Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application
Abstract
1. Introduction
2. Responsive Fibrous Structures
2.1. Responsiveness to External Stimuli
2.1.1. Temperature
Phase Change Materials
Shape Memory Materials
Thermo-Responsive Polymers
Thermochromic Materials
2.1.2. Light
Photo-Responsive Polymers
Photothermal Materials
2.1.3. pH
pH-Responsive Polymers
Halochromic Materials
3. Production of Responsive Fibrous Structures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mishra, R.; Militky, J. Nanotechnology in Textiles—Theory and Application, 2nd ed.; Woodhead Publishing: Kidlington, UK, 2019; ISBN 9781782424581. [Google Scholar]
- Miao, M.; Xin, J.H. Engineering of High-Performance Textiles; Woodhead Publishing: Kidlington, UK, 2018; ISBN 9780081012734. [Google Scholar]
- Briggs-Goode, A.; Townsend, K. Textile Design: Principles, Advances and Applications; Woodhead Publishing: Cambridge, UK, 2011; ISBN 978-0-85709-256-4. [Google Scholar]
- Ahmed, U.; Hussain, T.; Abid, S. Role of Knitted Techniques in Recent Developments of Biomedical Applications: A Review. J Eng. Fiber Fabr. 2023, 18, 1–18. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential Fabric-Reinforced Composites: A Comprehensive Review. J. Mater. Sci. 2021, 56, 14381–14415. [Google Scholar] [CrossRef]
- Stolyarov, O.; Quadflieg, T.; Gries, T. Effects of Fabric Structures on the Tensile Properties of Warp-Knitted Fabrics Used as Concrete Reinforcements. Text. Res. J. 2015, 85, 1934–1945. [Google Scholar] [CrossRef]
- He, Z.; Xuan, H.; Bai, C.; Song, M.; Zhu, Z. Containment of Soft Wall Casing Wrapped with Kevlar Fabric. Chin. J. Aeronaut. 2019, 32, 954–966. [Google Scholar] [CrossRef]
- Stránská, E.; Neděla, D. Reinforcing Fabrics as the Mechanical Support of Ion Exchange Membranes. J. Ind. Text. 2018, 48, 432–447. [Google Scholar] [CrossRef]
- Choudhury, A.K.R. Principles of Textile Finishing; Woodhead Publishing: Kidlington, UK, 2017; ISBN 978-0-08-100646-7. [Google Scholar]
- Sharma, D.; Ziegler, G.R.; Harte, F.M. Ethanol-Mediated Electrospinning of Casein-Only Bead-Free Nanofibers. Food Hydrocoll. 2024, 148, 109503. [Google Scholar] [CrossRef]
- Fawal, G.F.E. Polymer Nanofibers Electrospinning: A Review. Egypt J. Chem. 2020, 63, 1279–1303. [Google Scholar] [CrossRef]
- Antunes, J.C.; Moreira, I.P.; Gomes, F.; Cunha, F.; Henriques, M.; Fangueiro, R. Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers 2022, 14, 1599. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Haider, S.; Kang, I.K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, M.; Feng, Z.; Yu, D.G.; Wang, K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12, 1077. [Google Scholar] [CrossRef]
- Zhuo, T.; Xin, B.; Chen, Z.; Xu, Y.; Zhou, X.; Yu, J. Enhanced Thermal Insulation Properties of PI Nanofiber Membranes Achieved by Doping with SiO2 Nanoparticles. Eur. Polym. J. 2021, 153, 110489. [Google Scholar] [CrossRef]
- Rossin, A.R.S.; Spessato, L.; da Silva Lima Cardoso, F.; Caetano, J.; Caetano, W.; Radovanovic, E.; Dragunski, D.C. Electrospinning in Personal Protective Equipment for Healthcare Work. Polym. Bull. 2023, 81, 1957–1980. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
- Chen, K.; Hu, H.; Zeng, Y.; Pan, H.; Wang, S.; Zhang, Y.; Shi, L.; Tan, G.; Pan, W.; Liu, H. Recent Advances in Electrospun Nanofibers for Wound Dressing. Eur. Polym. J. 2022, 178, 111490. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; Gómez-Lazaro, B.; López-Saucedo, F.; Vera-Graziano, R.; Bucio, E.; Mendizábal, E. Electrospun Scaffolds for Tissue Engineering: A Review. Macromol 2023, 3, 31. [Google Scholar] [CrossRef]
- Dang, T.; Zhao, M. The Application of Smart Fibers and Smart Textiles. J. Phys. Conf. Ser. 2021, 1790, 012084. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Liang, X.; Zhang, Y. Smart Fibers and Textiles for Personal Health Management. ACS Nano 2021, 15, 12497–12508. [Google Scholar] [CrossRef]
- Agra-Kooijman, D.M.; Mostafa, M.; Krifa, M.; Ohrn-McDaniel, L.; West, J.L.; Jákli, A. Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures. Fibers 2023, 11, 3. [Google Scholar] [CrossRef]
- Ramesh, S.; Davis, J.; Roros, A.; Zhou, C.; He, N.; Gao, W.; Khan, S.; Genzer, J.; Menegatti, S. Nonwoven Membranes with Infrared Light-Controlled Permeability. ACS Appl. Mater. Interfaces 2022, 14, 42558–42567. [Google Scholar] [CrossRef]
- Jia, J.; Liu, W.; Xiao, Q.; Yang, Y.; Chen, J.; Li, H.; Fang, X.; Li, Y. Smart PH Indicating Functional Fabric Based on Reversible Acidichromic Self-Colored Microparticles. Prog. Org. Coat. 2023, 185, 107894. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Liu, W.; Ramakrishna, S.; Sun, Y.; Dai, Y. Stimulus-Responsive Graphene with Periodical Wrinkles on Grooved Microfiber Arrays: Simulation, Programmable Shape-Shifting, and Catalytic Applications. ACS Appl. Mater. Interfaces 2021, 13, 26561–26572. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wu, G.; Jiang, M.; Cao, S.; Panahi-Sarmad, M.; Kamkar, M.; Xiao, X. Multi-Stimuli Dually-Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications. Small 2023, 19, 2207900. [Google Scholar] [CrossRef] [PubMed]
- Nadi, A.; Jamoudi Sbai, S.; Bentiss, A.; Belaiche, M.; Briche, S.; Gmouh, S. Application of Fe3O4 Nanoparticles on Cotton Fabrics by the Pad-Dry-Cure Process for the Elaboration of Magnetic and Conductive Textiles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 827, 012021. [Google Scholar] [CrossRef]
- Quartinello, F.; Tallian, C.; Auer, J.; Schön, H.; Vielnascher, R.; Weinberger, S.; Wieland, K.; Weihs, A.M.; Herrero-Rollett, A.; Lendl, B.; et al. Smart Textiles in Wound Care: Functionalization of Cotton/PET Blends with Antimicrobial Nanocapsules. J. Mater. Chem. B 2019, 7, 6592–6603. [Google Scholar] [CrossRef]
- Li, Y.; Jia, J.; Yu, H.; Wang, S.; Jin, Z.Y.; Zhang, Y.H.; Ma, H.Z.; Zhang, K.; Ke, K.; Yin, B.; et al. Macromolecule Relaxation Directed 3D Nanofiber Architecture in Stretchable Fibrous Mats for Wearable Multifunctional Sensors. ACS Appl. Mater. Interfaces 2022, 14, 15678–15686. [Google Scholar] [CrossRef] [PubMed]
- Drikvand, H.N.; Golgoli, M.; Zargar, M.; Ulbricht, M.; Nejati, S.; Mansourpanah, Y. Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance. Polymers 2022, 14, 3376. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Xiang, Z.; Lei, Y.; Zhu, Z.; Guo, J.; Lin, S.; Shang, J. Facile Fabrication of PH-Controlled Drug Release Mat via Engineering 3D Reversible Gel-like Nanofibers. Polymers 2022, 252, 124925. [Google Scholar] [CrossRef]
- Choe, A.; Kwon, Y.; Shin, Y.E.; Yeom, J.; Kim, J.; Ko, H. Adaptive IR- and Water-Gating Textiles Based on Shape Memory Fibers. ACS Appl. Mater. Interfaces 2022, 14, 55217–55226. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Y.; Li, X.; Zhong, T. Self-Cleaning and Antifouling Properties of Silica/Octadecylamine-Coated Cotton Fabrics. Fibers Polym. 2023, 24, 3879–3887. [Google Scholar] [CrossRef]
- Çelikel, D.C. Smart E-Textile Materials. In Advanced Functional Materials; Tasaltin, N., Nnamchi, P.S., Saud, S., Eds.; IntechOpen: Rijeka, Croatia, 2020; pp. 1–17. ISBN 978-1-83962-480-3. [Google Scholar]
- Šubrová, T.; Wiener, J.; Khan, M.Z.; Šlamborová, I.; Mullerová, S. Development of Novel Eco-Friendly Polyvinyl Alcohol-Based Coating for Antibacterial Textiles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132719. [Google Scholar] [CrossRef]
- Wicaksono, I.; Tucker, C.I.; Sun, T.; Guerrero, C.A.; Liu, C.; Woo, W.M.; Pence, E.J.; Dagdeviren, C. A Tailored, Electronic Textile Conformable Suit for Large-Scale Spatiotemporal Physiological Sensing in Vivo. NPJ Flex. Electron. 2020, 4, 5. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Baji, A.; Ramakrishna, S. Smart Functional Polymers—A New Route towards Creating a Sustainable Environment. RSC Adv. 2014, 4, 53352–53364. [Google Scholar] [CrossRef]
- Williams, M.W.; Wimberly, J.A.; Stwodah, R.M.; Nguyen, J.; D’Angelo, P.A.; Tang, C. Temperature-Responsive Structurally Colored Fibers via Blend Electrospinning. ACS Appl. Polym. Mater. 2023, 5, 3065–3078. [Google Scholar] [CrossRef]
- Józefczak, A.; Kaczmarek, K.; Bielas, R.; Procházková, J.; Šafařík, I. Magneto-Responsive Textiles for Non-Invasive Heating. Int. J. Mol. Sci. 2023, 24, 11744. [Google Scholar] [CrossRef]
- Ning, D.; Lu, Z.; Liu, J.; Ji, X.; Geng, B.; Tian, C.; Songfeng, E. pH-Responsive BNNS/PAA Nanofiltration Membrane for Tunable Water Permeance and Efficient Dye Separation. Sep. Purif. Technol. 2024, 328, 125023. [Google Scholar] [CrossRef]
- Ziai, Y.; Petronella, F.; Rinoldi, C.; Nakielski, P.; Zakrzewska, A.; Kowalewski, T.A.; Augustyniak, W.; Li, X.; Calogero, A.; Sabała, I.; et al. Chameleon-Inspired Multifunctional Plasmonic Nanoplatforms for Biosensing Applications. NPG Asia Mater. 2022, 14, 18. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Bian, X.; Zhu, Z.; Wen, Y. Enzyme-Responsive Food Packaging System Based on Pectin-Coated Poly (Lactic Acid) Nanofiber Films for Controlled Release of Thymol. Food. Res. Int. 2022, 157, 111256. [Google Scholar] [CrossRef]
- Genç, S.D.; Alay Aksoy, S.; Alkan, C. A Smart Cotton Fabric with Adaptive Moisture Management through Temperature Sensitive Poly(2-Hydroxyethyl-6-(Vinyl Amino)Hexanoate) Finishing. Cellulose 2023, 30, 2467–2481. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Chen, G.; Zheng, J.; Wang, W.; Ren, J.; Zhu, C.; Yang, Y.; Cong, Y.; Fu, J. 4D Printing of Biomimetic Anisotropic Self-Sensing Hydrogel Actuators. Chem. Eng. J. 2023, 473, 145444. [Google Scholar] [CrossRef]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef]
- Liu, T.; Bao, B.; Li, Y.; Lin, Q.; Zhu, L. Photo-responsive polymers based on o-Nitrobenzyl derivatives: From structural design to applications. Prog. Polym. Sci. 2023, 146, 101741. [Google Scholar] [CrossRef]
- Genç, S.D.; Aksoy, S.A. Development of Temperature and PH Responsive Smart Cotton Fabrics by P(NIPAM-Co-MAM) Copolymer Finishing. Tekst. Konfeksiyon 2022, 32, 193–207. [Google Scholar]
- Jocić, D. Polymer-Based Smart Coatings for Comfort in Clothing. Tekstilec 2016, 59, 107–114. [Google Scholar] [CrossRef]
- Saadat, Y.; Kim, K.; Foudazi, R. Two-Step Thermoresponsive Ultrafiltration Membranes from Polymerization of Lyotropic Liquid Crystals. ACS Appl. Polym. Mater. 2022, 4, 8156–8165. [Google Scholar] [CrossRef]
- Weng, L.; Xie, J. Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives. Curr. Pharm. Des. 2015, 21, 1944–1959. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S. Phase Change Materials for Smart Textiles—An Overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- De Castro, P.F.; Minko, S.; Vinokurov, V.; Cherednichenko, K.; Shchukin, D.G. Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials. ACS Appl. Energy Mater. 2021, 4, 12789–12797. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. The Manufacture of Microencapsulated Phase Change Materials Suitable for the Design of Thermally Enhanced Fabrics. Thermochim. Acta 2007, 452, 149–160. [Google Scholar] [CrossRef]
- Kumar, A.; Kebaili, I.; Boukhris, I.; Vaish, R.; Kumar, A.; Park, H.K.B.; Joo, Y.H.; Sung, T.H. Cotton Functionalized with Polyethylene Glycol and Graphene Oxide for Dual Thermoregulating and UV-Protection Applications. Sci. Rep. 2023, 13, 5923. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zhu, Z.; Zhu, J.; Luo, J.; Peng, F.; Sun, X. Thermal Comfort in a Building with Trombe Wall Integrated with Phase Change Materials in Hot Summer and Cold Winter Region without Air Conditioning. Energy Built. Environ. 2024, 5, 58–69. [Google Scholar] [CrossRef]
- Qu, J.G.; Liu, Y.; Zhang, J.F.; Jin, Z.G.; Chen, Y.S.; Zhao, X. Experimental Study on Heat Transfer during Melting in Metal and Carbon Foam Saturated with Phase-Change Materials for Temperature Control in Electronic Devices. Appl. Therm. Eng. 2024, 236, 121681. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, X.; Chen, Y.; Chen, L.; Zhang, L.; Zhao, X.; Bing, N.; Yu, W.; Xie, H. Poly(Vinyl Alcohol)-Based Nanofibers with Improved Thermal Conductivity and Efficient Photothermal Response for Wearable Thermal Management. ACS Appl. Nano. Mater. 2023, 6, 14733–14744. [Google Scholar] [CrossRef]
- El Majd, A.; Younsi, Z.; Youssef, N.; Belouaggadia, N.; El Bouari, A. Experimental Study of Thermal Characteristics of Bio-Based Textiles Integrating Microencapsulated Phase Change Materials. Energy Build. 2023, 297, 113465. [Google Scholar] [CrossRef]
- Reghunadhan, A.; Jibin, K.P.; Kaliyathan, A.V.; Velayudhan, P.; Strankowski, M.; Thomas, S. Shape Memory Materials from Rubbers. Materials 2021, 14, 7216. [Google Scholar] [CrossRef] [PubMed]
- Hornbogen, E. Comparison of Shape Memory Metals and Polymers. Adv. Eng. Mater. 2006, 8, 101–106. [Google Scholar] [CrossRef]
- Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications. Prog. Mater. Sci. 2011, 56, 1077–1135. [Google Scholar] [CrossRef]
- Behl, M.; Lendlein, A. Shape-Memory Polymers. Mater. Today 2007, 10, 20–28. [Google Scholar] [CrossRef]
- Tekay, E. Low-Voltage Triggered Electroactive and Heat-Responsive Thermoplastic Elastomer/Carbon Nanotube Polymer Blend Composites. Mater. Today Commun. 2023, 35, 106443. [Google Scholar] [CrossRef]
- Bertran, J.G.; Ardanuy, M.; González, M.; Rodriguez, R.; Jovančić, P. Design and Characterization of Reversible Thermodynamic SMPU-Based Fabrics with Improved Comfort Properties. J. Ind. Text. 2023, 53, 15280837231166390. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, F.; Wang, G.J.; Yu, H.F. UV-Vis-NIR Light-Deformable Shape-Memory Polyurethane Doped with Liquid-Crystal Mixture and GO towards Biomimetic Applications. Chin. J. Polym. Sci. (Engl. Ed.) 2022, 40, 166–174. [Google Scholar] [CrossRef]
- Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers. PNAS 2006, 7, 3540–3545. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, Y.; Wang, S.; Liu, Z.; Liu, Z.; Jiang, J. A Thermo- and Moisture-Responsive Zwitterionic Shape Memory Polymer for Novel Self-Healable Wound Dressing Applications. Macromol. Mater. Eng. 2019, 304, 1800603. [Google Scholar] [CrossRef]
- Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and PH-Sensitive Shape Memory Polyurethane Containing Carboxyl Groups. Polym. Chem. 2016, 7, 1739–1746. [Google Scholar] [CrossRef]
- Li, J.; Duan, Q.; Zhang, E.; Wang, J. Applications of Shape Memory Polymers in Kinetic Buildings. Adv. Mater. Sci. Eng. 2018, 2018, 7453698. [Google Scholar] [CrossRef]
- Xie, T. Recent Advances in Polymer Shape Memory. Polymer 2011, 52, 4985–5000. [Google Scholar] [CrossRef]
- Yang, X.; Han, Z.; Jia, C.; Wang, T.; Wang, X.; Hu, F.; Zhang, H.; Zhao, J.; Zhang, X. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers 2023, 15, 3193. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Song, X.; Chen, Y.; Xin, W.; Zhu, C.; Huang, Y.; Tian, N.; Huang, Y. Self-Healing of Poly(Vinyl Alcohol)/Poly(Acrylic Acid)-Polytetrahydrofuran-Poly(Acrylic Acid) Blend Boosted via Shape Memory. Langmuir 2023, 39, 14811–14821. [Google Scholar] [CrossRef]
- Emmanuel, K.D.C.; Jeewantha, L.H.J.; Herath, H.M.C.M.; Epaarachchi, J.A.; Aravinthan, T. Shape Memory Polymer Composite Circular and Square Hollow Members for Deployable Structures. Compos. Part. A Appl. Sci. Manuf. 2023, 171, 107559. [Google Scholar] [CrossRef]
- An, S.C.; Lim, Y.; Jun, Y.C. Rapid and Selective Actuation of 3D-Printed Shape-Memory Composites via Microwave Heating. Sci. Rep. 2023, 13, 18179. [Google Scholar] [CrossRef]
- Peng, S.; Cao, X.; Sun, Y.; Chen, L.; Ma, C.; Yang, L.; Zhao, H.; Liu, Q.; Liu, Z.; Ma, C. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations. Gels 2023, 9, 428. [Google Scholar] [CrossRef]
- Yang, F.T.; Chen, Y.M.; Rwei, S.P. Synthesis and Characterization of the Temperature Controllable Shape Memory of Polycaprolactone/Poly(Ethylene Terephthalate) Copolyester. Fibers Polym. 2022, 23, 2526–2538. [Google Scholar] [CrossRef]
- de Castro, P.B.; Salmoria, G.V.; de Mello Roesler, C.R.; da Rosa, E.; Fancello, E.A. A Study on the Response of PLGA 85/15 under Compression and Heat-Treatment Testing Cycles. Mech. Time Depend. Mater. 2021, 25, 411–427. [Google Scholar] [CrossRef]
- Ranganatha Swamy, M.K.; Mallikarjun, U.S.; Udayakumar, V. Cyclic Thermomechanical Analysis of Polyethylene Glycol Based Shape Memory Polymers. J. Mines Met. Fuels 2022, 70, 282–289. [Google Scholar] [CrossRef]
- Rolińska, K.; Bakhshi, H.; Balk, M.; Blocki, A.; Panwar, A.; Puchalski, M.; Wojasiński, M.; Mazurek-Budzyńska, M. Electrospun Poly(Carbonate-Urea-Urethane)s Nonwovens with Shape-Memory Properties as a Potential Biomaterial. ACS Biomater. Sci. Eng. 2023, 9, 6683–6697. [Google Scholar] [CrossRef]
- Leonés, A.; Sonseca, A.; López, D.; Fiori, S.; Peponi, L. Shape Memory Effect on Electrospun PLA-Based Fibers Tailoring Their Thermal Response. Eur. Polym. J. 2019, 117, 217–226. [Google Scholar] [CrossRef]
- Qi, Y.; Sun, B.; Gu, B.; Zhang, W. Electrothermally Actuated Properties of Fabric-Reinforced Shape Memory Polymer Composites Based on Core–Shell Yarn. Compos. Struct. 2022, 292, 115681. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, H.; Guan, X. High Shape Memory Properties and High Strength of Shape Memory Polyurethane Nanofiber-Based Yarn and Coil. Polym. Test 2021, 101, 107277. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Ding, Y.; Agarwal, S.; Greiner, A.; Duan, G. A Review of Smart Electrospun Fibers toward Textiles. Compos. Commun. 2020, 22, 100506. [Google Scholar] [CrossRef]
- Kotova, S.; Kostjuk, S.; Rochev, Y.; Efremov, Y.; Frolova, A.; Timashev, P. Phase Transition and Potential Biomedical Applications of Thermoresponsive Compositions Based on Polysaccharides, Proteins and DNA: A Review. Int. J. Biol. Macromol. 2023, 249, 126054. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X. Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Phys. Rev. Lett. 1998, 80, 4092–4094. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, X.; Wu, C. Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-Isopropylacrylamide) Homopolymer Chain in Water. Macromolecules 1998, 31, 2972–2976. [Google Scholar] [CrossRef]
- Khrystonko, O.; Rimpelová, S.; Burianová, T.; Švorčík, V.; Lyutakov, O.; Elashnikov, R. Smart Multi Stimuli-Responsive Electrospun Nanofibers for on-Demand Drug Release. J. Colloid. Interface Sci. 2023, 648, 338–347. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Sun, W.; Dong, T.; Saldaña, M.D.A.; Sun, W. Multi-Responsive Poly N-Isopropylacrylamide/Poly N-Tert-Butylacrylamide Nanocomposite Hydrogel with the Ability to Be Adsorbed on the Chitosan Film as an Active Antibacterial Material. Int. J. Biol. Macromol. 2022, 208, 1019–1028. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, S.; Bao, Z.; Wu, Y.; Wang, C. Thermal Conductivity of PNIPAm Hydrogels and Heat Management as Smart Windows. Macromol. Mater. Eng. 2023, 308, 2200566. [Google Scholar] [CrossRef]
- Sim, H.J.; Noh, J.H.; Choi, C. Bio-Inspired Shape-Morphing Actuator with a Large Stroke at Low Temperatures. Sens. Actuators B Chem. 2023, 378, 133185. [Google Scholar] [CrossRef]
- Xu, R.; Ma, S.; Wu, Y.; Lee, H.; Zhou, F.; Liu, W. Adaptive Control in Lubrication, Adhesion, and Hemostasis by Chitosan-Catechol-PNIPAM. Biomater. Sci. 2019, 7, 3599–3608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, K.; Jiang, H.; Zhang, S.; Zhang, B.; Guo, M.; He, G. Poly(NIPAM-Co-Thienoviologen) for Multi-Responsive Smart Windows and Thermo-Controlled Photodynamic Antimicrobial Therapy. J. Mater. Chem. A Mater. 2021, 9, 18369–18376. [Google Scholar] [CrossRef]
- Cerda-Sumbarda, Y.D.; Domínguez-González, C.; Zizumbo-López, A.; Licea-Claverie, A. Thermoresponsive Nanocomposite Hydrogels with Improved Properties Based on Poly(N-Vinylcaprolactam). Mater. Today. Commun. 2020, 24, 101041. [Google Scholar] [CrossRef]
- Karjalainen, E.; Aseyev, V.; Tenhu, H. Influence of Hydrophobic Anion on Solution Properties of PDMAEMA. Macromolecules 2014, 47, 2103–2111. [Google Scholar] [CrossRef]
- Silva, J.B.; Haddow, P.; Bruschi, M.L.; Cook, M.T. Thermoresponsive Poly(Di(Ethylene Glycol) Methyl Ether Methacrylate)-Ran-(Polyethylene Glycol Methacrylate) Graft Copolymers Exhibiting Temperature-Dependent Rheology and Self-Assembly. J. Mol. Liq. 2022, 346, 117906. [Google Scholar] [CrossRef]
- Hegazy, M. PVCL-Grafted Mesoporous Silica Nanocontainers for Thermo-Responsive Controlled Release and Their Antifungal Activity Study. Mater. Today Commun. 2023, 35, 105585. [Google Scholar] [CrossRef]
- Seuring, J.; Agarwal, S. Polymers with Upper Critical Solution Temperature in Aqueous Solution. Macromol. Rapid Commun. 2012, 33, 1898–1920. [Google Scholar] [CrossRef]
- Liang, J.; Ding, L.; Yu, Z.; Zhang, X.; Chen, S.; Wang, Y. Smart and Programmed Thermo-Wetting Yarns for Scalable and Customizable Moisture/Heat Conditioning Textiles. J. Colloid Interface Sci. 2023, 651, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Fan, B.; Xu, B.; Zhou, M.; Yu, Y.; Cui, L.; Wang, Q.; Wang, P. Enzymatic Construction of Temperature-Responsive PDMAPS-Decorated Textiles for Oil-Water Separation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130340. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.N.; Chong, J.Y.; Wang, R. Thermo-Responsive Nonionic Amphiphilic Copolymers as Draw Solutes in Forward Osmosis Process for High-Salinity Water Reclamation. Water. Res. 2022, 221, 18768. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bao, X.; Wang, Q.; Wang, P.; Zhou, M.; Yu, Y. Thermo-Responsive Cotton Fabric Prepared by Enzyme-Initiated “Graft from” Polymerization for Moisture/Thermal Management. Cellulose 2021, 28, 1795–1808. [Google Scholar] [CrossRef]
- Genç, S.D.; Alay-Aksoy, S. Production of CS-g-PNIPAM Copolymer and Stimuli Responsive and Antibacterial Cotton Fabric. Int. J. Cloth. Sci. Technol. 2022, 34, 852–868. [Google Scholar] [CrossRef]
- Genç, S.D.; Aksoy, S.A. Synthesis of Poly(N-Isopropylacrylamide) Polymer for Fabrication of Thermo-Responsive Cotton Fabric. Indian J. Fibre Text. Res. 2021, 46, 385–397. [Google Scholar] [CrossRef]
- Ghasemi, H.; Abu-Zahra, N.; Baig, N.; Abdulazeez, I.; Aljundi, I.H. Enhancing Fouling Resistance and Separation Performance of Polyethersulfone Membrane through Surface Grafting with Copolymerized Thermo-Responsive Polymer and Copper Oxide Nanoparticles. Chem. Eng. J. Adv. 2023, 16, 100528. [Google Scholar] [CrossRef]
- Lin, Y.; Cheng, N.; Meng, N.; Wang, C.; Wang, X.; Yu, J.; Ding, B. A Patterned Knitted Fabric with Reversible Gating Stability for Dynamic Moisture Management of Human Body. Adv. Funct. Mater. 2023, 33, 2304109. [Google Scholar] [CrossRef]
- Hakami, A.; Srinivasan, S.S.; Biswas, P.K.; Krishnegowda, A.; Wallen, S.L.; Stefanakos, E.K. Review on Thermochromic Materials: Development, Characterization, and Applications. J. Coat. Technol. Res. 2022, 19, 377–402. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Z.; He, F.; Chen, Z.; Li, X.; Wang, P.; He, G.; Zhu, X.; Yang, W. Reversible Thermochromic Microcapsules with SiO2 Shell for Indicating Temperature and Thermoregulation. J. Energy Storage 2023, 72, 108674. [Google Scholar] [CrossRef]
- Pareja-Rivera, C.; Solis-Ibarra, D. Reversible and Irreversible Thermochromism in Copper-Based Halide Perovskites. Adv. Opt. Mater. 2021, 9, 2100633. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Lee, H.; Kim, I.T. Synthesis and Thermochromic Properties of Cr-Doped Al2O3 for a Reversible Thermochromic Sensor. Materials 2017, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, L.; Burke, R.; Wilson, A.; Hanrahan, B.; Knick, C.; Walck, S.; Phillips, F. Simultaneous Multi-Domain Transformation of Vanadium Dioxide for Reconfigurable Metamaterial Architectures. Appl. Phys. A Mater. Sci. Process. 2022, 128, 506. [Google Scholar] [CrossRef]
- Xiang, W.; Le Drogoff, B.; Koch, D.; Margot, J.; Chaker, M. High-Quality VO2 Films Synthesized on Polymer Substrates Using Room-Temperature Pulsed Laser Deposition and Annealing. Ceram. Int. 2023, 50, 838–846. [Google Scholar] [CrossRef]
- Sahebkar, K.; Indrakar, S.; Srinivasan, S.; Thomas, S.; Stefanakos, E. Electrospun Microfibers with Embedded Leuco Dye-Based Thermochromic Material for Textile Applications. J. Ind. Text. 2022, 51, 3188S–3200S. [Google Scholar] [CrossRef]
- White, M.A.; LeBlanc, M. Thermochromism in Commercial Products. J. Chem. Educ. 1999, 76, 1201–1205. [Google Scholar] [CrossRef]
- Hanzer, S.J.; Kulčar, R.; Vukoje, M.; Marošević, A.; Dolovski, M. Assessment of Thermochromic Packaging Prints’ Resistance to UV Radiation and Various Chemical Agents. Polymers 2023, 15, 1208. [Google Scholar] [CrossRef]
- Babazadeh-Mamaqani, M.; Mohammadi-Jorjafki, M.; Alipour-Fakhri, S.; Mardani, H.; Roghani-Mamaqani, H. Thermal-Induced Chromism and Fluorescence Emission of Rhodamine B-Containing Polymers with Different Polarities: Tracking Temperature and Development of Thermochromic Labels. Macromolecules 2023, 56, 5843–5853. [Google Scholar] [CrossRef]
- Liu, J.; Tan, J.; Liu, H.; Yin, Y.; Wang, C. Multicolor-Tunable Biomass Thermochromic Dyes Utilizing Tea Polyphenols Color Developer for Temperature-Controlled Linen Fabric. Ind. Crops Prod. 2023, 204, 117254. [Google Scholar] [CrossRef]
- Badour, Y.; Danto, S.; Albakour, S.; Mornet, S.; Penin, N.; Hirsch, L.; Gaudon, M. Low-Cost WO3 Nanoparticles/PVA Smart Photochromic Glass Windows for Sustainable Building Energy Savings. Sol. Energy Mater. Sol. Cells 2023, 255, 112291. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Tian, L.; Jia, M.; Xie, N.; Han, Y.; Yuan, X.; Li, K.; Qian, S. Experimental Investigation on Performance of Composite Thermochromic and Ice-Melting Coatings for Dynamic Pavement Temperature Control. Constr. Build Mater. 2023, 409, 133787. [Google Scholar] [CrossRef]
- Zhou, L.; Ye, J.; Cai, Q.; Liu, G.; Dadgar, M.; Zhu, G.; Zhang, G. Study on Preparation, Characterization and Application of Mixed-Colorants Thermochromic Microcapsules. Particuology 2024, 88, 89–97. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, R.; Yan, S.; Chen, B.; Zhu, X. Bioinspired Photo-Responsive Membrane Enhanced with “Light-Cleaning” Feature for Controlled Molecule Release. J. Mater. Chem. B 2021, 10, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Lu, C. The Design and Development of Photochromic Jacquard Woven Fabric. J. Text. Sci. Fash. Technol. 2021, 9, 2641-192X. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, C.Y. Near-Infrared Light-Remote Localized Drug Delivery Systems Based on Zwitterionic Polymer Nanofibers for Combination Therapy. Polymers 2022, 14, 1860. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.R.; Román, J.S. Smart Polymers and Their Applications, 2nd ed.; Woodhead Publishing: Kidlington, UK, 2019; ISBN 978-0-08-102417-1. [Google Scholar]
- Bertrand, O.; Gohy, J.F. Photo-Responsive Polymers: Synthesis and Applications. Polym. Chem. 2017, 8, 52–73. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Azhar, U.; Yang, X.; Zhou, C.; Yan, M.; Li, H.; Zong, C. Flexible and Photo-Responsive Superwetting Surfaces Based on Porous Materials Coated with Mussel-Inspired Azo-Copolymer. Chem. Eng. J. 2023, 466, 143176. [Google Scholar] [CrossRef]
- Miao, S.; Xiong, Z.; Zhang, J.; Wu, Y.; Gong, X. Polydopamine/SiO2Hybrid Structured Superamphiphobic Fabrics with Good Photothermal Behavior. Langmuir 2022, 38, 9431–9440. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, X.; Yang, X.; Sun, J.; Geng, J. Recent Advances in Polymer-Based Photothermal Materials for Biological Applications. ACS Appl. Polym. Mater. 2020, 2, 4273–4288. [Google Scholar] [CrossRef]
- Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000–7009. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing-A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 2006, 22, 32–41. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Borges, J.; Lopes, C.; Pereira, R.M.S.; Vasilevskiy, M.I.; Vaz, F. Gas Sensors Based on Localized Surface Plasmon Resonances: Synthesis of Oxide Films with Embedded Metal Nanoparticles, Theory and Simulation, and Sensitivity Enhancement Strategies. Appl. Sci. 2021, 11, 5388. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, D.; Yang, Z.; Wang, Y.; Müller-Buschbaum, P.; Zhong, Q. Nanogels Containing Gold Nanoparticles on Cotton Fabrics for Comfort Control via Localized Surface Plasmon Resonance. ACS Appl. Nano. Mater. 2024, 7, 1222–1232. [Google Scholar] [CrossRef]
- Gorjanc, M.; Gerl, A.; Kert, M. Screen Printing of pH-Responsive Dye to Textile. Polymers 2022, 14, 447. [Google Scholar] [CrossRef]
- Chi, H.; Xu, Z.; Zhang, T.; Li, X.; Wu, Z.; Zhao, Y. Randomly Heterogeneous Oleophobic/pH-Responsive Polymer Coatings with Reversible Wettability Transition for Multifunctional Fabrics and Controllable Oil–Water Separation. J. Colloid. Interface Sci. 2021, 594, 122–130. [Google Scholar] [CrossRef]
- Li, T.T.; Li, S.; Sun, F.; Shiu, B.C.; Ren, H.T.; Lou, C.W.; Lin, J.H. pH-Responsive Nonwoven Fabric with Reversibly Wettability for Controllable Oil-Water Separation and Heavy Metal Removal. Environ. Res. 2022, 215, 114355. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, X. Smart and Durable pH-Responsive Superhydrophobic Fabrics with Switchable Surface Wettability for High-Efficiency and Complex Oil/Water Separation. Giant 2023, 14, 100157. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive Polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Inthanusorn, W.; Rutnakornpituk, M.; Rutnakornpituk, B. Reusable Poly(2-Acrylamido-2-Methylpropanesulfonic Acid)-Grafted Magnetic Nanoparticles as Anionic Nano-Adsorbents for Antibody and Antigen. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 636–645. [Google Scholar] [CrossRef]
- Salehi, H.; Shakeri, A.; Mahdavi, H.; Lammertink, R.G.H. Improved Performance of Thin-Film Composite Forward Osmosis Membrane with Click Modified Polysulfone Substrate. Desalination 2020, 496, 114731. [Google Scholar] [CrossRef]
- González, N.; Elvira, C.; Román, J.S. Novel Dual-Stimuli-Responsive Polymers Derived from Ethylpyrrolidine. Macromolecules 2005, 38, 9298–9303. [Google Scholar] [CrossRef]
- Anbardan, M.A.; Alipour, S.; Mahdavinia, G.R.; Rezaei, P.F. Synthesis of Magnetic Chitosan/Hyaluronic Acid/κ-Carrageenan Nanocarriers for Drug Delivery. Int. J. Biol. Macromol. 2023, 253, 126805. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, Z.; Yan, M.; Xin, J.; Yang, Y. One-Pot Three-Step Synthesis of PDMAEMA-b-PMMA-b-PNIPAM Triblock Block Copolymer for Preparing PH and Thermal Dual-Responsive PVDF Blend Membranes. Polym. Eng. Sci. 2023, 63, 3343–3352. [Google Scholar] [CrossRef]
- Ren, X.; Lin, X. Switchable Hydrophilic/Hydrophobic Antibacterial Fibrous Composites for Biomedical Application. Compos. Commun. 2023, 43, 101728. [Google Scholar] [CrossRef]
- Li, L.; Cen, J.; Huang, L.; Luo, L.; Jiang, G. Fabrication of a Dual pH-Responsive and Photothermal Microcapsule Pesticide Delivery System for Controlled Release of Pesticides. Pest. Manag. Sci. 2023, 79, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, P.; Dini, G.; Movahedi, B.; Vaezifar, S.; Mehdikhani, M. Polycaprolactone/Chitosan Core/Shell Nanofibrous Mat Fabricated by Electrospinning Process as Carrier for Rosuvastatin Drug. Polym. Bull. 2022, 79, 1627–1645. [Google Scholar] [CrossRef]
- Steyaert, I.; Vancoillie, G.; Hoogenboom, R.; De Clerck, K. Dye Immobilization in Halochromic Nanofibers through Blend Electrospinning of a Dye-Containing Copolymer and Polyamide-6. Polym. Chem. 2015, 6, 2685–2694. [Google Scholar] [CrossRef]
- Hassabo, A.G.; Bakr, M.; Zayed, M.; Othman, H.A. Chromic Dyes for SMART Textile: A Review. Lett. Appl. NanoBioSci. 2023, 12, 161. [Google Scholar]
- Atav, R.; Akkuş, E.; Ergünay, U. Investigation of the Dyeability of Cotton Fabrics with a Halochromic Dye According to Exhaust and Padding Methods. J. Nat. Fibers 2022, 19, 9125–9138. [Google Scholar] [CrossRef]
- Lim, T.; Lee, J.H.; Yang, K.H.; Ju, S.; Jeong, S.M. Highly Elastic Halochromic Fibers Capable of Reversible Sensing of Acidic/Basic Vapor for Use in Wearable Textiles. AIP Adv. 2022, 12, 105011. [Google Scholar] [CrossRef]
- Kert, M.; Skoko, J. Formation of pH-Responsive Cotton by the Adsorption of Methyl Orange Dye. Polymers 2023, 15, 1783. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Nagao, M.; Elias, A.L.; Narain, R.; Chung, H.J. A PH-Indicating Colorimetric Tough Hydrogel Patch towards Applications in a Substrate for Smart Wound Dressings. Polymers 2017, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Khanjanzadeh, H.; Park, B.D. Covalent Immobilization of Bromocresol Purple on Cellulose Nanocrystals for Use in pH-Responsive Indicator Films. Carbohydr. Polym. 2021, 273, 118550. [Google Scholar] [CrossRef] [PubMed]
- Grassi, P.; Drumm, F.C.; Spannemberg, S.S.; Georgin, J.; Tonato, D.; Mazutti, M.A.; Gonçalves, J.O.; Oliveira, M.L.S.; Dotto, G.L.; Jahn, S.L. Solid Wastes from the Enzyme Production as a Potential Biosorbent to Treat Colored Effluents Containing Crystal Violet Dye. Environ. Sci. Pollut. Res. 2020, 27, 10484–10494. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ejaz, M.O. Efficient Adsorption of Crystal Violet (CV) Dye onto Benign Chitosan-Modified L-Cysteine/Bentonite (CS-Cys/Bent) Bionanocomposite: Synthesis, Characterization and Experimental Studies. Dyes Pigments 2023, 216, 111305. [Google Scholar] [CrossRef]
- Devarayan, K.; Kim, B.S. Reversible and Universal PH Sensing Cellulose Nanofibers for Health Monitor. Sens. Actuators B Chem. 2015, 209, 281–286. [Google Scholar] [CrossRef]
- Adamu, B.F.; Gao, J.; Gebeyehu, E.K.; Beyene, K.A.; Tadesse, M.G.; Liyew, E.Z. Self-Responsive Electrospun Nanofibers Wound Dressings: The Future of Wound Care. Adv. Mater. Sci. Eng. 2022, 2022, 2025170. [Google Scholar] [CrossRef]
- Alsahag, M.; Alisaac, A.; Al-Hazmi, G.A.A.; Pashameah, R.A.; Attar, R.M.S.; Saad, F.A.; El-Metwaly, N.M. Preparation of Carboxymethyl Cellulose/Polyvinyl Alcohol Wound Dressing Composite Immobilized with Anthocyanin Extract for Colorimetric Monitoring of Wound Healing and Prevention of Wound Infection. Int. J. Biol. Macromol. 2023, 224, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Leite, L.; Pais, V.; Silva, C.; Boticas, I.; Bessa, J.; Cunha, F.; Relvas, C.; Ferreira, N.; Fangueiro, R. Halochromic Textiles for Real-Time Sensing of Hazardous Chemicals and Personal Protection. Materials 2023, 16, 2938. [Google Scholar] [CrossRef] [PubMed]
- Celebioglu, A.; Saporito, A.F.; Uyar, T. Green Electrospinning of Chitosan/Pectin Nanofibrous Films by the Incorporation of Cyclodextrin/Curcumin Inclusion Complexes: pH-Responsive Release and Hydrogel Features. ACS Sustain. Chem. Eng. 2022, 10, 4758–4769. [Google Scholar] [CrossRef]
- He, Y.; Liu, Q.; Tian, M.; Zhang, X.; Qu, L.; Fan, T.; Miao, J. Highly Conductive and Elastic Multi-Responsive Phase Change Smart Fiber and Textile. Compos. Commun. 2023, 44, 101772. [Google Scholar] [CrossRef]
- Gupta, P.; Mohanty, J.; Garg, H.; Kumar, B. Memory Behaviour of Polyester Knitted Fabric Integrated with Temperature-Responsive Shape Memory Polymer Filament. J. Ind. Text. 2022, 51, 5952S–5972S. [Google Scholar] [CrossRef]
- Khadse, N.; Ruckdashel, R.; Macajoux, S.; Sun, H.; Park, J.H. Temperature Responsive PBT Bicomponent Fibers for Dynamic Thermal Insulation. Polymers 2022, 14, 2757. [Google Scholar] [CrossRef]
- Iqbal, M.I.; Sun, F.; Fei, B.; Xia, Q.; Wang, X.; Hu, J. Knit Architecture for Water-Actuating Woolen Knitwear and Its Personalized Thermal Management. ACS Appl. Mater. Interfaces 2021, 13, 6298–6308. [Google Scholar] [CrossRef]
- Baniasadi, H.; Madani, Z.; Mohan, M.; Vaara, M.; Lipponen, S.; Vapaavuori, J.; Seppälä, J.V. Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textiles. ACS Appl. Mater. Interfaces 2023, 15, 48584–48600. [Google Scholar] [CrossRef]
Polymer | Tg (°C) | Tm (°C) | Tprog (°C) | Rr (%) | Rf (%) | Applications | Ref. |
---|---|---|---|---|---|---|---|
PCUU | −13–18 | 48–51 | 50 | 99 | 96 | Tissue engineering | [79] |
PLA | 21–60 | 142–149 | 40–60 | 61–100 | 74–100 | Smart textiles | [80] |
PLA/PU | 55 | - | 80 | - | - | Smart textiles | [32] |
PU | 45 | - | 80 | 91–98 | 76–80 | Smart textiles | [64] |
45 | 149 | >45 | 99 | - | Intelligent structures | [81] | |
65 | - | 70 | 50–99 | 93–99 | Smart textiles | [82] |
Polymer | Type | Ttrans (°C) | Applications | Ref. |
---|---|---|---|---|
PDMAPS | UCST | 33 | Smart textiles | [98] |
28 | Smart oil–water separation fabric | [99] | ||
PEO–PPO–PEO | LCST | 35 | Ultrafiltration membrane | [49] |
29–98 | Forward osmosis membrane | [100] | ||
PHEVAH | LCST | 34 | Smart textiles | [43] |
P(MEO2MA-co-OEGMA500) | LCST | 29 | Smart textiles | [101] |
PNIPAM | LCST | 39 (VPTT) | NWFs for processing temperature-sensitive bioactive ingredients or for use in remote-controlled bioreactors | [23] |
32 | Thermo-responsive membrane | [30] | ||
32 | Smart textiles | [98] | ||
31–32 | Smart textiles | [102] | ||
31 | Smart textiles | [103] | ||
P(NIPAM-co-AAm) | LCST | 33–37 | Smart membrane for water treatment | [104] |
P(NIPAM-co-MAM) | LCST | 33–41 | Smart textiles | [47] |
SBMA | UCST | 26–27 | Smart textiles | [105] |
Polymer | Responsive Group | Applications | Ref. |
---|---|---|---|
CS | Amine | Controlled drug release | [145] |
P(DEAEMA-co-MMA-co-ABP) | Tertiary amine | Controlled drug release | [31] |
PDMAEMA-b-PMMA | Amine | Oil–water separation fabric | [135] |
P(NIPAM-co-MAM) | Amine | Smart textile | [47] |
PNIPAM-g-CS | Amine | Antibacterial thermoregulating textile | [102] |
Polymer containing 2VP | Pyridine | Smart textile, oil–water separation | [134] |
UA-co-VTMS | Carboxyl | Oil–water separation fabric | [136] |
Stimulus | Material | Structure | Methodology | Application | Ref. |
---|---|---|---|---|---|
Temperature | N-octadecane | Woven | Microencapsulation of the PCM (N-octadecane) with ODMA-MAA copolymer as shell using suspension-like polymerization; wet spinning of fibers containing PCM, CNTs, graphene and PU; dip-coating of the CNTs-graphene-PCM@PU fibers in a conductive ink of CNTs-graphene/PEDOT:PSS; weaving with the obtained fibers | Smart textiles and wearable electronics | [160] |
Temperature | Cholesteryl ester | Nonwoven mat | Formulation of thermochromic LC through the heating at 80–90 °C of ternary mixtures of COC, CB, and CP; electrospinning of blends of LC and polycaprolactone or polystyrene, with chloroform as a solvent | Smart face masks | [38] |
Temperature | SFXC and Hallcrest | Knitted and woven fabrics | Coating of yarns (100% PES) with LC inks (SFXC and Hallcrest), by looping the yarns through pulleys and ink barrels, followed by drying and collection; weaving and knitting with the coated yarns | Smart textiles | [22] |
Temperature | PNIPAM | Nonwoven | Nonwoven PET scaffold filled with NIPAAm hydrogel; UV irradiation; reactive pore-filling with NIPAAm, MBA as the cross-linker, and APS as the initiator; cross-linking polymerization; PA thin layer obtained by interfacial polymerization; addition of PEG as a pore-forming agent | Thin film composite membranes | [30] |
Temperature | Cratin and Hytreal (polymers with different coefficient of thermal expansion) | Nonwoven battings | Side-by-side melt coextrusion of Crastin and Hytrel to form a bicomponent fiber (50–50 composition), where two melt-pump-controlled extruders with pineapple mixers are used for melting the resins, with temperature zones maintained at 230, 240, 250 and 260 °C; fibers transformed into nonwoven battings | Wearable insulation | [162] |
Temperature | PEO–PPO–PEO | Nonwoven membrane | Preparation of LLC by mixing and centrifugation of PEO-PPO-PEO, APS, nBA and EGDMA; LLC sandwiched between Mylar films and glass plates; casting on nonwoven polyester sheet under pressure and thermal polymerization at 65 °C | Ultrafiltration membrane | [49] |
Temperature | Wool fibers | Knitted fabric | Descaling of raw wool fibers using nanoparticles of calcium carbonate, sodium hypochlorite, and hydrochloric acid; production of double-plied ring-spun dyed woollen yarns using conventional yarn and dyeing technologies; fabrication of single jersey, tuck knit, miss knit, and double-knit structures in a flat-bed knitting machine | Smart textiles | [163] |
Temperature | PHA, MDI and BDO | Knitted fabric | Melt spinning of SMP filament using PHA, MDI and BDO; production of knitted fabric using SMP filament and PES yarn on a V-bed knitting machine; shape memory behavior programming by heating up to the transition temperature, deforming up to the required strain, cooling to fix the temporary deformation below 20 °C, releasing the strain, and re-heating to activate the recovery process | Smart textiles | [161] |
Temperature | SBMA | Knitted fabric | Spray coating of one side of a knitted cotton fabric with a solution containing a thermo-responsive polymer (SBMA), MBA and TPO-Li; covering of the coated fabric with a tape mask with hole patterns, followed by UV cross-linking | Smart textiles | [105] |
Temperature | Bio-based low-melting-point polyamide | Woven 3D fabric | Copolymerization of PA11coPA1218 using the monomers 11-aminoundecanoic acid, 1,12-diaminododecane, and octadecanedioic acid, and sodium hypophosphite monohydrate as a catalyst; surface treatment of starch particles with OSA to make them compatible with the biopolyamide matrix; melt-blending of OSA-treated starch with PA11coPA1218; production of filaments from the copolymer and OSA-treated starch composites; coiling and thermosetting of filaments to form actuators; integration of thermo-responsive coiled actuators into a woven 3D fabric comprised of 100% cotton warp and wefts consisting of linen-tencel, cotton, glow-in-the-dark yarn, and actuators | Smart textiles | [164] |
Temperature | PLA and PU | Woven fabric | Wet spinning of PLA/PU/GO fibers using PLA, PU, GO and DMF as solvent; weaving of the fibers using the plain weaving method; spray-coating of one side of the fibers with AgNWs; programming of the SMP textile by stretching deformation at 80 °C, cooling to room temperature and releasing of the stretch force | Smart textiles | [32] |
Temperature and light | PNIPAM and GONPs | Nonwoven fiber mat | Synthesis of P(NIPAm-co-HEA-co-AA) microgels by precipitation polymerization of NIPAm, AA, and HEA in water, using SDS as surfactant and BIS as cross-linker; synthesis of P(NIPAm-co-BPAm) via free radical polymerization using NIPAm and BPAm; synthesis of GO sheets and GONPs from graphite; fabrication of GO NWFs via sequential deposition and UV photo-cross-linking of colloidal suspensions of P(NIPAM-co-HEA-co-AA) microgels, P(NIPAM-co-BPAm) and GONPs, onto PP NWFs | Membranes for processing temperature-sensitive bioactive ingredients or remote-controlled bioreactors | [23] |
Temperature | PNIPAM and PDMAPS | Woven fabric | Preparation of LCST polymer coating solutions by mixing monomers (NIPAM), EGDMA, and initiator (DEAP) in ethanol, and of UCST polymer coating solutions by mixing monomers (DMAPS), EGDMA and Irgacure D-2959 in DI water/trifluoroethanol; hydrophobic monomer (LMA) or hydrophilic monomer (HEMA) added to the LCST and UCST polymer coating solutions; dipping of cotton yarns in the polymer coating solutions; weaving of textiles with LCST warp yarns, hydrophobic PET yarns, and UCST weft yarns | Smart textiles | [98] |
Temperature | LA | Nanofibers | Preparation of ZnO@MWCNT composite materials by dispersion of MWCNTs in deionized water, mixing with Zn(NO3)·6H2O, and reaction at 140 °C; preparation of phase change nanofibers by electrospinning using LA as a PCM, PVA as a supporting material, SDS as an emulsifier, and ZnO@MWCNT for thermal conductivity; coating of the resultant nanofibers with polydimethylsiloxane and a curing agent, to obtain the resultant hydrophobic, self-cleaning, thermoregulated nanofibers | Wearable systems and protective fabrics | [57] |
Temperature and pH | P(NIPAM-co-MAM) | Woven fabric | Synthesis of P(NIPAM-co-MAM) through free radical addition polymerization, using NIPAM and MAM as monomers, at 80 °C; application of the P(NIPAM-co-MAM) copolymer to a 100% cotton plain weaved fabric using a double-bath impregnation method, with the first bath containing the BTCA cross-linker and the SHP catalyst, and the second bath containing an aqueous polymer solution; drying and curing of the fabric | Smart textile | [47] |
Temperature | PHEVAH | Woven fabric | VCL monomer was hydrolyzed with EG to produce HEVAH; synthesis of PHEVAH through free radical polymerization, using HEVAH and AIBN in toluene; application of the PHEVAH to a 100% cotton plain weaved fabric using a double bath impregnation, with the first bath containing the BTCA cross-linker and the SHP catalyst, and the second bath containing a polymer solution; drying and curing of the fabric | Smart textile | [43] |
Temperature | P(MEO2MA-co-OEGMA500 | Fabric | Graft copolymerization of a cotton fabric with TMSPMA; grafting of P(MEO2MA-co-OEGMA500) from TMSPMA-cotton using free-radical polymerization, at 37 °C, using HRP, the monomers MEO2MA and OEGMA500, ACAC, ethanol/phosphate buffer and H2O2; washing and air-drying of the fabric | Smart textile | [101] |
Temperature | PDMAPS | Woven fabric | BN and KH-570 were applied to a twill patterned cotton fabric to improve its hydrophobicity and reactivity; temperature-responsive cotton fabric prepared enzymatically through HRP-catalyzed graft polymerization of PDMAPS, at 37 °C, using HRP, H2O2, ACAC, DMAPS, MBA, and phosphate buffer; washing and air-drying of the fabric | Smart oil–water separation fabric | [99] |
pH | Chitosan and pectin | Nanofibrous films | Electrospinning of solutions with different combinations of polymers (chitosan and pectin), and HPγCD; preparation of inclusion complexes of curcumin and HPγCD using the freeze-drying method; incorporation of the complexes into chitosan/pectin systems, followed by electrospinning | Biomedical | [159] |
pH | P(DEAEMA-co-MMA-co-ABP) (same as PDMA) | Nanofiber mats | Synthesis of PDMA through radical polymerization, at 70 °C, using DEAEMA and MMA as monomers, ABP as cross-linking agents, and AIBN as the thermal initiator, followed by dialysis; electrospinning of solutions containing PDMA, DMF, THF and amoxicillin; UV irradiation and drying of the nanofiber mats | Biomedical | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.P.S.; Gonçalves, A.S.; Antunes, J.C.; Bessa, J.; Cunha, F.; Fangueiro, R. Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application. Polymers 2024, 16, 1345. https://doi.org/10.3390/polym16101345
Ferreira MPS, Gonçalves AS, Antunes JC, Bessa J, Cunha F, Fangueiro R. Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application. Polymers. 2024; 16(10):1345. https://doi.org/10.3390/polym16101345
Chicago/Turabian StyleFerreira, Mónica P. S., Afonso S. Gonçalves, Joana C. Antunes, João Bessa, Fernando Cunha, and Raúl Fangueiro. 2024. "Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application" Polymers 16, no. 10: 1345. https://doi.org/10.3390/polym16101345
APA StyleFerreira, M. P. S., Gonçalves, A. S., Antunes, J. C., Bessa, J., Cunha, F., & Fangueiro, R. (2024). Fibrous Structures: An Overview of Their Responsiveness to External Stimuli towards Intended Application. Polymers, 16(10), 1345. https://doi.org/10.3390/polym16101345