The Air Permeability and the Porosity of Polymer Materials Based on 3D-Printed Hybrid Non-Woven Needle-Punched Fabrics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, H.-M.; Xie, W.-H.; Chen, G.-J. Study on filtration performance and mechanism of melt-blown polypropylene electret web used as air filter material against challenge aerosols with different chemical properties. J. Funct. Mater. 2013, 44, 936–939. [Google Scholar]
- Li, J.; Shi, X.; Gao, F.; Liu, L.; Chen, R.; Chen, C.; Zhang, Z. Filtration of fine particles in atmospheric aerosol with electrospinning nanofibers and its size distribution. Sci. China Technol. Sci. 2014, 57, 239–243. [Google Scholar] [CrossRef]
- Chavhan, V.; Mukhopadhyay, A. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review. J. Inst. Eng. (India) Ser. E 2016, 97, 63–73. [Google Scholar] [CrossRef]
- Galikhanov, M.F. Unipolar Corona Discharge Effect on Filtering Capacity of Polypropylene Non-Woven Fabrics. Fibre Chem. 2017, 48, 473–477. [Google Scholar] [CrossRef]
- Raeisian, L.; Mansoori, Z.; Hosseini-Abardeh, R.; Bagherzadeh, R. An investigation in structural parameters of needle-punched nonwoven fabrics on their thermal insulation property. Fibers Polym. 2013, 14, 1748–1753. [Google Scholar] [CrossRef]
- Cai, G.; Xu, Z.; Li, W.; Yu, W. Experimental investigation on the thermal protective performance of nonwoven fabrics made of high-performance fibers. J. Therm. Anal. Calorim. 2015, 121, 627–632. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, S.W. Effect of Fiber Cross Section Shape on the Sound Absorption and the Sound Insulation. Fibers Polym. 2021, 22, 2937–2945. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Karunakaran, G.; Rwahwire, S.; Kesari, K. Nonwoven fabrics developed from agriculture and industrial waste for acoustic and thermal applications. Cellulose 2023, 30, 7329–7346. [Google Scholar] [CrossRef]
- Ramamoorthy, M.; Pisal, A.A.; Rengasamy, R.S.; Rao, A.V. In-situ synthesis of silica aerogel in polyethylene terephthalate fibre nonwovens and their composite properties on acoustical absorption behavior. J. Porous Mater. 2018, 25, 179–187. [Google Scholar] [CrossRef]
- Velayutham, T.; Kumar, M.R.; Sundararajan, P.; Chung, I.-M.; Prabakaran, M. A Study on the Effect of Natural Regenerated and Synthetic Non-woven Fabric Properties on Acoustic Applications. J. Nat. Fibers 2022, 19, 6553–6563. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Gadelmoula, A.M. Industrial noise monitoring using noise mapping technique: A case study on a concrete block-making factory. Int. J. Environ. Sci. Technol. 2022, 19, 851–862. [Google Scholar] [CrossRef]
- Nithin, S.; Rajagopal, K.; Veeraragavan, A. State-of-the Art Summary of Geosynthetic Interlayer Systems for Retarding the Reflective Cracking. Indian Geotech. J. 2015, 45, 472–487. [Google Scholar] [CrossRef]
- Luciani, A.; Peila, D. Tunnel Waterproofing: Available Technologies and Evaluation through Risk Analysis. Int. J. Civ. Eng. 2019, 17, 45–59. [Google Scholar] [CrossRef]
- Alimohammadi, H.; Schaefer, V.R.; Zheng, J.; Li, H. Performance evaluation of geosynthetic reinforced flexible pavement: A review of full-scale field studies. Int. J. Pavement Res. Technol. 2021, 14, 30–42. [Google Scholar] [CrossRef]
- Dubrovski, P.D.; Brezocnik, M. The modelling of porous properties regarding PES/CV-blended nonwoven wipes. Fibers Polym. 2012, 13, 363–370. [Google Scholar] [CrossRef]
- Das, D.; Ishtiaque, S.M.; Rao, S.V.A.; Pourdeyhimi, B. Modelling and experimental studies of air permeability of nonuniform nonwoven fibrous porous media. Fibers Polym. 2013, 14, 494–499. [Google Scholar] [CrossRef]
- Roy, R.; Chatterjee, S. Development of a Multi-component Air Filter by Incorporating the Density Gradient Structure in Needle Punched Nonwoven. Fibers Polym. 2018, 19, 2597–2603. [Google Scholar] [CrossRef]
- Jeon, S.-Y.; Yu, W.-R.; Kim, M.S.; Lee, J.S.; Kim, J.W. Predicting the tensile strength of needle-punched nonwoven mats using X-ray computed tomography and a statistical model. Fibers Polym. 2014, 15, 1202–1210. [Google Scholar] [CrossRef]
- Lee, J.-C.; Park, D.-H.; Choi, J.R.; Kim, K.-Y. Tensile Properties and Poisson’s Ratio of Thermocompression-bonded PET Nonwoven Fabrics Prepared by Needle-punching. Fibers Polym. 2019, 20, 1969–1974. [Google Scholar] [CrossRef]
- Pereborova, N.V.; Makarov, A.G.; Busygin, K.N.; Chalova, E.I.; Razumeev, K.E. Methods for Modeling and Predicting Deformation Modes of Functioning of Geotextile Nonwovens. Fibre Chem. 2022, 54, 102–105. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Doronin, F.A.; Evdokimov, A.G.; Dedov, A.V. Regulation of the Wettability of Nonwoven Cloth by Oxyfluorination to Improve its Impregnation by Latex. Fibre Chem. 2020, 52, 109–111. [Google Scholar] [CrossRef]
- Dedov, A.V.; Babushkin, S.V.; Platonov, A.V.; Kondratov, A.P.; Nazarov, V.G. Sorptive properties of nonwoven materials. Fibre Chem. 2001, 33, 56–58. [Google Scholar]
- Dedov, A.V.; Babushkin, S.V.; Platonov, A.V.; Nazarov, V.G. Heterocapillarity of non-woven canvases at various stages of their production. Fibre Chem. 2001, 33, 33–36. [Google Scholar]
- Dedov, A.V.; Nazarov, V.G. Processed Nonwoven Needlepunched Materials with Increased Strength. Fibre Chem. 2015, 47, 121–125. [Google Scholar] [CrossRef]
- Jiang, S.X.; Qin, W.F.; Tao, X.M.; Zhang, Z.M.; Yuen, C.W.M.; Xiong, J.; Kan, C.W.; Zhang, L.; Guo, R.H.; Shang, S.M. Surface characterization of sputter silver-coated polyester fiber. Fibers Polym. 2011, 12, 616–619. [Google Scholar] [CrossRef]
- Yang, T.; Xiong, X.; Petrů, M.; Tan, X.; Kaneko, H.; Militký, J.; Sakuma, A. Theoretical and Experimental Studies on Thermal Properties of Polyester Nonwoven Fibrous Material. Materials 2020, 13, 2882. [Google Scholar] [CrossRef] [PubMed]
- Mezentseva, E.V.; Ivanov, V.V.; Mishakov, V.Y.U. Research of the Structure and Properties of Nonwoven Volume Materials Depending on the Content of Polyester Microfiber. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti 2019, 383, 54–60. [Google Scholar]
- Bokova, E.S.; Romanova, Y.S.; Kovalenko, G.M.; Smul’skaya, M.A.; Filatov, I.Y. Comparative Analysis of Structure and Properties of Nonwoven Separation Materials for Chemical Current Sources. Inorg. Mater. Appl. Res. 2022, 13, 940–944. [Google Scholar] [CrossRef]
- Yu, L.-H.; Wang, R.; Xu, L.; Tao, Q. Preparation of MWCNTs/CuPc/Ag modified conductive polyester fiber with chemical liquid deposition. J. Mater. Sci. Mater. Electron. 2016, 27, 1416–1420. [Google Scholar] [CrossRef]
- Dasdemir, M.; Maze, B.; Anantharamaiah, N.; Pourdeyhimi, B. Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J. Mater. Sci. 2012, 47, 5955–5969. [Google Scholar] [CrossRef]
- Ayad, E.; Cayla, A.; Rault, F.; Gonthier, A.; LeBlan, T.; Campagne, C.; Devaux, E. Influence of Rheological and Thermal Properties of Polymers During Melt Spinning on Bicomponent Fiber Morphology. J. Mater. Eng. Perform. 2016, 25, 3296–3302. [Google Scholar] [CrossRef]
- Kara, Y.; Kovács, N.K.; Nagy-György, P.; Boros, R.; Molnár, K. A novel method and printhead for 3D printing combined nano-/microfiber solid structures. Addit. Manuf. 2023, 61, 103315. [Google Scholar] [CrossRef]
- Kozior, T.; Ehrmann, A. First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics. Polymers 2023, 15, 3536. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, Y.; Jia, S.; Zhang, C.; Li, P.; Zhang, Y.; Li, Q. 3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing. ACS Appl. Mater. Interfaces 2022, 14, 7283–7291. [Google Scholar] [CrossRef] [PubMed]
- Pattinson, S.W.; Huber, M.E.; Kim, S.; Lee, J.; Grunsfeld, S.; Roberts, R.; Dreifus, G.; Meier, C.; Liu, L.; Hogan, N.; et al. Additive Manufacturing of Biomechanically Tailored Meshes for Compliant Wearable and Implantable Devices. Adv. Funct. Mater. 2019, 29, 1901815. [Google Scholar] [CrossRef]
- Grothe, T.; Brockhagen, B.; Storck, J.L. Three-dimensional printing resin on different textile substrates using stereolithography: A proof of concept. J. Eng. Fibers Fabr. 2020, 15, 1558925020933440. [Google Scholar] [CrossRef]
- Nazarov, V.G. Multiple surface structures in polyolefins formed by modification methods. J. Appl. Polym. Sci. 2005, 95, 1198–1208. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Stolyarov, V.P.; Doronin, F.A.; Evdokimov, A.G.; Rytikov, G.O.; Brevnov, P.N.; Zabolotnov, A.S.; Novokshonova, L.A.; Berlin, A.A. Comparison of the Effects of Some Modification Methods on the Characteristics of Ultrahigh-Molecular-Weight Polyethylene and Composites on Its Basis. Polym. Sci. Ser. A 2019, 61, 325–333. [Google Scholar] [CrossRef]
- Nazarov, V.G.; Volynskii, A.L.; Yarysheva, L.M.; Stolyarov, V.P.; Bakeev, N.F. Transformation of the modified layer of fluorinated polyolefins under stretching. Polym. Sci. Ser. A 2012, 54, 679–683. [Google Scholar] [CrossRef]
Color Characteristics | L | a | b |
---|---|---|---|
TPU/NNF (initial surface) | 89.28 | −3.93 | 2.17 |
∆L | ∆a | ∆b | |
Initial colorful green thermochromic layer | 53.11 | −49.67 | 19.04 |
Initial colorful black thermochromic layer | 28.32 | 1.9 | 3.2 |
Initial colorful yellow thermochromic layer (before exposure to UV) | 89.82 | −4.37 | 5.05 |
Initial colorful purple photochromic layer (before UV exposure) | 83.76 | 0.31 | −1.47 |
Colorful yellow photochromic layer (colored after UV exposure) | 75.62 | 11.31 | 75.73 |
Colorful purple photochromic layer (colored after UV exposure) | 26.51 | 41.28 | −25.68 |
Colorful green thermochromic layer (discolored) | 81.94 | −7.83 | 7.57 |
Colorful black thermochromic layer (discolored) | 83.7 | −3.54 | 4.25 |
Sample | Tensile Strength σ, MPa | |||||
Rolling Speed, m/min | ||||||
0 | 1.5 | 3 | 6 | 9 | 12 | |
NNF | 1.7 | 2.28 | 3.3 | 2.83 | 2.77 | 3.1 |
TPU/NNF | - | 9.0 | 10.5 | 10.7 | 9.4 | 10.2 |
Tear strength of printing ink from the surface of TPU/NNF, MPa | ||||||
Initial | 0.30 | Adhesive destruction of the ink layer | ||||
Plasmochemical treated for 60 s | 0.84 | Adhesive−cohesive destruction of the ink layer |
F, kg/m2 | d × 103, m | P, kg/m3 | δ, Relative Units |
---|---|---|---|
0.15 | 1.5 | 100.0 | 0.93 |
0.25 | 2.2 | 113.6 | 0.92 |
0.40 | 3.23 | 116.1 | 0.92 |
F, kg/m2 | C × 105, (°C)−1 | D × 104 | L | R × 103, (°C)−1 |
---|---|---|---|---|
0.15 | 1.6 | 0.4 | 0.98 | 7.0 |
0.25 | 7.1 | −75 | 1.03 | 1.0 |
0.40 | 7.2 | −76 | 1.04 | 1.1 |
F, kg/m2 | N, m2 | K0, m2 | δcr |
---|---|---|---|
0.15 | 127.5 | 106.7 | 0.84 |
0.25 | 71.1 | 57.5 | 0.81 |
0.40 | 27.6 | 19.8 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarov, V.; Dedov, A.; Doronin, F.; Savel’ev, M.; Evdokimov, A.; Rytikov, G. The Air Permeability and the Porosity of Polymer Materials Based on 3D-Printed Hybrid Non-Woven Needle-Punched Fabrics. Polymers 2024, 16, 1424. https://doi.org/10.3390/polym16101424
Nazarov V, Dedov A, Doronin F, Savel’ev M, Evdokimov A, Rytikov G. The Air Permeability and the Porosity of Polymer Materials Based on 3D-Printed Hybrid Non-Woven Needle-Punched Fabrics. Polymers. 2024; 16(10):1424. https://doi.org/10.3390/polym16101424
Chicago/Turabian StyleNazarov, Victor, Alexander Dedov, Fedor Doronin, Mikhail Savel’ev, Andrey Evdokimov, and Georgy Rytikov. 2024. "The Air Permeability and the Porosity of Polymer Materials Based on 3D-Printed Hybrid Non-Woven Needle-Punched Fabrics" Polymers 16, no. 10: 1424. https://doi.org/10.3390/polym16101424
APA StyleNazarov, V., Dedov, A., Doronin, F., Savel’ev, M., Evdokimov, A., & Rytikov, G. (2024). The Air Permeability and the Porosity of Polymer Materials Based on 3D-Printed Hybrid Non-Woven Needle-Punched Fabrics. Polymers, 16(10), 1424. https://doi.org/10.3390/polym16101424