Fully Aromatic Thermotropic Copolyesters Based on Vanillic, Hydroxybenzoic, and Hydroxybiphenylcarboxylic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Synthesis
2.2.1. Solution Polycondensation
2.2.2. Small-Scale Melt Polycondensation
2.2.3. Melt Polycondensation
2.2.4. Melt Polycondensation Accompanied by Solid-State Polycondensation
2.3. Comonomer and Polymer Characterization
3. Results and Discussion
3.1. Binary Copolyesters
3.2. Ternary Copolyesters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, J.I.; Kang, C.S. Thermotropic main chain polyesters. Prog. Polym. Sci. 1997, 22, 937–973. [Google Scholar] [CrossRef]
- Jackson, W.J. Liquid Crystal Aromatic Polyesters: Early History and Future Trends. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1989, 169, 23–49. [Google Scholar]
- Economy, J. Aromatic Polyesters of p-Hydroxybenzoic Acid. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1989, 169, 1–22. [Google Scholar]
- Deberdeev, T.R.; Akhmetshina, A.I.; Karimova, L.K.; Ignat’eva, E.K.; Deberdeev, R.Y.; Berlin, A.A. Heat-Resistant Polymer Materials Based on Liquid Crystal Compounds. Polym. Sci. Ser. C 2020, 62, 145–164. [Google Scholar] [CrossRef]
- Lyu, X.; Xiao, A.; Shi, D.; Li, Y.; Shen, Z.; Chen, E.Q.; Zheng, S.; Fan, X.H.; Zhou, Q.F. Liquid crystalline polymers: Discovery, development, and the future. Polymer 2020, 202, 122740. [Google Scholar] [CrossRef]
- Limeneh, D.Y.; Yilma, K.T. Review on Vectran-Super Fiber from Thermotropic Crystals of Rigid-Rod Polymer. J. Eng. 2021, 2021, 6646148. [Google Scholar] [CrossRef]
- Roeting, O.; Hinrichsen, G. Blends of thermotropic liquid-crystalline and thermoplastic polymers—A short review. Adv. Polym. Technol. 1994, 13, 57–64. [Google Scholar] [CrossRef]
- Han, H.S.; Bhowmik, P.K. Wholly aromatic liquid-crystalline polyesters. Prog. Polym. Sci. 1997, 22, 1431–1502. [Google Scholar] [CrossRef]
- Kulichikhin, V.G.; Platé, N.A. Blend composites based on liquid crystal thermoplast. Polym. Sci. USSR 1991, 33, 1–37. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, S.W.; Kim, S.H. Thermotropic liquid crystal polymer reinforced poly(butylene terephthalate) composites to improve heat distortion temperature and mechanical properties. Fibers Polym. 2006, 7, 358–366. [Google Scholar] [CrossRef]
- Yang, Q.; Hirata, M.; Hsu, Y.I.; Lu, D.; Kimura, Y. Improved Thermal and Mechanical Properties of Poly(butylene succinate) by Polymer Blending with a Thermotropic Liquid Crystalline Polyester. J. Appl. Polym. Sci. 2014, 131, 39952. [Google Scholar] [CrossRef]
- Choi, J.K.; Lee, B.W.; Choi, Y.S.; Jo, B.W.; Choi, S.K. Reinforcing Properties of Poly(trimethyleneterephthalate) by a Thermotropic Liquid Crystal Polymer. J. Appl. Polym. Sci. 2015, 132, 41408. [Google Scholar] [CrossRef]
- Wilsens, C.H.; Pepels, M.P.; Spoelstra, A.B.; Portale, G.; Auhl, D.; Deshmukh, Y.S.; Harings, J.A. Improving Stiffness, Strength, and Toughness of Poly(ω-pentadecalactone) Fibers through in Situ Reinforcement with a Vanillic Acid-Based Thermotropic Liquid Crystalline Polyester. Macromolecules 2016, 49, 2228–2237. [Google Scholar] [CrossRef]
- de Kort, G.W.; Bouvrie, L.H.; Rastogi, S.; Wilsens, C.H. Thermoplastic PLA-LCP Composites: A Route toward Sustainable, Reprocessable, and Recyclable Reinforced Material. ACS Sustain. Chem. Eng. 2020, 8, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Karacan, I.A. Comparative Study of Structure-Property Relationships in Highly Oriented Thermoplastic and Thermotropic Polyesters with Different Chemical Structures. J. Appl. Polym. Sci. 2006, 100, 142–160. [Google Scholar] [CrossRef]
- Ueno, K.; Sugimoto, H.; Hayatsu, K. Process for Producing an Aromatic Polyester Fiber. US Patent 4,503,005, 5 March 1985. [Google Scholar]
- Sirigu, A. Topics in the evolution of liquid crystal polymers. Liq. Cryst. 1993, 14, 15–36. [Google Scholar] [CrossRef]
- Economy, J.; Storm, R.S.; Matkovich, V.I.; Cottis, S.G.; Nowak, B.E. Synthesis and structure of para-hydroxybenzoic acid polymer. J. Polym. Sci. Part A-Polym. Chem. 1976, 14, 2207–2224. [Google Scholar] [CrossRef]
- Mikhaylov, P.A.; Zuev, K.V.; Filatova, M.P.; Strelets, B.K.; Kulichikhin, V.G. Synthesis and Properties of Thermotropic Copolyesters Based on Poly(ethylene terephthalate) and 4′-Acetoxy-4-biphenyl-carboxylic Acid. Polymers 2021, 13, 1720. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Zhang, X.; Liu, J.; Wang, J.; Liu, X. Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polym. J. 2022, 54, 995–1008. [Google Scholar] [CrossRef]
- Bazin, A.; Averous, L.; Pollet, E. Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. Eur. Polym. J. 2021, 159, 110717. [Google Scholar] [CrossRef]
- Singh, M.; Takada, K.; Kaneko, T. Biobased liquid crystalline poly(coumarate)s composites and their potential applications. Compos. Commun. 2020, 22, 100531. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, W.; Zhang, Y. Direct synthesis of potentially biodegradable aromatic-aliphatic thermotropic copolyesters with photocrosslinking properties. Liq. Cryst. 2019, 46, 1780–1789. [Google Scholar] [CrossRef]
- Bloom, M.E.; Vicentin, J.; Honeycutt, D.S.; Marsico, J.M.; Geraci, T.S.; Miri, M.J. Highly renewable, thermoplastic tetrapolyesters based on hydroquinone, p-hydroxybenzoic acid or its derivatives, phloretic acid, and dodecanedioic acid. J. Polym. Sci. Part A—Polym. Chem. 2018, 56, 1498–1507. [Google Scholar] [CrossRef]
- Wilsens, C.H.R.M.; Deshmukh, Y.S.; Liu, W. Processing and performance of aromatic-aliphatic thermotropic polyesters based on vanillic acid. Polymer 2015, 60, 198–206. [Google Scholar] [CrossRef]
- Wilsens, C.H.; Verhoeven, J.M.; Noordover, B.A.; Hansen, M.R.; Auhl, D.; Rastogi, S. Thermotropic Polyesters from 2,5-Furandicarboxylic Acid and Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and Mechanical Performance. Macromolecules 2014, 47, 3306–3316. [Google Scholar] [CrossRef]
- Wei, P.; Wang, L.; Huang, S.; Wang, X.; Chen, Y.; Wang, Y.; Wang, Y. Synthesis and Characterization of Novel Thermotropic Aromatic-Aliphatic Biodegradable Copolyesters Containing D,L-Lactic acid (LA), Poly(butylene terephthalate) (PBT) and Biomesogenic Units. Polym.-Plast. Technol. Eng. 2014, 53, 1697–1705. [Google Scholar] [CrossRef]
- Mialon, L.; Pemba, A.G.; Miller, S.A. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 2010, 12, 1704. [Google Scholar] [CrossRef]
- Imasaka, K.; Nagai, T.; Yoshida, M.; Fukuzaki, H.; Asano, M.; Kumakura, M. Synthesis and in vitro degradations of low-molecular-weight copolyesters composed of L-lactic acid and aromatic hydroxy acids. Makromol. Chem. 1990, 191, 2077–2082. [Google Scholar] [CrossRef]
- Nicely, V.A.; Dougherty, J.T.; Renfro, L.W. Sequence Distributions and a Phase Diagram for Copolymers Made from Poly(ethy1ene terephthalate) and p-Acetoxybenzoic Acid. Macromolecules 1987, 20, 573–578. [Google Scholar] [CrossRef]
- Jin, X.; Carfagna, C.; Nicolais, L.; Lanzetta, R. Synthesis and characterization of potentially biodegradable thermotropic polyesters based on p-hydroxybenzoic acid and glycolic acid. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 3115–3122. [Google Scholar] [CrossRef]
- Jin, X.; Carfagna, C.; Nicolais, L.; Lanzetta, R. Synthesis, Characterization, and in Vitro Degradation of a Novel Thermotropic Ternary Copolyester Based on p-Hydroxybenzoic Acid, Glycolic Acid, and p-Hydroxycinnamic Acid. Macromolecules 1995, 28, 4785–4794. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Schwarz, G. New polymer syntheses: 10. Syntheses of high molecular weight poly(4-hydroxybenzoate)s by bulk condensations of 4-hydroxybenzoic acids. Polymer 1984, 25, 520–528. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Löhden, G. Whisker 11. Poly(ester-Amide)s derived from vanillic acid and 4-aminobenzoic acid. Polymer 1995, 36, 1697–1705. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Stukenbrock, T. New polymer syntheses, 92. Biodegradable, thermotropic copolyesters derived from β-(4-hydroxyphenyl)propionic acid. Macromol. Chem. Phys. 1997, 198, 3753–3767. [Google Scholar] [CrossRef]
- Nagata, M. Synthesis, characterization, and hydrolytic degradation of copolyesters of 3-(4-hydroxyphenyl) propionic acid and p-hydroxybenzoic acid, vanilic acid, or syringic acid. J. Appl. Polym. Sci. 2000, 78, 2474–2481. [Google Scholar] [CrossRef]
- Wilsens, C.H.R.M.; Noordover, B.A.J.; Rastogi, S. Aromatic thermotropic polyesters based on 2,5-furandicarboxylic acid and vanillic acid. Polymer 2014, 55, 2432–2439. [Google Scholar] [CrossRef]
- Mikhaylov, P.A.; Kalita, A.G.; Kulichikhin, V.G. Synthesis of New Thermotropic Fully Aromatic Copolyesters from Hydroxybenzoic and Hydroxybiphenylcarboxylic Acids. Polym. Sci. Ser. B 2022, 64, 393–401. [Google Scholar] [CrossRef]
- Pearl, I.A. Reactions of Vanillin and Its Derived Compounds. IV.1 The Caustic Fusion of Vanillin. J. Am. Chem. Soc. 1946, 68, 2180–2181. [Google Scholar] [CrossRef]
- Schwarz, G.; Kricheldorf, H.R. Whiskers. 12. Whisker-like Crystals of Poly(4′-hydroxybiphenyl-4-carboxylic acid). Macromolecules 1995, 28, 3911–3917. [Google Scholar] [CrossRef]
- Kim, W.N.; Denn, M.M. Properties of blends of a thermotropic liquid crystalline polymer with a flexible polymer (Vectra/PET). J. Rheol. 1992, 36, 1477–1498. [Google Scholar] [CrossRef]
- Huh, S.M.; Jin, J.I. Synthesis and characterization of wholly aromatic polyesters derived from 6-hydroxy-5-phenyl-2-naphthoic acid or 4′-hydroxy-3′-phenylbiphenyl-4-carboxylic acid and 4-hydroxybenzoic acid. Macromolecules 1997, 30, 3005–3013. [Google Scholar] [CrossRef]
- Wilsens, C.H.R.M.; Rastogi, S.; Veld, M.A.J.; Klop, E.A.; Noordover, B.A.J. Liquid Crystalline Furandicarboxylic Acid-Based Aromatic Polyesters. Patent WO2013/092667, 27 June 2013. [Google Scholar]
- Mikhailov, P.A.; Zuev, K.V.; Kulichikhin, V.G. Synthesis and Characterization of Novel Wholly Aromatic Copolyesters Based on 4′-Hydroxybiphenyl-3-Carboxylic and 3-Hydroxybenzoic Acids. Polymers 2023, 15, 2133. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Blazquez, J.P.; Bello, A.; Perez, E. Observation of Two Glass Transitions in a Thermotropic Liquid-Crystalline Polymer. Macromolecules 2004, 37, 9018–9026. [Google Scholar] [CrossRef]
- Shinn, T.-H.; Lin, C.-C. Co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyester. II. X-ray diffraction analysis. J. Appl. Polym. Sci. 1993, 47, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Z.; Zeng, S.; Li, G.; Xiong, J.; Ding, L.; Gauthier, M. Synthesis and characterization of renewable polyesters based on vanillic acid. J. Appl. Polym. Sci. 2020, 137, 49189. [Google Scholar] [CrossRef]
- Chen, S.C.; Zhang, X.M.; Liu, M.; Ma, J.P.; Lu, W.Y.; Chen, W.X. Rheological Characterization and Thermal Stability of Different Intrinsic Viscosity Poly(ethylene terephthalate) in Air and Nitrogen. Int. Polym. Process. 2016, 31, 292–300. [Google Scholar] [CrossRef]
- Heifferon, K.V.; Spiering, G.A.; Talley, S.J.; Hegde, M.; Moore, R.B.; Turner, S.R.; Long, T.E. Synthesis and Characterization of a Nematic Fully Aromatic Polyester Based on Biphenyl 3,4′-Dicarboxylic Acid. Polym. Chem. 2019, 10, 4287–4296. [Google Scholar] [CrossRef]
- Park, G.T.; Lee, W.J.; Chang, J.H.; Lim, A.R. Dependence of the Physical Properties and Molecular Dynamics of Thermotropic Liquid Crystalline Copolyesters on p-Hydroxybenzoic Acid Content. Polymers 2020, 12, 198. [Google Scholar] [CrossRef] [PubMed]
- De Kort, G.W.; Leoné, N.; Stellamanns, E.; Auhl, D.; Wilsens, C.H.; Rastogi, S. Effect of Shear Rate on the Orientation and Relaxation of a Vanillic Acid Based Liquid Crystalline Polymer. Polymers 2018, 10, 935. [Google Scholar] [CrossRef]
- De Kort, G.W.; Saidi, S.; Hermida-Merino, D.; Leoné, N.; Rastogi, S.; Wilsens, C.H. Reactive Processing Route to Thermotropic Polyesters with a Low Processing Temperature and Enhanced Relaxation Time. Macromolecules 2021, 54, 1401–1413. [Google Scholar] [CrossRef]
- Wei, P.; Wang, Y.; Wang, Y.; Xia, Y.; He, Y.; Wang, Y. Synthesis and Properties of Thermotropic Poly(Oxybenzoate-Co-Oxynaphthoate) Copolyester Modified by a Third AB Type Monomer. J. Macromol. Sci. Part B 2020, 59, 197–212. [Google Scholar] [CrossRef]
Copolyester | Molar Ratio (AVA/ABCA) | Tg, °C | Tm, °C | Ton, °C | T5%, °C |
---|---|---|---|---|---|
B 1/2 | 1:2 | 135.5 | - | 389 | 457 |
B 1/1 | 1:1 | 135.6 | - | 388 | 424 |
B 2/1 | 2:1 | 132.5 | - | 382 | 410 |
Copolyester | Molar Ratio (AVA/ABA/ABCA) | Tg, °C | Tm, °C | Ton, °C | T5%, °C |
---|---|---|---|---|---|
T 1/1/1 | 1:1:1 | 117.5 | - | 332.7 | 405.9 |
T 2/2/1 | 2:2:1 | 116.4 | - | 304.4 | 389.2 |
T 37/37/26 | 37:37:26 | 116.8 | - | 313.8 | 388.9 |
T 68/21/21 1 | 68:21:11 | - | - | - | - |
Copolyester | Molar Ratio (AVA/ABA/ABCA) | Tg, °C | Tm, °C | Ton, °C | T5%, °C |
---|---|---|---|---|---|
TM 1/1/1 | 1:1:1 | 120.8 | - | 339.1 | 408.7 |
TM 1/2/1 | 1:2:1 | 117.0 | - | 310.5 | 399.7 |
Copolyester | Molar Ratio (AVA/ABA/ABCA) | SSP Condition: Temperature, °C (Time, h) | [η] | Tg, °C | Tm, °C | Ton, °C | T5%, °C |
---|---|---|---|---|---|---|---|
TS 1/1/1-8 | 1:1:1 | 250 (8) | 6.3 | 114.0 | - | 325.1 | 389.8 |
TS 1/1/1-16 | 250 (8) + 255 (8) | 8.7 | 116.8 | - | 334.9 | 391.4 | |
TS 37/37/26-8 | 37:37:26 | 250 (8) | 13.8 | 113.1 | - | n/a | n/a |
TS 37/37/26-16 | 250 (8) + 255 (8) | insol. | 119.6 | - | 349.7 | 394.9 | |
TS 1/3/1-8 | 1:3:1 | 250–260 (8) | insol. | 106.7 | - | n/a | n/a |
TS 1/3/1-16 | 260 (16) | insol. | 108.1 | - | 357.3 | 408.2 |
Copolyester | Molar Ratio (AVA/ABA/ABCA) | [η] | Tg, °C | Ton, °C | T5%, °C | Residue at 1000 °C |
---|---|---|---|---|---|---|
T 1/1/1 | 1:1:1 | 1.2 | 118 | 333 | 406 | 40 |
TM 1/1/1 | insol. | 121 | 339 | 409 | 40 | |
TS 1/1/1-8 | 6.3 | 114 | 325 | 390 | 38 | |
TS 1/1/1-16 | 8.7 | 117 | 335 | 391 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhaylov, P.A.; Zuev, K.V.; Golubev, Y.V.; Kulichikhin, V.G. Fully Aromatic Thermotropic Copolyesters Based on Vanillic, Hydroxybenzoic, and Hydroxybiphenylcarboxylic Acids. Polymers 2024, 16, 1501. https://doi.org/10.3390/polym16111501
Mikhaylov PA, Zuev KV, Golubev YV, Kulichikhin VG. Fully Aromatic Thermotropic Copolyesters Based on Vanillic, Hydroxybenzoic, and Hydroxybiphenylcarboxylic Acids. Polymers. 2024; 16(11):1501. https://doi.org/10.3390/polym16111501
Chicago/Turabian StyleMikhaylov, Pavel A., Kirill V. Zuev, Yaroslav V. Golubev, and Valery G. Kulichikhin. 2024. "Fully Aromatic Thermotropic Copolyesters Based on Vanillic, Hydroxybenzoic, and Hydroxybiphenylcarboxylic Acids" Polymers 16, no. 11: 1501. https://doi.org/10.3390/polym16111501
APA StyleMikhaylov, P. A., Zuev, K. V., Golubev, Y. V., & Kulichikhin, V. G. (2024). Fully Aromatic Thermotropic Copolyesters Based on Vanillic, Hydroxybenzoic, and Hydroxybiphenylcarboxylic Acids. Polymers, 16(11), 1501. https://doi.org/10.3390/polym16111501