A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.1.1. Sponge Cube and Photocatalyst Coating Procedure
2.1.2. Biofilm Culture
2.1.3. Experimental Procedure
2.2. Analytical Determinations
3. Results and Discussion
3.1. Effects of the Combination Strategy on OCC Pulping Wastewater Treatment
3.1.1. Comparison of Degradation Performance of Ozone-Catalyzed Oxidized Effluent by Different Microbial Systems
3.1.2. Optimization of Microbial System
3.2. Degradation Effect of OCB and B for OCC Pulping Wastewater
3.3. OCB Degradation Mechanism
3.4. Microbial Response
3.4.1. SEM Analysis
3.4.2. Microbial Diversity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Han, N.; Zhang, J.; Hoang, M.; Gray, S.; Xie, Z. A review of process and wastewater reuse in the recycled paper industry. Environ. Technol. Innov. 2021, 24, 101860. [Google Scholar] [CrossRef]
- Nadeem Ahmad Khan, F.B.; Singh, D.; Farooqi, I.H. Treatment of Pulp and paper mill wastewater by column type sequencing batch reactor. J. Ind. Res. Technol. 2011, 1, 12–16. [Google Scholar]
- Liu, H.; Wu, Y.; Li, M.; Ma, H.; Li, M.; Zhu, K.; Chen, G.; Wang, Z.; Wang, S. Electrocoagulation pre-treatment to simultaneously remove dissolved and colloidal substances and Ca2+ in old corrugated container wastewater. Chemosphere 2021, 268, 128851. [Google Scholar] [CrossRef]
- Liang, J.; He, Y.; Zhu, J.; Du, W. Accumulation of dissolved and colloidal substances in water recycled during papermaking. Chem. Eng. J. 2011, 168, 604–609. [Google Scholar]
- Nuortila-Jokinen, M.M.J.; Huuhilo, T.; Kallioinen, M.; Nyström, M. Water circuit closure with membrane technology in the pulp and paper industry. Water Sci. Technol. 2004, 50, 217–227. [Google Scholar] [CrossRef]
- Haq, I.; Kalamdhad, A.S.; Pandey, A. Genotoxicity evaluation of paper industry wastewater prior and post-treatment with laccase producing Pseudomonas putida MTCC 7525. J. Clean. Prod. 2022, 342, 130981. [Google Scholar] [CrossRef]
- Sousa, M.R.S.; Lora-Garcia, J.; López-Pérez, M.-F. Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. J. Water Process Eng. 2018, 21, 96–106. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Sep. Purif. Technol. 2012, 98, 130–135. [Google Scholar] [CrossRef]
- Zhuang, H.; Guo, J.; Hong, X. Advanced Treatment of Paper-Making Wastewater Using Catalytic Ozonation with Waste Rice Straw-Derived Activated Carbon-Supported Manganese Oxides as a Novel and Efficient Catalyst. Pol. J. Environ. Stud. 2018, 27, 451–457. [Google Scholar] [CrossRef]
- Su, Y. Efficacy and Mechanism of Simultaneously Combined Ozonation and Biodegradation Technology for Typical Industrial Wastewater Treatment; JILIN University: Changchun, China, 2020. (In Chinese) [Google Scholar]
- Zhou, H. Combination of Microbubble Catalytic Ozonation and Biological Process for Advanced Treatment of Coal Chemical Wastewater; Hebei University of Science and Technology: Shijiazhuang, China, 2017. (In Chinese) [Google Scholar]
- Zhao, T.; Cheng, H.; Liang, Y.; Xiong, J.; Zhu, H.; Wang, S.; Liang, J.; Chen, G. Preparation of TiO2/Sponge Composite for Photocatalytic Degradation of 2,4,6-Trichlorophenol. Water Air Soil Pollut. 2020, 231, 412. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, C.; Pan, L.; Zhao, T.; Liang, J.; Xiong, J.; Wang, S.; Zhu, H.; Chen, G.; Lu, L.; et al. Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. Environ. Res. 2021, 195, 110840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Rittmann, B.E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Appl. Microbiol. Biotechnol. 2010, 86, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, J.; Cai, Y.; Xiong, J. Catalytic Ozonation for Pulp and Paper Mill Wastewater Treatment: COD Reduction and Organic Matter Degradation Mechanism. Separations 2023, 10, 148. [Google Scholar] [CrossRef]
- Li, G.; Park, S.; Kang, D.-W.; Krajmalnik-Brown, R.; Rittmann, B.E. 2,4,5-Trichlorophenol Degradation Using a Novel TiO2-Coated Biofilm Carrier: Roles of Adsorption, Photocatalysis, and Biodegradation. Environ. Sci. Technol. 2011, 45, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.; Casellas, M.; Carrère, H.; Dagot, C. Effects of thermal hydrolysis on activated sludge solubilization, surface properties and heavy metals biosorption. Chem. Eng. J. 2011, 166, 841–849. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Yao, J.; Cai, W. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 2006, 63, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Y.; Liu, Y.; Tang, M.; Wang, R.; Zhang, C.; Jiang, J.; Jia, C. Bacterial community shift in response to a deep municipal tail wastewater treatment system. Bioresour. Technol. 2019, 281, 195–201. [Google Scholar] [CrossRef]
- Li, S.; Deng, Y.; Lian, S.; Dai, C.; Ma, Q.; Qu, Y. Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. Environ. Res. 2022, 204, 112143. [Google Scholar] [CrossRef]
- Maestri, C.; Plancher, L.; Duthoit, A.; Hébert, R.L.; Di Martino, P. Fungal Biodegradation of Polyurethanes. J. Fungi 2023, 9, 760. [Google Scholar] [CrossRef]
- Zambare, V.P.; Christopher, L.P. Integrated biorefinery approach to utilization of pulp and paper mill sludge for value-added products. J. Clean. Prod. 2020, 274, 122791. [Google Scholar] [CrossRef]
- Kuppuraj, S.P.; Venkidasamy, B.; Selvaraj, D.; Ramalingam, S. Comprehensive in silico and gene expression profiles of MnP family genes in Phanerochaete chrysosporium towards lignin biodegradation. Int. Biodeterior. Biodegrad. 2021, 157, 105143. [Google Scholar] [CrossRef]
- Mondo, S.J.; Jiménez, D.J.; Hector, R.E.; Lipzen, A.; Yan, M.; LaButti, K.; Barry, K.; van Elsas, J.D.; Grigoriev, I.V.; Nichols, N.N. Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery. Biotechnol. Biofuels 2019, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Barragán, J.; Domínguez-Malfavón, L.; Vargas-Suárez, M.; González-Hernández, R.; Aguilar-Osorio, G.; Loza-Tavera, H. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Appl. Environ. Microbiol. 2016, 82, 5225–5235. [Google Scholar] [CrossRef] [PubMed]
Parameter | Real Wastewater | After Ozone Catalyst | After the Ozone-Catalyzed Coupling Biological Process |
---|---|---|---|
COD (mg/L) | 953 | 453 | 176 |
BOD5 (mg/L) | 254 | 210 | 36 |
NH4+ (mg/L) | 24.23 | 25.03 | 7.3 |
TN (mg/L) | 13.55 | 11.97 | 9.2 |
TP (mg/L) | 0.61 | 0.67 | 0.67 |
SS (mg/L) | 2439 | 1749 | 534 |
pH | 7.8 | 7.45 | 7.2 |
Chromaticity | 1789 | 153 | 114 |
Zeta potential (mV) | −24.31 | −26.35 | −16.64 |
DCS solid content (g/L) | 1.63 | 1.33 | 0.46 |
Average particle size (nm) | 523.4 | 371.1 | 218 |
Level | Factor | |||
---|---|---|---|---|
A Time/h | B Aeration Rate/Min·L | C Filling Rate/% | D pH | |
−1 | 8 | 1.5 | 9 | 6 |
0 | 10 | 2 | 10 | 7 |
1 | 12 | 2.5 | 11 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Huang, S.; Xiong, J. A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process. Polymers 2024, 16, 1329. https://doi.org/10.3390/polym16101329
Cai Y, Huang S, Xiong J. A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process. Polymers. 2024; 16(10):1329. https://doi.org/10.3390/polym16101329
Chicago/Turabian StyleCai, Yuxuan, Shaozhe Huang, and Jianhua Xiong. 2024. "A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process" Polymers 16, no. 10: 1329. https://doi.org/10.3390/polym16101329
APA StyleCai, Y., Huang, S., & Xiong, J. (2024). A New Strategy for the Treatment of Old Corrugated Container Pulping Wastewater by the Ozone-Catalyzed Polyurethane Sponge Biodegradation Process. Polymers, 16(10), 1329. https://doi.org/10.3390/polym16101329