL-Mahdy, A.F.M. Phenazine-based Conjugated Microporous Polymers: Influence of planarity and imine content on energy storage performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133210. [Google Scholar] [CrossRef]
- Kotp, M.G.; Lüder, J.; Kuo, S.-W.; EL-Mahdy, A.F.M. Phenazine-integrated conjugated microporous polymers for modulating the mechanics of supercapacitor electrodes. Mater. Adv. 2024, 5, 4142–4150. [Google Scholar] [CrossRef]
- Kotp, M.G.; EL-Mahdy, A.F.M.; Yang, T.-L.; Kuo, S.-W. A pyridinyl-phenanzine conjugated microporous polymer decorated with ultrafine Ag nanoparticles mediates the rapid reduction of nitrophenol. Microporous Mesoporous Mater. 2022, 331, 111669. [Google Scholar] [CrossRef]
- Kotp, M.G.; Chang, C.-L.; EL-Mahdy, A.F. Tetraphenyl-p-phenylenediamine-based tunable conjugated microporous polymers: Adsorption and photodegradation of hazardous dyestuff in aqueous environments. J. Water Process Eng. 2023, 53, 103675. [Google Scholar] [CrossRef]
- Kotp, M.G.; Sharma, S.U.; Lee, J.-T.; EL-Mahdy, A.F.M.; Kuo, S.-W. Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. J. Taiwan Inst. Chem. Eng. 2022, 134, 104310. [Google Scholar] [CrossRef]
- El-Mahdy, A.F.M.; Lüder, J.; Kotp, M.G.; Kuo, S.-W. A Tröger’s Base-Derived Covalent Organic Polymer Containing Carbazole Units as a High-Performance Supercapacitor. Polymers 2021, 13, 1385. [Google Scholar] [CrossRef]
- Kotp, M.G.; Elewa, A.M.; EL-Mahdy, A.F.M.; Chou, H.-H.; Kuo, S.-W. Tunable Pyridyl-Based Conjugated Microporous Polymers for Visible Light-Driven Hydrogen Evolution. ACS Appl. Energy Mater. 2021, 4, 13140–13151. [Google Scholar] [CrossRef]
- Kotp, M.G.; Torad, N.L.; Nara, H.; Chaikittisilp, W.; You, J.; Yamauchi, Y.; EL-Mahdy, A.F.M.; Kuo, S.-W. Tunable Thiophene-Based Conjugated Microporous Polymers for the Disposal of Toxic Hexavalent Chromium. J. Mater. Chem. A 2023, 11, 15022–15032. [Google Scholar] [CrossRef]
- Ahmed, M.; Kotp, M.G.; Mansoure, T.H.; Lee, R.-H.; Kuo, S.-W.; EL-Mahdy, A.F.M. Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage. Microporous Mesoporous Mater. 2022, 333, 111766. [Google Scholar] [CrossRef]
- Ejaz, M.; Mohamed, M.G.; Kuo, S.-W. Solid state chemical transformation provides a fully benzoxazine-linked porous organic polymer displaying enhanced CO2 capture and supercapacitor performance. Polym. Chem. 2023, 14, 2494–2509. [Google Scholar] [CrossRef]
- Lee, T.-L.; Elewa, A.M.; Kotp, M.G.; Chou, H.-H.; El-Mahdy, A.F.M. Carbazole-and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chem. Commun. 2021, 57, 11968–11971. [Google Scholar] [CrossRef]
- Khakbaz, M.; Ghaemi, A.; Sadeghi, G.M.M. Synthesis methods of microporous organic polymeric adsorbents: A review. Polym. Chem. 2021, 12, 6962–6997. [Google Scholar] [CrossRef]
- Yan, J.; Tan, Y.; Tong, S.; Zhu, J.; Wang, Z. Synthesis of triphenylamine-based nanoporous organic polymers for highly efficient capture of SO2 and CO2. Polym. Chem. 2024, 15, 500–507. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S.; Wu, Z.; Zhou, S.; Wang, Z.; Wang, J.; Lu, X. Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high-efficiency CO2 capture and separation over N2. Mater. Lett. 2018, 230, 28–31. [Google Scholar] [CrossRef]
- Mousa, A.O.; Mohamed, M.G.; Lin, Z.-I.; Chuang, C.-H.; Chen, C.-K.; Kuo, S.-W. Conjugated microporous polymers as a novel generation of drug carriers: A systemic study toward efficient carriers of tetracycline antibiotic. Eur. Polym. J. 2023, 196, 112254. [Google Scholar] [CrossRef]
- Mousa, A.O.; Lin, Z.-I.; Chuang, C.-H.; Chen, C.-K.; Kuo, S.-W.; Mohamed, M.G. Rational design of bifunctional microporous organic polymers containing anthracene and triphenylamine units for energy storage and biological applications. Int. J. Mol. Sci. 2023, 24, 8966. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.O.; Chuang, C.-H.; Kuo, S.-W.; Mohamed, M.G. Strategic design and synthesis of ferrocene linked porous organic frameworks toward tunable CO2 capture and energy storage. Int. J. Mol. Sci. 2023, 24, 12371. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.O.; Lin, Z.-I.; Chaganti, S.V.; Chuang, C.-H.; Chen, C.-K.; Kuo, S.-W.; Mohamed, M.G. Bifunctional imidazolium linked tetraphenylethene based conjugated microporous polymers for dynamic antibacterial properties and supercapacitor electrodes. Polym. Chem. 2024, 15, 397–411. [Google Scholar] [CrossRef]
- Lazrak, M.; Toufik, H.; Bouzzine, S.M.; Lamchouri, F. Bridge effect on the charge transfer and optoelectronic properties of triphenylamine-based organic dye sensitized solar cells: Theoretical approach. Res. Chem. Intermed. 2020, 46, 3961–3978. [Google Scholar] [CrossRef]
- Liu, J.; Cui, Y.; Pan, Y.; Chen, Z.; Jia, T.; Li, C.; Wang, Y. Donor-Acceptor Molecule Based High-Performance Photothermal Organic Material for Efficient Water Purification and Electricity Generation. Angew. Chem. Int. Ed. 2022, 61, e202117087. [Google Scholar] [CrossRef]
- Fan, W.; Tan, D.; Deng, W.Q. Acene-modified triphenylamine dyes for dye-sensitized solar cells: A computational study. ChemPhysChem 2012, 13, 2051–2060. [Google Scholar] [CrossRef]
- Fajal, S.; Dutta, S.; Ghosh, S.K. Porous organic polymers (POPs) for environmental remediation. Mater. Horiz. 2023, 10, 4083–4138. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Chen, M.; Liu, X.; Xu, W.; Li, J.; Liu, B.; Fang, Y. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. J. Mater. Chem. A 2020, 8, 18408–18424. [Google Scholar] [CrossRef]
- Mousa, A.O.; Mohamed, M.G.; Lin, Z.-I.; Chuang, C.-H.; Chen, C.-K.; Kuo, S.-W. Construction of cationic conjugated microporous polymers containing pyrene units through post-cationic modification for enhanced antibacterial performance. J. Taiwan Inst. Chem. Eng. 2024, 157, 105448. [Google Scholar] [CrossRef]
- Mousa, A.O.; Sharma, S.U.; Chaganti, S.V.; Mansoure, T.H.; Singh, P.N.; Ejaz, M.; Chuang, C.-H.; Lee, J.-T.; Kuo, S.-W.; Mohamed, M.G. Designing strategically functionalized conjugated microporous polymers with pyrene and perylenetetracarboxylic dianhydride moieties with single-walled carbon nanotubes to enhance supercapacitive energy storage efficiency. J. Power Sources 2024, 608, 234624. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Baskaran, T.; Kaiprathu, A.; Ahmed, M.; Bhosale, S.V.; Joseph, S.; Al-Muhtaseb, A.a.H.; Singh, G.; Sakthivel, A.; Vinu, A. Recent advances in the preparation and applications of organo-functionalized porous materials. Chem. Asian J. 2020, 15, 2588–2621. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Liao, M.; Wu, T.; Zhou, Q.; Xie, H.; Chen, C. Improving osteogenic activity of Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) surfaces by grafting of silanes with different end groups. Appl. Surf. Sci. 2021, 570, 151144. [Google Scholar] [CrossRef]
- Sricharoen, P.; Kongsri, S.; Kukusamude, C.; Areerob, Y.; Nuengmatcha, P.; Chanthai, S.; Limchoowong, N. Ultrasound-irradiated synthesis of 3-mercaptopropyl trimethoxysilane-modified hydroxyapatite derived from fish-scale residues followed by ultrasound-assisted organic dyes removal. Sci. Rep. 2021, 11, 5560. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Macis, E.; Raiteri, R.; Busca, G. Adsorption of trimethoxysilane and of 3-mercaptopropyltrimethoxysilane on silica and on silicon wafers from vapor phase: An IR study. Langmuir 2007, 23, 2505–2509. [Google Scholar] [CrossRef]
- Singh, J.; Whitten, J.E. Adsorption of 3-mercaptopropyltrimethoxysilane on silicon oxide surfaces and adsorbate interaction with thermally deposited gold. J. Phys. Chem. C 2008, 112, 19088–19096. [Google Scholar] [CrossRef]
- Chen, S.-J.; You, H.-X.; Vo-Thanh, G.; Liu, Y. Heterogeneous transfer hydrogenation over mesoporous SBA-15 co-modified by anionic sulfonate and cationic Ru (III) complex. Monatshefte Chem. Chem. Mon. 2013, 144, 851–858. [Google Scholar] [CrossRef]
- Huang, Z.; Yue, J.; Sun, S.; Wu, F.; Li, J.; Li, G.; Li, N.; Yang, Y. In-situ crosslinking of Tröger’s base polymer onto a 3D Tröger’s base-bridged porous network as gas separation membranes. Sep. Purif. Technol. 2024, 338, 126561. [Google Scholar] [CrossRef]
- Isikli, S.; Lecea, M.; Ribagorda, M.; Carreño, M.C.; Díaz, R. Influence of quinone grafting via Friedel–Crafts reaction on carbon porous structure and supercapacitor performance. Carbon 2014, 66, 654–661. [Google Scholar] [CrossRef]
- Zhang, G.; Guan, T.; Wu, J.; Wang, N.; Wang, J.; Li, K. Tailor-made C-Cl bond towards rapid homogeneous stabilization of low-softening-point coal tar pitch. Fuel 2021, 284, 119288. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Kotp, M.G.; Minisy, I.M.; Rehab, A.F.; Kopecký, D.; Fitl, P. Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: A smart system for catalysis. RSC Adv. 2017, 7, 18553–18560. [Google Scholar] [CrossRef]
- Khalid, N.; Shumail, S.; Siddiqi, H.M.; Qureshi, R.; Ashraf, Z. Triphenylamine based redox-active, fluorescent polyamides: Synthesis and photophysics. J. Polym. Res. 2020, 27, 51. [Google Scholar] [CrossRef]
- Du, X.-H.; Jiang, Z.; Liu, Z.; Xu, C. BODIPY-linked conjugated porous polymers for dye wastewater treatment. Microporous Mesoporous Mater. 2022, 332, 111711. [Google Scholar] [CrossRef]
- Ren, S.; Dawson, R.; Adams, D.J.; Cooper, A.I. Low band-gap benzothiadiazole conjugated microporous polymers. Polym. Chem. 2013, 4, 5585–5590. [Google Scholar] [CrossRef]
- Deng, J.-H.; Luo, J.; Mao, Y.-L.; Lai, S.; Gong, Y.-N.; Zhong, D.-C.; Lu, T.-B. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Sci. Adv. 2020, 6, eaax9976. [Google Scholar] [CrossRef]
- Chu, S.S.; Jeffrey, G.; Sakurai, T. The crystal structure of tetrachloro-p-benzoquinone (chloranil). Acta Crystallogr. 1962, 15, 661–671. [Google Scholar] [CrossRef]
- Das, G.; Skorjanc, T.; Sharma, S.K.; Prakasam, T.; Platas-Iglesias, C.; Han, D.S.; Raya, J.; Olsen, J.C.; Jagannathan, R.; Trabolsi, A. Morphological diversity in nanoporous covalent organic materials derived from viologen and pyrene. ChemNanoMat 2018, 4, 61–65. [Google Scholar] [CrossRef]
- Zhu, K.; Qin, X.; Wang, Y.; Lin, C.; Wang, Q.; Wu, K. Effect of the oxygen concentration on the combustion of asphalt binder. J. Anal. Appl. Pyrolysis 2021, 160, 105370. [Google Scholar] [CrossRef]
- Silva, A.; Queiroz, C.; Agathopoulos, S.; Correia, R.; Fernandes, M.; Oliveira, J. Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR. J. Mol. Struct. 2011, 986, 16–21. [Google Scholar] [CrossRef]
- Ray, G.J.; Spanswick, J.; Knox, J.R.; Serres, C. Carbon-13 nuclear magnetic resonance study of ethylene-butene copolymers. Macromolecules 1981, 14, 1323–1327. [Google Scholar] [CrossRef]
- Baumann, F.; Paul, T.; Böttcher, M.; Fritz, C.; Borchardt, H.; Enke, D.; Aigner, A. Chemical surface modification of mesoporous SiO2-based membranes for fine-tuning of drug loading and release properties. J. Drug Deliv. Sci. Technol. 2024, 92, 105350. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [PubMed]
- Kamseu, E.; Ngouloure, Z.N.; Ali, B.N.; Zekeng, S.; Melo, U.; Rossignol, S.; Leonelli, C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy Build. 2015, 88, 45–56. [Google Scholar] [CrossRef]
- Bai, Z.; Jiang, S.; Tang, G.; Hu, Y.; Song, L.; Yuen, R.K. Enhanced thermal properties and flame retardancy of unsaturated polyester-based hybrid materials containing phosphorus and silicon. Polym. Adv. Technol. 2014, 25, 223–232. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Z.; Pan, Y.; Wang, X.; Song, L.; Hu, Y. Finishing of cotton fabrics by multi-layered coatings to improve their flame retardancy and water repellency. Cellulose 2018, 25, 4791–4803. [Google Scholar] [CrossRef]
- de Oliveira, P.W.; Becker-Willinger, C.; Jilavi, M.H. Sol–Gel derived nanocomposites for optical applications. Adv. Eng. Mater. 2010, 12, 349–361. [Google Scholar] [CrossRef]
- Chapman, J.; Garapati, N.; Glezakou, V.-A.; Duan, Y.; Hu, J.; Dinu, C.Z. Molecular dynamics simulations of a hydrophilic MIL-160-based membrane demonstrate pressure-dependent selective uptake of industrially relevant greenhouse gases. Mater. Adv. 2021, 2, 5922–5934. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Chang, S.-Y.; Ejaz, M.; Samy, M.M.; Mousa, A.O.; Kuo, S.-W. Design and synthesis of bisulfone-linked two-dimensional conjugated microporous polymers for CO2 adsorption and energy storage. Molecules 2023, 28, 3234. [Google Scholar] [CrossRef]
- Mousa, A.O.; Mohamed, M.G.; Chuang, C.-H.; Kuo, S.-W. Carbonized aminal-linked porous organic polymers containing pyrene and triazine units for gas uptake and energy storage. Polymers 2023, 15, 1891. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef] [PubMed]
- Maity, A.; Polshettiwar, V. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing. ChemSusChem 2017, 10, 3866–3913. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, L.; Liu, X.; Zhao, A.; Hu, C.; Gan, T.; Liu, Y. Rational design of a mesoporous silica@ZIF-8 based molecularly imprinted electrochemical sensor with high sensitivity and selectivity for atropine monitoring. J. Electroanal. Chem. 2021, 903, 115843. [Google Scholar] [CrossRef]
- Shang, S.; Tao, Z.; Yang, C.; Hanif, A.; Li, L.; Tsang, D.C.; Gu, Q.; Shang, J. Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chem. Eng. J. 2020, 393, 124666. [Google Scholar] [CrossRef]
- Petrovic, B.; Gorbounov, M.; Soltani, S.M. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Mater. 2021, 312, 110751. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.-C. Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model. Ind. Eng. Chem. Res. 2011, 50, 163–175. [Google Scholar] [CrossRef]
- Sarker, A.I.; Aroonwilas, A.; Veawab, A. Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons. Energy Procedia 2017, 114, 2450–2459. [Google Scholar] [CrossRef]
- Vlugt, T.; García-Pérez, E.; Dubbeldam, D.; Ban, S.; Calero, S. Computing the heat of adsorption using molecular simulations: The effect of strong coulombic interactions. J. Chem. Theory Comput. 2008, 4, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.P.; Li, W.C.; Qian, D.; Lu, A.H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010, 22, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, X.; Ji, Y.; Zhao, Z.; Li, W.; Jia, X. Sustainable preparation of bio-based polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustain. Chem. Eng. 2019, 7, 17313–17324. [Google Scholar] [CrossRef]
- Mohanty, P.; Kull, L.D.; Landskron, K. Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide. Nat. Commun. 2011, 2, 401. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, J.; Wang, W.; Ma, Q. Constructing benzoxazine-containing porous organic polymers for carbon dioxide and hydrogen sorption. Eur. Polym. J. 2018, 107, 89–95. [Google Scholar] [CrossRef]
- Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, Q.; Liao, B.; Chen, L.; Zhou, H.; Zhou, Z.; Xia, B.; Huang, J.; Liu, B. Synthesis of novel ferrocene-based conjugated microporous polymers with intrinsic magnetism. Eur. Polym. J. 2017, 93, 556–560. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Jin, S.; Tan, B. Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. J. Colloid Interface Sci. 2018, 509, 457–462. [Google Scholar] [CrossRef]
- Kim, D.; Song, X.; Yoon, J.H.; Lah, M.S. 3,6-Connected metal–organic frameworks based on triscarboxylate as a 3-connected organic node and a linear trinuclear Co3(COO)6 secondary building unit as a 6-connected node. Cryst. Growth Des. 2012, 12, 4186–4193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotp, M.G.; Kuo, S.-W. Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials. Polymers 2024, 16, 1759. https://doi.org/10.3390/polym16131759
Kotp MG, Kuo S-W. Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials. Polymers. 2024; 16(13):1759. https://doi.org/10.3390/polym16131759
Chicago/Turabian StyleKotp, Mohammed G., and Shiao-Wei Kuo. 2024. "Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials" Polymers 16, no. 13: 1759. https://doi.org/10.3390/polym16131759
APA StyleKotp, M. G., & Kuo, S. -W. (2024). Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials. Polymers, 16(13), 1759. https://doi.org/10.3390/polym16131759