Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline–Graphene Oxide Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. GO Synthesis
2.2. PANI Synthesis
2.3. PANI–GO Synthesis
2.4. Physical Characterization
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Graphene Oxide (GO)
3.2. Cyclic Voltammetry of PANI and PANI-GO
3.3. Optical Micrography and SEM
3.4. UV-Visible, FTIR and Raman
3.5. Wettability
3.6. Stability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jozefowicz, M.; Yu, L.T.; Perichon, J.; Buvet, R. Propriétés Nouvelles des Polymères Semiconducteurs. J. Polym. Sci. Part C Polym. Symp. 2007, 22, 1187–1195. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. R. Soc. Chem. Adv. 2021, 11, 5659–5697. [Google Scholar]
- Madaswamy, S.L.; Alothman, A.A.; mana AL-Anazy, M.; Ifseisi, A.A.; Alqahtani, K.N.; Natarajan, S.K.; Ragupathy, D. Polyaniline-based nanocomposites for direct methanol fuel cells (DMFCs)—A Recent Review. J. Ind. Eng. Chem. 2021, 97, 79–94. [Google Scholar] [CrossRef]
- Huang, Z.; Ji, Z.; Feng, Y.; Wang, P.; Huang, Y. Flexible and stretchable polyaniline supercapacitor with a high-rate capability. Polym. Int. 2020, 70, 437–442. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Song, X.; Du, W.; Zhao, X.; Zhang, D. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Molecules 2019, 24, 2263. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Y.; Xiao, C.; Xu, X.; Li, X. Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 2020, 10, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.N.U.; Munawar, T.; Nadeem, M.S.; Mukhtar, F.; Maqbool, A.; Riaz, M.; Manzoor, S.; Ashiq, M.N.; Iqbal, F. Facile synthesis and characterization of conducting polymer-metal oxide-based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: As electrode material for supercapacitor. Ceram. Int. 2021, 47, 18497–18509. [Google Scholar] [CrossRef]
- Maldonado-Larios, L.; Mayen-Mondragón, R.; Martínez-Orozco, R.D.; Páramo-García, U.; Gallardo-Rivas, N.V.; García-Alamilla, R. Electrochemically assisted fabrication of titanium-dioxide/polyaniline nanocomposite films for the electroremediation of congo red in aqueous Effluents. Synth. Met. 2020, 268, 116464. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Xie, S.; Zhou, Y.; Rong, J.; Dong, L. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem. Eng. J. 2022, 427, 131799. [Google Scholar] [CrossRef]
- Hong, X.; Fu, J.; Liu, Y.; Li, S.; Wang, X.; Dong, W.; Yang, S. Recent Progress on Graphene/Polyaniline Composites for High-performance Supercapacitors. Materials 2019, 12, 1451. [Google Scholar] [CrossRef]
- Tabrizi, A.G.; Arsalani, N.; Mohammadi, A.; Ghadimi, L.S.; Ahadzadeh, I. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets. J. Colloid Interface Sci. 2018, 531, 369–381. [Google Scholar] [CrossRef]
- Tohidi, S.; Parhizkar, M.; Bidadi, H.; Mohamad-Rezaei, R. Electrodeposition of polyaniline/ three-dimensional reduced graphene oxide hybrid films for detection of ammonia gas at room temperature. IEEE Sens. J. 2020, 20, 9660–9667. [Google Scholar] [CrossRef]
- Raji, M.; Zari, N.; Abou el Kacem Qaiss, R.B. Chemical Preparation and Functionalization Techniques of Graphene and Graphene Oxide, in Functionalized Graphene Nanocomposites and Their Derivatives; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 1; pp. 1–20. [Google Scholar]
- Hu, F.; Li, W.; Zhang, J.; Meng, W. Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite. J. Mater. Sci. Technol. 2014, 30, 321–327. [Google Scholar] [CrossRef]
- Gandara, M.; Gonçalves, E.S. Electroactive composites: PANI electrochemical synthesis with GO and rGO for structural carbon fiber coating. Prog. Org. Coat. 2020, 138, 105399. [Google Scholar] [CrossRef]
- Guerrero, J.; Caballero, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Aquino, C.B.; Nagaoka, D.A.; Machado, M.M.; Cândido, E.G.; da Silva, A.G.; Camargo, P.H.; Domingues, S.H. Chemical versus electrochemical: What is the best synthesis method to ternary GO/WO3N.W./PAni nanocomposites to improve performance as supercapacitor? Electrochim. Acta 2020, 356, 136786. [Google Scholar] [CrossRef]
- Fuente, E.; Menéndez, J.A.; Díez, M.A.; Suárez, D.; Montes-Morán, M.A. Infrared Spectroscopy of Carbon Materials: A Quantum Chemical Study of Model Compounds. J. Phys. Chem. B 2003, 107, 6350–6359. [Google Scholar] [CrossRef]
- Sun, S.; Wang, P.; Wang, S.; Wu, Q.; Fang, S. Fang Fabrication of MnO2/nanoporous 3D graphene for supercapacitor electrodes. Mater. Lett. 2015, 145, 141–144. [Google Scholar] [CrossRef]
- Alamdari, S.; Ghamsari, M.S.; Afarideh, H.; Mohammadi, A.; Geranmayeh, S.; Tafreshi, M.J.; Ehsani, M.H. Preparation and characterization of GO-ZnO nanocomposite for U.V. detection application. Opt. Mater. 2019, 92, 243–250. [Google Scholar] [CrossRef]
- Brownson, D.A.; Kampouris, D.K.; Banks, C.E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Yang, K.; Anh, N.D.; Park, C.; Lee, S.M.; Lee, T.G.; Jeong, M.S. Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- Gul, W.; Shah, S.R.A.; Khan, A.; Ahmad, N.; Ahmed, S.; Ain, N.; Mehmood, A.; Salah, B.; Ullah, S.S.; Khan, R. Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard. Front. Mater. 2023, 10, 1206918. [Google Scholar] [CrossRef]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Masters, J.; Sun, Y.; MacDiarmid, A.; Epstein, A.; MacDiarmid, A. Epstein. Polyaniline: Allowed oxidation states. Synth. Met. 1991, 41, 715–718. [Google Scholar] [CrossRef]
- Yang, H.; Bard, A. The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 1992, 339, 423–449. [Google Scholar] [CrossRef]
- Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130. [Google Scholar] [CrossRef]
- Altinci, O.C.; Körbahti, B.K. Graphene oxide-polyaniline conducting composite film deposited onplatinum-iridium electrode by electrochemical polymerization of aniline: Synthesis and environmental electrochemistry application. Appl. Surf. Sci. Adv. 2022, 7, 100212. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, X.; Liu, Y.; Zhang, X.; Chen, S.; Chen, Z.; Chen, Y.; Lin, J.; Zhang, Y. Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life. Electrochim. Acta 2021, 390, 138819. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, S.; Hong, R. Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection. Coatings 2020, 10, 1215. [Google Scholar] [CrossRef]
- Tokgoz, S.R.; Firat, Y.E.; Akkurt, N.; Pat, S.; Peksoz, A. Energy storage and semiconducting properties of polyaniline/graphene oxide hybrid electrodes synthesized by one-pot electrochemical method. Mater. Sci. Semicond. Process. 2021, 135, 106077. [Google Scholar] [CrossRef]
- Sayah, A.; Habelhames, F.; Bahloul, A.; Nessark, B.; Bonnassieux, Y.; Tendelier, D.; El Jouad, M. Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J. Electroanal. Chem. 2018, 818, 26–34. [Google Scholar] [CrossRef]
- Nadhirah, N.; Pandian, K.; Arifutzzaman, A.; Rahman, S.; Atika, S. Solar-driven degradation of 2-chlorophenol using PANI/GO as photocatalyst. Orbital Electron. J. Chem. 2020, 12, 205–212. [Google Scholar]
- Menchaca-Campos, C.; Pereyra-Laguna, E.; García-Pérez, C.; Flores-Domínguez, M.; García-Sánchez, M.A.; Uruchurtu-Chavarín, J. Synthesis and characterization of reduced graphene oxide/polyaniline/Au nanoparticles hybrid material for energy applications. In Graphene Oxide-Applications and Opportunities; IntechOpen: London, UK, 2018; Chapter 6; pp. 75–92. [Google Scholar]
- Rabchinskii, M.K.; Shnitov, V.V.; Dideikin, A.T.; Aleksenskii, A.E.; Vul’, S.P.; Baidakova, M.V.; Molodtsov, S.L. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. J. Phys. Chem. C 2016, 120, 28261–28269. [Google Scholar] [CrossRef]
- Lemos, H.G.; Barba, D.; Selopal, G.S.; Wang, C.; Wang, Z.M.; Duong, A.; Rosei, F.; Santosa, S.; Venancio, E. Water-dispersible polyaniline/graphene oxide counter electrodes for dyesensitized solar cells: Influence of synthesis route on the device performance. Sol. Energy 2020, 207, 1202–1213. [Google Scholar] [CrossRef]
- Planes, G.A.; Rodríguez, J.L.; Miras, M.C.; García, G.; Pastor, E.; Barbero, C.A. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation. Phys. Chem. Chem. Phys. 2010, 12, 10584. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R.; García Díaz, P. The Effect of hexamethylene diisocyanate-modified graphene oxide as a nanofiller material on the properties of conductive polyaniline. Polymers 2019, 11, 1032. [Google Scholar] [CrossRef]
- Mohammed, H.Y.; Farea, M.A.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, S.M.; Shirsat, M.D. Selective and sensitive chemiresistive sensors based on polyaniline/graphene oxide nanocomposite: A cost-effective approach. J. Sci. Adv. Mater. Devices 2022, 7, 100391. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Shaikh, F.F.; Shaikh, A.V.; Ubaidullah, M.; Al-Enizi, A.M.; Pathan, H.M. Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application. J. Phys. Chem. Solids 2020, 149, 109774. [Google Scholar] [CrossRef]
- Deshmukh, P.; Shinde, N.; Patil, S.; Bulakhe, R.N.; Lokhande, C. Supercapacitive behavior of polyaniline thin films deposited on fluorine doped tin oxide (FTO) substrates by microwave-assisted chemical route. Chem. Eng. J. 2013, 223, 572–577. [Google Scholar] [CrossRef]
- Waikar, M.R.; Shaikh, A.A.; Sonkawade, R.G. PANINFs synthesized electrochemically as an electrode material for energy storage application. Polym. Bull. 2018, 76, 4703–4718. [Google Scholar] [CrossRef]
- Gandara, M.; Gonçalves, E.S. Polyaniline supercapacitor electrode and carbon fiber graphene oxide: Electroactive properties at the charging limit. Electrochim. Acta 2020, 345, 136197. [Google Scholar] [CrossRef]
PANI | PG1 | PG5 | PG10 | |
---|---|---|---|---|
Contact angle | 36.4° | 19.8° | 18.9° | 18.2° |
Nature | Hydrophilic |
Material | Cs [F/g] Before Stability Test | (Cs) [F/g] After Stability Test | E [Wh/kg] Before Stability Test | E [Wh/kg] After Stability Test | % Loss |
---|---|---|---|---|---|
PANI | 127.79 | 68.10 | 153.35 | 81.72 | 46.7 |
PG1 | 123.17 | 47.00 | 147.80 | 56.41 | 61.8 |
PG5 | 126.06 | 56.08 | 151.27 | 67.30 | 55.5 |
PG10 | 120.79 | 65.62 | 144.95 | 78.74 | 45.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balboa-Palomino, A.; Páramo-García, U.; Melo-Banda, J.A.; Verde-Gómez, J.Y.; Gallardo-Rivas, N.V. Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline–Graphene Oxide Films. Polymers 2024, 16, 1677. https://doi.org/10.3390/polym16121677
Balboa-Palomino A, Páramo-García U, Melo-Banda JA, Verde-Gómez JY, Gallardo-Rivas NV. Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline–Graphene Oxide Films. Polymers. 2024; 16(12):1677. https://doi.org/10.3390/polym16121677
Chicago/Turabian StyleBalboa-Palomino, Armando, Ulises Páramo-García, José Aarón Melo-Banda, José Ysmael Verde-Gómez, and Nohra Violeta Gallardo-Rivas. 2024. "Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline–Graphene Oxide Films" Polymers 16, no. 12: 1677. https://doi.org/10.3390/polym16121677
APA StyleBalboa-Palomino, A., Páramo-García, U., Melo-Banda, J. A., Verde-Gómez, J. Y., & Gallardo-Rivas, N. V. (2024). Effect of Graphene Oxide Addition on the Properties of Electrochemically Synthesized Polyaniline–Graphene Oxide Films. Polymers, 16(12), 1677. https://doi.org/10.3390/polym16121677