Recent Developments in Nanocomposite Membranes Based on Carbon Dots
Abstract
:1. Introduction
2. Carbon Dots
Advantages of CDs in Nanocomposite Membranes
3. Structural Regulation of CDs-Based Nanocomposite Membranes
3.1. Thin Film Nanocomposite Membranes Prepared via Interfacial Polymerization
3.2. Phase Inversion Nanocomposite Membranes
3.3. Surface Engineering Nanocomposite Membranes
4. Photocatalytic/Photoluminescent/Conductive Functionalized CDs Based Nanocomposite Membranes
5. Conclusions and Perspectives
- CDs could regulate the structures of the resultant membranes. The hydrophilicity, reactivity, and charge properties of CDs, which are adjusted by their functional groups, would impact the microstructures, surface charge, and hydrophilicity of nanocomposite membranes.
- CDs endow the nanocomposite membranes with extra features. The optical and electric properties of CDs can be customizable to endow the nanocomposite membranes with self-cleaning and conductive performance.
- The incorporation of CDs can significantly enhance the resultant nanocomposite membranes’ performance, including permeation, rejection, selective separation, antifouling ability (or self-cleaning), and chlorine resistance. These improvements suitably position CDs-based nanocomposite membranes for various applications in NF, RO, UF, PV, membrane distillation, and ion exchange processes.
Author Contributions
Funding
Conflicts of Interest
References
- Goh, P.S.; Wong, K.C.; Ismail, A.F. Membrane technology: A versatile tool for saline wastewater treatment and resource recovery. Desalination 2022, 521, 115377. [Google Scholar] [CrossRef]
- Yuan, H.M.; Liu, J.G.; Zhang, X.H.; Chen, L.G.; Zhang, Q.; Ma, L.L. Recent advances in membrane-based materials for desalination and gas separation. J. Clean. Prod. 2023, 387, 135845. [Google Scholar] [CrossRef]
- Xu, N.P.; Zhao, J.; Liu, G.P. Thinking of membrane technology development towards “carbon emission peak” and “carbon neutrality” targets. J. Chem. Ind. Eng. Progress 2022, 41, 1091–1096. [Google Scholar]
- Sarkar, P.; Wu, C.Y.; Yang, Z.; Tang, C.Y. Empowering ultrathin polyamide membranes at the water-energy nexus: Strategies, limitations, and future perspectives. Chem. Soc. Rev. 2024, 53, 4374–4399. [Google Scholar] [CrossRef] [PubMed]
- Avvari, V.D.; Kimmer, D.; Sahu, S.K.; Boggarapu, V.; Slobodian, P.; Rahul, T.P.; Gotte, M.; Sreekanth, P.S.R. Influence of non-woven antistatic substrate materials on polyvinylidene fluoride electrospun nanofibers: Fabrication, characterization, and performance evaluation. Iran. Polym. J. 2024. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.Z.; Chen, J.J.; Yu, S.N.; Chen, B.H.; Chen, C.; Shen, L.G.; Li, B.S.; Lin, H.J. The coupling of persulfate activation and membrane separation for the effective pollutant degradation and membrane fouling alleviation. Chem. Eng. J. 2023, 451, 139009. [Google Scholar] [CrossRef]
- Sahu, A.; Dosi, R.; Kwiatkowski, C.; Schmal, S.; Poler, J.C. Advanced polymeric nanocomposite membranes for water and wastewater treatment: A comprehensive review. Polymers 2023, 15, 540. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Xia, C.L.; Garalleh, H.A.; Garaleh, M.; Chi, N.T.L.; Brindhadevi, K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. Chemosphere 2023, 315, 137706. [Google Scholar] [CrossRef]
- Li, W.L.; Li, B.R.; Meng, M.J.; Cui, Y.H.; Wu, Y.L.; Zhang, Y.L.; Dong, H.J.; Feng, Y.H. Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Appl. Surf. Sci. 2019, 487, 1008–1017. [Google Scholar] [CrossRef]
- Karki, S.; Gohain, M.B.; Yadav, D.; Thakare, N.R.; Pawar, R.R.; Hazarika, S.; Ingole, P.G. Building rapid water transport channels within thin-film nanocomposite membranes based on 2D mesoporous nanosheets. Desalination 2023, 547, 116222. [Google Scholar] [CrossRef]
- Abebe, S.H.; Subrahmanya, T.M.; Austria, H.F.M.; Nayak, S.; Setiawan, O.; Huang, T.H.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Lamellar structured GO-Melamine nanocomposite membranes with varying d-spacing for efficient organic solvent nanofiltration (OSN). J. Membr. Sci. 2024, 699, 122643. [Google Scholar] [CrossRef]
- Wang, Q.K.; Sun, J.Q.; Xue, W.J.; Zhao, G.L.; Ding, W.D.; Zhang, K.F.; Wang, S.; Li, Y.W. Effect of carbon nanotube nanochannel on the separation performance of thin-film nanocomposite (TFN) membranes. Desalination 2023, 546, 116216. [Google Scholar] [CrossRef]
- Ge, L.; Song, H.J.; Zhu, J.Y.; Zhang, Y.T.; Zhou, Z.; Bruggen, B.V. Metal/covalent-organic framework based thin film nanocomposite membranes for advanced separations. J. Mater. Chem. A 2024, 12, 7975–8013. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ray, R.; Gu, Y.L.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.F.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; An, Y.B.; Xu, D.Z.; Dai, F.; Shao, S.L.; Lu, Z.X.; Liu, G. Comprehensive overview of controlled fabrication of multifunctional fluorescent carbon quantum dots and exploring applications. Small 2024, 2309293. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.E.; Mohammad, A.; Yoon, T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere 2022, 302, 134815. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dua, S.; Kaur, R.; Kumar, M.; Bhatt, G. A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Adv. 2022, 12, 4714–4759. [Google Scholar] [CrossRef]
- Mei, A.X.; Xu, Z.J.; Wang, X.Y.; Liu, Y.Y.; Chen, J.; Fan, J.B.; Shi, Q.D. Photocatalytic materials modified with carbon quantum dots for the degradation of organic pollutants under visible light: A review. Environ. Res. 2022, 214, 114160. [Google Scholar] [CrossRef]
- Ajith, M.P.; Pardhiya, S.; Rajamani, P. Carbon dots: An excellent fluorescent probe for contaminant sensing and remediation. Small 2022, 18, 2105579. [Google Scholar]
- Xia, C.L.; Zhu, S.J.; Feng, T.L.; Yang, M.X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Vatanpour, V.; Koyuncu, I. Carbon-based quantum dots in fabrication and modification of membranes: A review. Sep. Purif. Technol. 2023, 326, 124876. [Google Scholar] [CrossRef]
- Li, M.X.; Chen, T.; Gooding, J.J.; Liu, J.Q. Review of carbon and graphene quantum dots for sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Das, P. Are carbon dots worth the tremendous attention it is getting: Challenges and opportunities. Appl. Mater. Today 2022, 26, 101331. [Google Scholar] [CrossRef]
- Dhamodharan, D.; Byun, H.S.; Shree, M.V.; Veeman, D.; Natrayan, L.; Stalin, B. Carbon nanodots: Synthesis, mechanisms for bio-electrical applications. J. Ind. Eng. Chem. 2022, 110, 68–83. [Google Scholar] [CrossRef]
- Wu, X.L.; Zhou, G.L.; Cui, X.L.; Li, Y.F.; Wang, J.T.; Cao, X.Z.; Zhang, P. Nanoparticle-assembled thin film with amphipathic nanopores for organic solvent nanofiltration. ACS Appl. Mater. Interfaces 2019, 11, 17804–17813. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99. [Google Scholar] [CrossRef]
- Miao, S.H.; Liang, K.; Zhu, J.J.; Yang, B.; Zhao, D.Y.; Kong, B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020, 33, 100879. [Google Scholar] [CrossRef]
- Lu, X.L.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Han, X.L.; Liu, Y.Y.; Wang, C.; Yan, F.Z.; Wang, J.X. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021, 640, 119765. [Google Scholar] [CrossRef]
- Wei, X.X.; Liu, Y.L.; Zheng, J.F.; Wang, X.M.; Xia, S.J.; Bruggen, B.V. A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J. Membr. Sci. 2022, 661, 120952. [Google Scholar] [CrossRef]
- Jeong, B.H.; Hoek, E.M.V.; Yan, Y.S.; Subramani, A.; Huang, X.F.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Wang, K.P.; Wang, X.M.; Januszewski, B.; Liu, Y.L.; Li, D.Y.; Fu, R.Y.; Elimelech, M.; Huang, X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem. Soc. Rev. 2022, 51, 672–719. [Google Scholar] [CrossRef] [PubMed]
- Parani, S.; Choi, E.Y.; Oluwafemi, O.S.; Song, J.K. Carbon dot engineered membranes for separation—A comprehensive review and current challenges. J. Mater. Chem. A 2023, 11, 23683–23719. [Google Scholar] [CrossRef]
- Zhao, D.L.; Chung, T.S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Res. 2018, 147, 43–49. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, Q.; Zhang, R.N.; Su, Y.L.; Jiang, Z.Y. Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J. Membr. Sci. 2018, 553, 17–24. [Google Scholar] [CrossRef]
- Zheng, H.; Mou, Z.H.; Lim, Y.J.; Srikanth, N.; Zhang, W.; Guo, S.; Wang, R.; Zhou, K. High-precision and high-flux separation by rationally designing the nanochannels and surface nanostructure of polyamide nanofiltration membranes. Small Sci. 2022, 2, 2200026. [Google Scholar] [CrossRef]
- Xu, P.; Hong, J.; Xu, Z.Z.; Xia, H.; Ni, Q.Q. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency. Sep. Purif. Technol. 2021, 258, 118042. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wu, P.Y. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. J. Membr. Sci. 2018, 564, 394–403. [Google Scholar] [CrossRef]
- Gai, W.X.; Zhao, D.L.; Chung, T.S. Thin film nanocomposite hollow fiber membranes comprising Na+-functionalized carbon quantum dots for brackish water desalination. Water Res. 2019, 154, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Z.; Zhu, Y.Z.; Liu, C.; Lee, K.R.; Hung, W.S.; Wang, Z.Y.; Li, Y.Y.; Elimelech, M.; Jin, J.; Lin, S.H. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1Å precision separation. Nat. Commun. 2020, 11, 2015. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.P.; Xie, Q.L.; Hong, Z.; Shen, L.F.; Yu, T.; Guo, H.H.; Xiong, Y.; Zhang, G.L.; Lu, Y.H.; Shao, W.Y. Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots. Desalination 2021, 498, 114811. [Google Scholar] [CrossRef]
- Liu, J.W.; Wang, Z.; Li, W.W.; Wang, X.L.; Su, Y.L. Graphene quantum dots enhanced ultrathin nanofilms and arginine engineered nanofiltration membranes with ultra-high separation performance. Desalination 2023, 547, 116232. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.L.; Cao, W.C.; Tang, S.Q.; Qin, M.; Zhou, H.Y.; Wang, Y.W.; Fang, S.Y. Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. J. Colloid Interface Sci. 2023, 641, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wang, X.; Liu, Z.Y.; Chen, Z.Y.; Hong, Z.; Zhang, M.G.; Zheng, Q.X.; Shao, W.Y.; Xie, Q.L. Structure-performance relationships between amino acid-functionalized graphene quantum dots and self-cleaning nanofiltration membranes. J. Membr. Sci. 2022, 644, 120068. [Google Scholar] [CrossRef]
- Liu, B.B.; Zhang, S.; Yao, Z.; Dong, L.L.; Bai, Y.X.; Zhang, C.F. Carbon nitride quantum dot-based thin-film nanocomposite membranes for efficient dye removal. ACS Appl. Nano Mater. 2023, 6, 16297–16308. [Google Scholar] [CrossRef]
- Zheng, H.; Mou, Z.H.; Lim, Y.J.; Liu, B.; Wang, R.; Zhang, W.; Zhou, K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J. Membr. Sci. 2023, 672, 121401. [Google Scholar] [CrossRef]
- He, Y.R.; Zhao, D.L.; Chung, T.S. Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal. J. Membr. Sci. 2018, 564, 483–491. [Google Scholar] [CrossRef]
- Zheng, H.; Mou, Z.H.; Zhou, K. Incorporation of core-shell-structured zwitterionic carbon dots in thin-film nanocomposite membranes for simultaneously improved perm-selectivity and antifouling properties. ACS Appl. Mater. Interfaces 2020, 12, 53215–53229. [Google Scholar] [CrossRef]
- Song, Y.F.; Sun, Y.K.; Zhang, N.; Li, C.; Hou, M.X.; Chen, K.X.; Li, T.M. Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent. Sep. Purif. Technol. 2021, 271, 118870. [Google Scholar] [CrossRef]
- Li, S.X.; Li, C.; Su, B.W.; Hu, M.Z.; Gao, X.L.; Gao, C.J. Amino-functionalized graphene quantum dots (aGQDs)-embedded thin film nanocomposites for solvent resistant nanofiltration (SRNF) membranes based on covalence interactions. J. Membr. Sci. 2019, 588, 117212. [Google Scholar] [CrossRef]
- Li, S.Y.; Yin, Y.T.; Liu, S.X.; Li, H.H.; Su, B.W.; Han, L.H.; Gao, X.L.; Gao, C.J. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration. J. Membr. Sci. 2022, 662, 120930. [Google Scholar] [CrossRef]
- Li, S.X.; Li, C.; Song, X.J.; Su, B.W.; Mandal, B.; Prasad, B.; Gao, X.L.; Gao, C.J. Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration. ACS Appl. Mater. Interfaces 2019, 11, 6527–6540. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Liu, S.X.; Su, B.W.; Gao, X.L.; Gao, C.J. Thin film nanocomposite polyamide membrane doped with amino-functionalized graphene quantum dots for organic solvent nanofiltration. J. Membr. Sci. 2023, 685, 121960. [Google Scholar] [CrossRef]
- Li, Y.F.; You, X.D.; Li, Y.; Yuan, J.Q.; Shen, J.L.; Zhang, R.N.; Wu, H.; Su, Y.L.; Jiang, Z.Y. Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. J. Mater. Chem. A 2020, 8, 23930–23938. [Google Scholar] [CrossRef]
- Xu, Z.W.; Li, P.; Li, N.; Wang, W.; Guo, C.S.; Shan, M.J.; Qian, X.M. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. J. Colloid Interface Sci. 2021, 589, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, M.; Tien, H.N.; Khivantsev, K.; Song, Z.N.; Zhou, F.L.; Yu, M. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination 2019, 451, 125–132. [Google Scholar] [CrossRef]
- Akther, N.; Kawabata, Y.; Lim, S.; Yoshioka, T.; Phuntsho, S.; Matsuyama, H.; Shon, H.K. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study. J. Membr. Sci. 2021, 630, 119309. [Google Scholar] [CrossRef]
- Gai, W.X.; Zhang, Y.; Zhao, Q.P.; Chung, T.S. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. J. Membr. Sci. 2021, 620, 118952. [Google Scholar] [CrossRef]
- Shen, Q.; Lin, Y.Q.; Zhang, P.F.; Segawa, J.; Jia, Y.D.; Istirokhatun, T.; Cao, X.Z.; Guan, K.C.; Matsuyama, H. Development of ultrathin polyamide nanofilm with enhanced inner-pore interconnectivity via graphene quantum dots-assembly intercalation for high-performance organic solvent nanofiltration. J. Membr. Sci. 2021, 635, 119498. [Google Scholar] [CrossRef]
- Mazhari, R.; Bide, Y.; Hosseini, S.S.; Shokrollahzadeh, S. Modification of polyacrylonitrile TFC-FO membrane by biowaste-derived hydrophilic N-doped carbon quantum dots for enhanced water desalination performance. Desalination 2023, 565, 116888. [Google Scholar] [CrossRef]
- Song, X.J.; Zhou, Q.Z.; Zhang, T.; Xu, H.B.; Wang, Z.N. Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: Antifouling and chlorine resistance potentials. J. Mater. Chem. A 2016, 4, 16896–16905. [Google Scholar] [CrossRef]
- Shen, Q.; Lin, Y.Q.; Kawabata, Y.; Jia, Y.D.; Zhang, P.F.; Akther, N.; Guan, K.; Yoshioka, T.; Shon, H.; Matsuyama, H. Engineering heterostructured thin-film nanocomposite membrane with functionalized graphene oxide quantum dots (GOQD) for highly efficient reverse osmosis. ACS Appl. Mater. Interfaces 2020, 12, 38662–38673. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Zhang, K.S. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53. [Google Scholar] [CrossRef]
- Xue, J.; Shen, J.L.; Zhang, R.N.; Wang, F.; Liang, S.W.; You, X.D.; Yu, Q.Q.; Hao, Y.F.; Su, Y.L.; Jiang, Z.Y. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots. J. Membr. Sci. 2020, 612, 118465. [Google Scholar] [CrossRef]
- Niu, Y.H.; Chen, Y.H.; Bao, S.S.; Sun, H.X.; Wang, Y.X.; Ge, B.S.; Li, P.; Hou, Y.F. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Sep. Purif. Technol. 2022, 293, 121035. [Google Scholar] [CrossRef]
- Song, Y.F.; Wang, Y.X.; Zhang, N.; Li, X.F.; Bai, X.S.; Li, T.M. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants. J. Membr. Sci. 2021, 630, 119332. [Google Scholar] [CrossRef]
- Zhang, C.F.; Wei, K.F.; Zhang, W.H.; Bai, Y.X.; Sun, Y.P.; Gu, J. Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 11082–11094. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Valbuena, R.E.; Tayo, L.L.; Hung, W.S.; Hu, C.C.; Tsai, H.A.; Huang, S.H.; Lee, K.R.; Lai, J.Y. Tannin-based thin-film composite membranes integrated with nitrogen-doped graphene quantum dots for butanol dehydration through pervaporation. J. Membr. Sci. 2021, 623, 119077. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Shareef, U.; Xu, J.P.; Xu, Z.L.; Li, P.P.; Li, Y.X.; Li, P.; Gao, P.; Zhang, X.; Xu, S.J. Carbon quantum dots doped thin-film nanocomposite (TFN) membrane on macroporous ceramic hollow fiber support via one-step interfacial polymerization. Sep. Purif. Technol. 2021, 266, 118572. [Google Scholar] [CrossRef]
- Yuan, Z.J.; Wu, X.L.; Jiang, Y.J.; Li, Y.F.; Huang, J.J.; Hao, L.; Zhang, J.; Wang, J.T. Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance. J. Membr. Sci. 2018, 549, 1–11. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, R.N.; Shen, J.L.; Liu, Y.N.; He, M.R.; You, X.D.; Su, Y.L.; Jiang, Z.Y. Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation. J. Membr. Sci. 2019, 572, 504–511. [Google Scholar] [CrossRef]
- Li, Y.; Bi, R.; Su, Y.L.; Li, Y.F.; Yang, C.; You, X.D.; Shen, J.L.; Yuan, J.Q.; Zhang, R.N.; Jiang, Z.Y. Tuning the pore size of graphene quantum dots composite nanofiltration membranes by P-aminobenzoic acid for enhanced dye/salt separation. Sep. Purif. Technol. 2021, 263, 118372. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Cai, Z.; You, S.J.; Sun, Y.B.; Dai, Y.; Wang, R.Y.; Shao, S.L.; Zou, J.L. Corn stalk-derived carbon quantum dots with abundant amino groups as a selective-layer modifier for enhancing chlorine resistance of membranes. ACS Appl. Mater. Interfaces 2021, 13, 22621–22634. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Shao, D.D.; Zhou, Z.Z.; Xia, Q.C.; Chen, J.; Cao, X.L.; Zheng, T.; Sun, S.P. Carbon quantum dots (CQDs) nanofiltration membranes towards efficient biogas slurry valorization. Chem. Eng. J. 2020, 385, 123993. [Google Scholar] [CrossRef]
- Liang, Y.Z.; Li, C.; Li, S.X.; Su, B.W.; Hu, M.Z.; Gao, X.L.; Gao, C.J. Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes. Chem. Eng. J. 2020, 380, 122462. [Google Scholar] [CrossRef]
- Tang, Y.H.; Lin, Y.K.; Ford, D.M.; Qian, X.H.; Cervellere, M.R.; Millett, P.C.; Wang, X.L. A review on models and simulations of membrane formation via phase inversion processes. J. Membr. Sci. 2021, 640, 119810. [Google Scholar] [CrossRef]
- Lecaros, R.L.G.; Deseo, K.M.; Hung, W.S.; Tayo, L.L.; Hu, C.C.; An, Q.F.; Tsai, H.A.; Lee, K.R.; Lai, J.Y. Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane. J. Membr. Sci. 2019, 576, 36–47. [Google Scholar] [CrossRef]
- Koulivand, H.; Shahbazi, A.; Vatanpour, V.; Rahmandoust, M. Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep. Purif. Technol. 2020, 230, 115895. [Google Scholar] [CrossRef]
- Yang, H.L.; Huang, C.T.; Lin, H.Y.; Chen, Y.H.; Tsai, H.A.; Lee, K.R. Zwitterionic carbon quantum dots incorporated ultrafiltration membrane for efficient removal of copper ion. Sep. Purif. Technol. 2024, 331, 125709. [Google Scholar] [CrossRef]
- Vatanpour, V.; Khadem, S.S.M.; Masteri-Farahani, M.; Mosleh, N.; Ganjali, M.R.; Badiei, A.; Pourbashir, E.; Mashhadzadeh, A.H.; Munir, M.T.; Mahmodi, G.; et al. Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. J. Water Process Eng. 2020, 38, 101652. [Google Scholar] [CrossRef]
- Carballo, G.V.; Yang, H.L.; Hsu, Y.X.; Leron, R.B.; Tsai, H.A.; Lee, K.R. Incorporation of zwitterionic carbon quantum dots in cellulose acetate tubular membrane for oil/water separation. Sep. Purif. Technol. 2024, 337, 126301. [Google Scholar] [CrossRef]
- Zhang, B.J.; Wang, W.Y.; Zhu, L.Y.; Li, N.; Chen, X.Y.; Tian, J.W.; Zhang, X.W. Simultaneously enhanced permeability and anti-fouling performance of polyethersulfone ultrafiltration membranes by structural control and mixed carbon quantum dots. J. Membr. Sci. 2022, 641, 119931. [Google Scholar] [CrossRef]
- Feng, H.; Liu, J.; Mu, Y.F.; Lu, N.; Zhang, S.L.; Zhang, M.; Luan, J.S.; Wang, G.B. Hybrid ultrafiltration membranes based on PES and MOFs @ carbon quantum dots for improving anti-fouling performance. Sep. Purif. Technol. 2021, 266, 118586. [Google Scholar] [CrossRef]
- Gan, J.Y.; Chong, W.C.; Sim, L.C.; Koo, C.H.; Pang, Y.L.; Mahmoudi, E.; Mohammad, A.W. Novel carbon quantum dots/silver blended polysulfone membrane with improved properties and enhanced performance in tartrazine dye removal. Membranes 2020, 10, 175. [Google Scholar] [CrossRef]
- Parthiban, V.; Panda, S.K.; Sahu, A.K. Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochim. Acta 2018, 292, 855–864. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, X.; Feng, T.C.; Li, M.S.; Xiao, H.F.; Zhou, S.Y.; Zhao, Y.J.; Zhong, J.; Yang, D.W. Construction of polysulfone anion exchange hybrid membranes by incorporating carbon quantum dots and facilitated transport mechanisms. J. Ind. Eng. Chem. 2022, 115, 219–229. [Google Scholar] [CrossRef]
- Huang, H.G.; Xu, S.Y.; Zhou, J.X.; Luo, F.Y.; Fan, J.T.; Li, H. Mitigation of chemical degradation in perfluorosulfonic acid proton exchange membrane using regenerable hindered amine functionalized carbon quantum dots. J. Membr. Sci. 2021, 636, 119614. [Google Scholar] [CrossRef]
- Wang, C.; Park, M.J.; Yu, H.W.; Matsuyama, H.; Drioli, E.; Shon, H.K. Recent advances of nanocomposite membranes using layer-by-layer assembly. J. Membr. Sci. 2022, 661, 120926. [Google Scholar] [CrossRef]
- Deng, Y.H.; Chen, J.H.; Yang, Q.; Zhuo, Y.Z. Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chem. Eng. Res. Des. 2021, 170, 423–433. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.J.; Li, S.Z.; Wang, L. Selective ion transport in two-dimensional lamellar nanochannel membranes. Angew. Chem. Int. Ed. 2023, 62, e202218321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Chen, P.P.; Shi, B.B.; Guo, W.W.; Jaroniec, M.; Qiao, S.Z. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew. Chem. Int. Ed. 2018, 57, 6814–6818. [Google Scholar] [CrossRef]
- Asif, M.B.; Iftekhar, S.; Maqbool, T.; Pramanik, B.K.; Tabraiz, S.; Sillanpaa, M.; Zhang, Z.H. Two-dimensional nanoporous and lamellar membranes for water purification: Reality or a myth? Chem. Eng. J. 2022, 432, 134335. [Google Scholar] [CrossRef]
- Wu, X.L.; Liu, S.Y.; Cui, X.L.; Lin, J.L.; Zhang, H.Q.; Zhang, J.; Wang, J.T. Manipulating microenvironments of nanochannels in lamellar membranes by quantum dots for highly enhanced nanofiltration performance. Chem. Eng. Sci. 2020, 228, 116001. [Google Scholar] [CrossRef]
- Wang, W.T.; Eftekhari, E.; Zhu, G.S.; Zhang, X.W.; Yan, Z.F.; Li, Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem. Commun. 2014, 50, 13089–13092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, J.; Shi, B.B.; Li, Y. Graphene oxide membranes with an enlarged interlaminar nanochannel through functionalized quantum dots for pervaporative water-selective transport. Sep. Purif. Technol. 2022, 292, 120975. [Google Scholar] [CrossRef]
- Oikawa, M.; Takeuchi, H.; Koide, R.; Yoshizawa, N.; Wang, Z.M.; Koura, S. Achieving overall rejection of pharmaceuticals and personal care products of different polarities by controlling interlayer charging environment of graphene oxide membrane using carbon quantum dots. Chem. Eng. J. 2023, 472, 144811. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.P.; Zhang, X.H.; Wang, N.X.; Liu, T.T.; Cui, S.P.; An, Q.F.; Guo, H.X. In-situ growth of graphene quantum dots modified MoS2 membrane on tubular ceramic substrate with high permeability for both water and organic solvent. J. Membr. Sci. 2021, 627, 119247. [Google Scholar] [CrossRef]
- Zhao, G.K.; Hu, R.R.; He, Y.J.; Zhu, H.W. Physically coating nanofiltration membranes with graphene oxide quantum dots for simultaneously improved water permeability and salt/dye rejection. Adv. Mater. Interfaces 2019, 6, 180472. [Google Scholar] [CrossRef]
- Zeng, Z.P.; Yu, D.S.; He, Z.M.; Liu, J.; Xiao, F.X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T.T.Y. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci. Rep. 2016, 6, 20142. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.F.; Wang, Y.X.; Hou, M.X.; Du, C.H.; Chen, K.X.; Zhang, Y.Z.; Jiang, K. Effect of surface grafting with quaternized carbon quantum dots on nanofiltration membrane removing contaminants from micro-polluted river water. J. Environ. Chem. Eng. 2023, 11, 109244. [Google Scholar] [CrossRef]
- Zhao, D.L.; Das, S.; Chung, T.S. Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process. Environ. Sci. Technol. 2017, 51, 14016–14023. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.L.; Lu, K.J.; Gai, W.X.; Chung, T.S. Nanofiltration-inspired Janus membranes with simultaneous wetting and fouling resistance for membrane distillation. Environ. Sci. Technol. 2021, 55, 7654–7664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zou, W.S.; Kong, W.L.; Chen, X.; Li, W.H.; Huang, X.H.; Wang, Y.Q. Dual integration of amine-functionalized carbon dots endowed nanofiltration membranes with highly efficient biofouling/acid/chlorine resistance for effective Mg2+/Li+ separation. J. Membr. Sci. 2024, 696, 122542. [Google Scholar] [CrossRef]
- Lei, S.J.; Zeng, M.X.; Huang, D.L.; Wang, L.; Zhang, L.C.; Xi, B.D.; Ma, W.C.; Chen, G.Y.; Cheng, Z.D. Synergistic high-flux oil-saltwater separation and membrane desalination with carbon quantum dots functionalized membrane. ACS Sustain. Chem. Eng. 2019, 7, 13708–13716. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Shao, D.D.; Yang, W.J.; Xiao, H.F.; Wang, Z.Y.; Zhou, C.; Cao, X.L.; Sun, S.P. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Appl. Mater. Interfaces 2020, 12, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wu, C.P.; Chen, Z.Y.; Zhang, M.G.; Hong, Z.; Guo, H.H.; Shao, W.Y.; Xie, Q.L. A facile co-deposition approach to construct functionalized graphene quantum dots self-cleaning nanofiltration membranes. Nanomaterials 2022, 12, 41. [Google Scholar] [CrossRef]
- Zhao, D.L.; Jin, H.Y.; Zhao, Q.P.; Xu, Y.C.; Shen, L.G.; Lin, H.G.; Chung, T.S. Smart integration of MOFs and CQDs to fabricate defect-free and self-cleaning TFN membranes for dye removal. J. Membr. Sci. 2023, 679, 121706. [Google Scholar] [CrossRef]
- Zheng, H.G.; Li, M.Y.; Jiang, S.Y.; Xiao, C.Z.; Zhu, M.L.; Zhou, Y.; Wang, D.R.; Sun, X.; Zhang, D.Q.; Zhang, L.Z. MIL-88A/carbon quantum dots nanomaterials promote the photo-fenton reaction to enhance the fouling resistance of PVDF membrane. J. Membr. Sci. 2023, 684, 121855. [Google Scholar] [CrossRef]
- Mi, Y.F.; Wang, N.; Fang, X.Y.; Cao, J.; Tao, M.; Cao, Z.H. Interfacial polymerization nanofiltration membrane with visible light photocatalytic self-cleaning performance by incorporation of CQD/TiO2. Sep. Purif. Technol. 2021, 277, 119500. [Google Scholar] [CrossRef]
- Song, Y.F.; Li, Y.J.; Chen, X.M.; Meng, C.C.; Ma, S.F.; Li, T.M.; Jiang, K.; Hu, C. Simultaneous degradation and separation of antibiotics in sewage effluent by photocatalytic nanofiltration membrane in a continuous dynamic process. Water Res. 2023, 229, 119460. [Google Scholar] [CrossRef]
- Song, Y.F.; Meng, C.C.; Chen, X.M.; Li, Y.J.; Ma, S.F.; Zhang, L.J.; Wang, J.R.; Jiang, K. Synchronous removal of antibiotics in sewage effluents by surface-anchored photocatalytic nanofiltration membrane in a continuous dynamic process. Environ. Sci. Nano 2023, 10, 567–580. [Google Scholar] [CrossRef]
- Yeh, Y.J.; Lin, W.; Chiang, W.H.; Tung, K.L. Plasma-enabled graphene quantum dot-based nanofiltration membranes for water purification and dye monitoring. J. Membr. Sci. 2023, 670, 121334. [Google Scholar] [CrossRef]
- Li, Q.; Shen, X.; Xing, D.M. Carbon quantum dots as ROS-generator and -scavenger: A comprehensive review. Dyes Pigments 2023, 208, 110784. [Google Scholar] [CrossRef]
- Chong, Y.; Ge, C.C.; Fang, G.; Tian, X.; Ma, X.C.; Wen, T.; Wamer, W.G.; Chen, C.Y.; Chai, Z.F.; Yin, J.J. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 2016, 10, 8690–8699. [Google Scholar] [CrossRef]
- Lee, M.; Lee, S.H.; Oh, I.K.; Lee, H. Microwave-accelerated rapid, chemical oxidant-free, material-independent surface chemistry of poly(dopamine). Small 2017, 13, 160043. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Tsehaye, M.T.; Wang, J.; Uliana, A.; Tian, M.M.; Yuan, S.S.; Li, J.; Zhang, Y.T.; Volodin, A.; Van der Bruggen, B. A rapid deposition of polydopamine coatings induced by iron (III) chloride/hydrogen peroxide for loose nanofiltration. J. Colloid Interface Sci. 2018, 523, 86–97. [Google Scholar] [CrossRef]
- Mi, Y.F.; Huang, Y.H.; He, S.H.; Cao, Z.H.; Shentu, B.Q. Promoted deposition of polydopamine by carbon quantum dots to construct loose nanofiltration membranes. Colloids Surf. A 2023, 660, 130871. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Saha, A.; Noked, M.; Margel, S.; Gedanken, A. Carbon-dots-initiated photopolymerization: An in situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 2021, 13, 31038–31050. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Miao, J.; Xu, L.; Zhou, Q.Z.; Deng, T.L. Conductive thin-film nanocomposite nanofiltration membrane comprising N-doped graphene quantum dots with relieved concentration polarization for sulfate separation from high-salinity solution. Desalination 2023, 555, 116526. [Google Scholar] [CrossRef]
Size (nm) | Crystallinity | Observed by TEM | Hydrophilicity | Properties | |
---|---|---|---|---|---|
GQD [24,25] | lateral dimension < 20 nm with less than 10 graphene layers | highly crystalline | √ | amphiphilic | fluorescence properties originate from quantum confinement and edge effect |
CQD [24,25] | <10 nm | crystal lattices and chemical groups on the surface | √ | hydrophilic or hydrophobic | photoluminescence and electronic bandgap depend on structural defects, heteroatom doping, vacancy defects, and quantum confinement effect |
CND [26] | <10 nm | amorphous | √ | highly hydrophilic | lack quantum confinement; photoluminescence behavior is related to the surface defects; strong electron-donating and accepting abilities |
CPDs [22,27] | - | low | × | highly hydrophilic | abundant functional groups; polydispersity in structures; highly crosslinked network structure; photoluminescence originates from the surface state, subdomain state, molecular state, and crosslink-enhanced emission effect |
Amine Monomer | CDs | Characters of Separation Layer Compared with Pristine One | Separation Performance and Application | Ref. | |||
---|---|---|---|---|---|---|---|
Roughness | Thickness | Hydrophilicity | Surface Charge | ||||
PIP | AGQDs | smoother | thinner | improved | decreased | J = 18.6 L m−2 h−1 bar−1 (increased by 60.9%) RNa2SO4 = 95.7% desalination | [43] |
GQDs | smoother | thinner | improved | decreased | J = 40.3 L m−2 h−1 bar−1; RNa2SO4 = 99.7%; selectivity of Cl−/SO42− = 309.5 desalination | [44] | |
NGQDs | smoother | thinner | slightly decreased | slightly decreased | J = 12.4 L m−2 h−1 bar−1 RCR = 99.5%; RNaCl = 14.3% dye desalination | [45] | |
GQDs | smoother | - | improved | decreased | J = 51.0 L m−2 h−1 bar−1 (increased by 580%) RGR = 96.0%; ROG = 80% dye removal | [37] | |
AA-fGQDs | smoother | thinner | improved | depends on amino acid type | J = 27.3 L m−2 h−1 bar−1; RNa2SO4 = 97.9% (TFN-Asp-GQDs); highest antifouling ability (TFN-Cys-GQDs) desalination | [46] | |
CNQDs | smoother | thinner | improved | increased | J = 13.7 L m−2 h−1 bar−1; RMB > 99%; dye removal | [47] | |
PEI-CDs | smoother | thinner | increased | more positive | J = 15.3 L m−2 h−1 bar−1; RMgSO4 = 98.3% J = 30.9 L m−2 h−1 bar−1; RNa2SO4 = 99.4% desalination | [48] | |
PS-CDs | unchanged | rougher | more negative | ||||
Na+-CQDs | rougher | thicker | improved | increased | J = 10.4 L m−2 h−1 bar−1; = 97.5%; = 99.5%; ions removal | [49] | |
NCQDs | smoother | - | improved | decreased | TFN-SCQDs achieved best water permeance J = 7.0 L m−2 h−1 bar−1; RNa2SO4 = 96.3%; TFN-NCQD had better rejection of divalent cations | [40] | |
CCQDs | rougher | increased | |||||
SCQDs | rougher | increased | |||||
CDs-ZPEI10k | rougher | thicker | improved | unchanged | J = 11.4 L m−2 h−1 bar−1 (increased by 138%); RNa2SO4 = 98.1%; desalination | [50] | |
PIP + BP | GQDs | smoother | thinner | improved | increased | J = 59.6 L m−2 h−1 bar−1; Rdirect black = 99.9%; RNaCl = 2.6%; dye desalination | [51] |
MPD | aGQDs | smoother | thinner | - | - | J = 3.80 L m−2 h−1 bar−1 (ethanol, increased by 44%) RRDB = 99.0%; solvent resistance NF | [52] |
af-GQDs | smoother | thinner | - | - | J = 9.76 L m−2 h−1 bar−1 (ethanol); RRDB = 98.0%; OSN | [53] | |
GQDs | smoother | thinner | - | - | J = 22.6 L m−2 h−1 bar−1 (ethanol); RRDB = 98.0%; solvent resistance NF | [54] | |
af-GQDs | smoother | thinner | J = 13.5 L m−2 h−1 bar−1 (methanol); J = 6.98 L m−2 h−1 bar−1 (ethanol); J = 11.2 L m−2 h−1 bar−1 (dimethyl formamide); RRDB = 99.2%; OSN | [55] | |||
GQDs | smoother | ultrathin | improved | increased | J = 32.1 L m−2 h−1 bar−1; RNa2SO4 = 99.6%; selectivity of Cl−/SO42− = 205.8; desalination | [56] | |
NH2-GOQDs | smoother | - | improved | unchanged | J = 13.3 L m−2 h−1 bar−1, reverse salt flux = 6.0 g−2 h−1 (2 bar); FO | [57] | |
N-GOQD | smoother | unchanged | improved | - | J = 1.7 L m−2 h−1 bar−1; RNaCl = ~93%; RO | [58] | |
GQDs | smoother | - | improved | - | J = 30.9 L m−2 h−1, reverse solute flux = 0.12 g L−1; FO | [59] | |
CQDs-EA | rougher | thicker | improved | - | J = 5.50 L m−2 h−1 bar−1 (increased by 42.1%); RNaCl = 98.0%; brackish water desalination | [60] | |
GQD-NH2 | rougher | thinner | improved | - | J = 11.1 L m−2 h−1 bar−1 (methanol); J = 5.9 L m−2 h−1 bar−1 (dimethyl formamide); OSN | [61] | |
Na+-CQDs | rougher | thinner | - | - | J = 3.84 L m−2 h−1 bar−1; RNaCl = 98.6%; J = 1.13 L m−2 h−1 bar−1; RNaCl = 96.7%; brackish water desalination | [41] | |
CQDs | smoother | thinner | |||||
BWD-NCQDs | rougher | thinner | improved | - | J = 8.2 L m−2 h−1 bar−1 (increased by 54.7%); reverse solute flux decreased to 3.81 g−2 h−1 (3 bar) FO | [62] | |
GOQD | rougher | thinner | improved | - | J = 2.1 L m−2 h−1 bar−1; RNaCl = 98.8%; RO | [63] | |
N/S-GOQD | rougher | thicker | improved | increased | J = 5.9 L m−2 h−1 bar−1; RNaCl = 97.1%; RO | [64] | |
CDs | rougher | thinner | improved | - | J = 5.7 L m−2 h−1 bar−1; RNaCl = 99.0%; RO | [65] | |
β-CD | GQDs | smoother | slightly thicker | improved | decreased | J = 474.7 L m−2 h−1 bar−1 (increased by 290%) REBT > 93.0%; RCR > 93.0%; dye removal | [66] |
NGQDs | unchanged | thicker | - | - | CO2 permeance 174.5 GPU; CO2/N2 selectivity = 23.3 gas separation | [67] | |
PEI | QCQDs | smoother | thinner | improved | increased | J = 23.8 L m−2 h−1 bar−1; RMgCl2 = 95.6%; RRB = 98.9%; Rtrimethoprim = 99.7%; cationic small-sized contaminants removal | [68] |
GQDs-NH2 | smoother | thinner | improved | increased | J = 11.9 L m−2 h−1 bar−1; separation factor of Mg2+/Li+ = 0.0359 | [39] | |
TA | GQD | smoother | thinner | improved | increased | J = 11.6 L m−2 h−1 bar−1; RCR = 99.8%; RMB = 97.6%; RNaCl = 17.2%; dye desalination | [69] |
NGQD | rougher | - | improved | - | n-butanol in feed (90%): total flux = 1000 g m−2 h−1 at 25 °C, water concentration in permeate 97.1 wt% PV | [70] | |
EDA + PVA | N-CDs | rougher | thinner | improved | - | total permeation flux of 3.15 kg m−2 h−1; ethanol/water separation factor of 1127 PV | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Meng, Y.; Liu, J.; Huang, D.; Mi, Y.; Ma, R. Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers 2024, 16, 1481. https://doi.org/10.3390/polym16111481
He S, Meng Y, Liu J, Huang D, Mi Y, Ma R. Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers. 2024; 16(11):1481. https://doi.org/10.3390/polym16111481
Chicago/Turabian StyleHe, Shuheng, Yiding Meng, Jiali Liu, Dali Huang, Yifang Mi, and Rong Ma. 2024. "Recent Developments in Nanocomposite Membranes Based on Carbon Dots" Polymers 16, no. 11: 1481. https://doi.org/10.3390/polym16111481
APA StyleHe, S., Meng, Y., Liu, J., Huang, D., Mi, Y., & Ma, R. (2024). Recent Developments in Nanocomposite Membranes Based on Carbon Dots. Polymers, 16(11), 1481. https://doi.org/10.3390/polym16111481