Polyurethane-Encapsulated Biomass Films Based on MXene@Loofah Sponge for Piezoresistive Pressure Sensor Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Ti3C2Tx MXene
2.3. Preparation of the PAM@Loofah
2.4. Characterizations
3. Results and Discussion
3.1. Fabrication of PAM@Loofah Devices
3.2. PAM@Loofah-Based Sensors and Performance
4. Applications for PAM@Loofah Sensors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.; Wu, J.; Yan, J.; Liu, X. Advanced Fiber Materials for Wearable Electronics. Adv. Fiber Mater. 2022, 5, 12–35. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, H.; Jin, Y.; Zhang, W. Dynamic covalent chemistry toward wearable electronics. Cell Rep. Phys. Sci. 2023, 4, 101336. [Google Scholar] [CrossRef]
- Gao, T.; Luo, W.; Yang, Y.; Zhou, Y.; Xu, J.; Li, N.; Li, J.; Liu, Z. Recent Advances on Stretchable Aqueous Zinc-Ion Batteries for Wearable Electronics. Colloids Surf. A 2024, 684, 133057. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, X.; Tian, M.; Zhang, X.; Qu, L.; Fan, T.; Miao, J. Smart fibers and textiles for emerging clothe-based wearable electronics: Materials, fabrications and applications. J. Mater. Chem. A 2023, 11, 17336–17372. [Google Scholar] [CrossRef]
- Pu, J.; Ma, K.; Luo, Y.; Tang, S.; Liu, T.; Liu, J.; Leung, M.; Yang, J.; Hui, R.; Xiong, Y.; et al. Textile electronics for wearable applications. Int. J. Extrem. Manuf. 2023, 5, 042007. [Google Scholar] [CrossRef]
- Won, D.; Bang, J.; Choi, S.H.; Pyun, K.R.; Jeong, S.; Lee, Y.; Ko, S.H. Transparent Electronics for Wearable Electronics Application. Chem. Rev. 2023, 123, 9982–10078. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, D.; Tao, X.; Wu, F.; You, G.; Wang, B.; Sun, J.; Shi, S. 3D Printed Sensors for Wearable Electronics and Smart Gesture Recognition. Adv. Mater. Technol. 2024, 9, 2302048. [Google Scholar] [CrossRef]
- Wang, S.; Yan, X.; Zhang, T.; Li, L.; Li, R.; Ramakrishna, S.; Long, Y.Z.; Han, W. All-Nanofiber Iontronic Sensor with Multiple Sensory Capabilities for Wearable Electronics. Adv. Mater. Technol. 2024, 9, 2301791. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, M.; Jeong, S.; Hong, S.; Ko, S.H. Strain-Insensitive Outdoor Wearable Electronics by Thermally Robust Nanofibrous Radiative Cooler. ACS Nano 2024, 18, 2312–2324. [Google Scholar] [CrossRef]
- Pawar, K.K.; Kumar, A.; Mirzaei, A.; Kumar, M.; Kim, H.W.; Kim, S.S. 2D nanomaterials for realization of flexible and wearable gas sensors: A review. Chemosphere 2024, 352, 141234. [Google Scholar] [CrossRef]
- Zeng, H.; He, Y.; Zhao, R.; Li, Z.; Wang, W.; Yang, M.; Li, P.; Tao, G.; Sun, J.; Hou, C. Intelligent health and sport: An interplay between flexible sensors and basketball. iScience 2024, 27, 109089. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Z.; Hu, M.; Zhao, W.; Dong, S.; Sun, J.; He, P.; Yang, J. High Sensitivity and Antifreeze Silver Nanowire/Eutectic Gel Strain Sensor for Human Motion and Healthcare Monitoring. IEEE Sens. J. 2024, 24, 5928–5935. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Lee, T.-C.; Sun, Y.; Liu, Y.; Shang, L.; Han, Y.; Deng, W.; Yuan, Z.; Dang, A. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level. ACS Sens. 2024, 9, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Deng, Z.; Wang, H.; Shi, J.; Wang, S.; Wang, H.; Song, Y.; Du, Z.; Qiu, J.; Cheng, X. High strength, self-healing sensitive ionogel sensor based on MXene/ionic liquid synergistic conductive network for human-motion detection. J. Mater. Chem. B 2023, 11, 11251–11264. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.Y.S.; Awan, H.T.A.; Cheng, F.; Zhang, M.; Tan, M.T.T.; Manickam, S.; Khalid, M.; Muthoosamy, K. Recent advances in the use of MXenes for photoelectrochemical sensors. Chem. Eng. J. 2024, 482, 148774. [Google Scholar] [CrossRef]
- Ampong, D.N.; Agyekum, E.; Agyemang, F.O.; Mensah-Darkwa, K.; Andrews, A.; Kumar, A.; Gupta, R.K. MXene: Fundamentals to applications in electrochemical energy storage. Discov. Nano 2023, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Yu, M.; Liu, W.; Zhang, H.; Wang, Z.; Du, J.; Xu, L.; Li, N.; Xu, J. A MXene heterostructure-based piezoionic sensor for wearable sensing applications. Chem. Eng. J. 2024, 483, 149299. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Xu, L.; Li, N.; Tan, H.; Du, J.; Yu, M.; Xu, J. Recent Advances in Multi-Scale Piezoresistive Interfaces for MXene-Based Flexible Sensors. Nano Energy 2024, 125, 109521. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, Y.; Lu, S.; Zhang, B.; Wang, X.; Li, X.; Li, W.; Wang, X. Mechanical behavior monitoring of composite hybrid bonded-riveted joints using high-stability MXene sensors. Polym. Compos. 2024. [Google Scholar] [CrossRef]
- Han, M.; Shen, W.; Tong, X.; Corriou, J.-P. Cellulose nanofiber/MXene/AgNWs composite nanopaper with mechanical robustness for high-performance humidity sensor and smart actuator. Sens. Actuators B Chem. 2024, 406, 135375. [Google Scholar] [CrossRef]
- Yan, K.; Chen, H.; Li, X.; Xu, F.; Wang, J.; Xu, Q.; Zong, Y.; Zhang, Y. Scalable and Multifunctional Polyurethane/MXene/Carbon Nanotube-Based Fabric Sensor toward Baby Healthcare. ACS Appl. Mater. Interfaces 2024, 16, 5196–5207. [Google Scholar] [CrossRef] [PubMed]
- Phasuksom, K.; Ariyasajjamongkol, N.; Sirivat, A. Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor. Heliyon 2024, 10, e24346. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, J.; Liu, L.; Pan, M.; Wu, S.; Liu, Y.; Zhang, Q.; Wang, H.; Luo, H. Mechanical-electrical optimization design for the highly sensitive and stable hybrid MXene electrode-based pseudocapacitive pressure sensor. Chem. Eng. J. 2024, 486, 150287. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Liu, C.; Shan, J.; Guo, X.; Zhao, X.; Ding, J.; Yang, H. Silver Nanowire/Silver/Poly(dimethylsiloxane) as Strain Sensors for Motion Monitoring. ACS Appl. Nano Mater. 2022, 5, 15797–15807. [Google Scholar] [CrossRef]
- Hong, J.T.; Jun, S.W.; Cha, S.H.; Park, J.Y.; Lee, S.; Shin, G.A.; Ahn, Y.H. Enhanced sensitivity in THz plasmonic sensors with silver nanowires. Sci. Rep. 2018, 8, 15536. [Google Scholar] [CrossRef]
- Fan, Q.; Miao, J.; Liu, X.; Zuo, X.; Zhang, W.; Tian, M.; Zhu, S.; Qu, L.; Zhang, X. Biomimetic Hierarchically Silver Nanowire Interwoven MXene Mesh for Flexible Transparent Electrodes and Invisible Camouflage Electronics. Nano Lett. 2022, 22, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Li, N.; Yang, Y.; Li, J.; Ji, P.; Zhou, Y.; Xu, J. Flexible multifunctional TPU strain sensors with improved sensitivity and wide sensing range based on MXene/AgNWs. Energy J. Chem. 2024, 92, 63–73. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, Z.; Li, H.; Lu, H.; Gu, Y.; Zhu, S.; Liu, G.S.; Yang, B.R. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. Small 2023, 19, 2304033. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Zhang, H.; Xu, L.; Wang, D.; Lu, X.; Zhang, A. Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 2022, 434, 134751. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, S.; Zhou, M.; Lu, H.; Guo, S.; Zhang, Y.; Li, C.; Tan, S.C. MXene Functionalized, Highly Breathable and Sensitive Pressure Sensors with Multi-Layered Porous Structure. Adv. Funct. Mater. 2023, 33, 2214880. [Google Scholar] [CrossRef]
- Al-Hamry, A.; Lu, T.; Bai, J.; Adiraju, A.; Ega, T.K.; Pašti, I.A.; Kanoun, O. Layer-by-Layer Deposited Multi-Modal PDAC/rGO Composite-Based Sensors. Foods 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Jia, L.; Wang, Z.; Jia, Z. Optical fiber sensor encapsulated by polyurethane. Optik 2018, 165, 124–131. [Google Scholar] [CrossRef]
- Lv, P.; Li, X.; Zhang, Z.; Nie, B.; Wu, Y.L.; Tian, H.; Ren, T.L.; Wang, G.Z. Ultrathin encapsulated rGO strain sensor for gesture recognition. Microelectron. Eng. 2022, 259, 111779. [Google Scholar] [CrossRef]
- Wang, T.; Su, D.; Li, X.; Wang, X.; He, Z. Adsorption behavior of phenanthrene in soil amended with modified loofah sponge. J. Clean. Prod. 2021, 298, 126845. [Google Scholar] [CrossRef]
- Cao, M.; Fan, S.; Qiu, H.; Su, D.; Li, L.; Su, J. CB Nanoparticles Optimized 3D Wearable Graphene Multifunctional Piezoresistive Sensor Framed by Loofah Sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, H.; Huang, Q.; Song, T.-s.; Xie, J. Mo2C/N-doped 3D loofah sponge cathode promotes microbial electrosynthesis from carbon dioxide. Int. J. Hydrog. Energy 2021, 46, 20325–20337. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhu, Z.; Liu, D.; Li, W.; Sui, G.; Park, C.B. CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. J. Mater. Chem. A 2021, 9, 358–370. [Google Scholar] [CrossRef]
- Li, H.; Dong, Q.; Zheng, X.; Chen, J.; Lou, Y.; Yang, J.; Zhu, M.; Lv, L.; Zhu, H.; Yang, X.; et al. Large-Scale Fabrication of High-Performing Single-Crystal SiC Nanowire Sponges Using Natural Loofah. ACS Sustain. Chem. Eng. 2023, 11, 2554–2563. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Liu, W.; Chen, S.; Huang, Z.; Song, Y. Porous carbon derived from loofah sponge/flower-like CoO nanocomposites for lithium-ion batteries. J. Alloys Compd. 2019, 793, 533–540. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, Q.; Zhang, Y.; Cai, Q.; Dang, Y.; Pang, H.; Wu, X. High efficiency solar interfacial evaporator for seawater desalination based on high porosity loofah sponge biochar. Sol. Energy 2022, 238, 305–314. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, Q.; Jiang, N.; Qiao, C.; Li, S.; Yue, W. Peroxidase-like activity and mechanism of gold nanoparticle-modified Ti3C2 MXenes for the construction of H2O2 and ampicillin colorimetric sensors. Microchim. Acta 2024, 191, 195. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Liu, S.; Wang, H. Polyurethane-Encapsulated Biomass Films Based on MXene@Loofah Sponge for Piezoresistive Pressure Sensor Applications. Polymers 2024, 16, 1377. https://doi.org/10.3390/polym16101377
Jia Q, Liu S, Wang H. Polyurethane-Encapsulated Biomass Films Based on MXene@Loofah Sponge for Piezoresistive Pressure Sensor Applications. Polymers. 2024; 16(10):1377. https://doi.org/10.3390/polym16101377
Chicago/Turabian StyleJia, Qihan, Shuai Liu, and Haibo Wang. 2024. "Polyurethane-Encapsulated Biomass Films Based on MXene@Loofah Sponge for Piezoresistive Pressure Sensor Applications" Polymers 16, no. 10: 1377. https://doi.org/10.3390/polym16101377
APA StyleJia, Q., Liu, S., & Wang, H. (2024). Polyurethane-Encapsulated Biomass Films Based on MXene@Loofah Sponge for Piezoresistive Pressure Sensor Applications. Polymers, 16(10), 1377. https://doi.org/10.3390/polym16101377