Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Moosavian, S.F.; Noorollahi, Y.; Shoaei, M. Renewable Energy Resources Utilization Planning for Sustainable Energy System Development on a Stand-Alone Island. J. Clean. Prod. 2024, 439, 140892. [Google Scholar] [CrossRef]
- Babazadeh Dizaj, R.; Sabahi, N. Optimizing LSM-LSF Composite Cathodes for Enhanced Solid Oxide Fuel Cell Performance: Material Engineering and Electrochemical Insights. World J. Adv. Res. Rev. 2023, 20, 1284–1291. [Google Scholar] [CrossRef]
- Amirjani, A.; Amlashi, N.B.; Ahmadiani, Z.S. Plasmon-Enhanced Photocatalysis Based on Plasmonic Nanoparticles for Energy and Environmental Solutions: A Review. ACS Appl. Nano Mater. 2023, 6, 9085–9123. [Google Scholar] [CrossRef]
- Scharber, M.C. Efficiency of Emerging Photovoltaic Devices under Indoor Conditions. Sol. RRL 2024, 8, 2300811. [Google Scholar] [CrossRef]
- Paci, B.; Righi Riva, F.; Generosi, A.; Guaragno, M.; Mangiacapre, E.; Brutti, S.; Wagner, M.; Distler, A.; Egelhaaf, H.-J. Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues. Nanomaterials 2024, 14, 269. [Google Scholar] [CrossRef]
- Li, Y.; Ru, X.; Yang, M.; Zheng, Y.; Yin, S.; Hong, C.; Peng, F.; Qu, M.; Xue, C.; Lu, J. Flexible Silicon Solar Cells with High Power-to-Weight Ratios. Nature 2024, 626, 105–110. [Google Scholar] [CrossRef]
- Ding, P.; Yang, D.; Yang, S.; Ge, Z. Stability of Organic Solar Cells: Toward Commercial Applications. Chem. Soc. Rev. 2024. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, Challenges and Molecular Design of Different Material Types Used in Organic Solar Cells. Nat. Rev. Mater. 2024, 9, 46–62. [Google Scholar] [CrossRef]
- Wang, H.; He, F. Recent Advances of Chlorination in Organic Solar Cells. Synlett 2021, 32, 1297–1302. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Yang, L.; Du, F.; Yu, J.; Tang, W. Chlorinated Unfused Acceptor Enabling 13.57% Efficiency and 73.39% Fill Factor Organic Solar Cells via Fine-Tuning Alkoxyl Chains on Benzene Core. Chem. Eng. J. 2022, 427, 131828. [Google Scholar] [CrossRef]
- Li, M.; He, F. Organic Solar Cells Developments: What’s next? Next Energy 2024, 2, 100085. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M.H.; Qiao, J.; Li, Y.; Song, J.; Hao, X. Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. Adv. Mater. 2023, 35, 2208165. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Yang, L.; Rosei, F. Ternary Organic Solar Cells: A Review of The Role of the Third Element. Nano Energy 2022, 94, 106915. [Google Scholar] [CrossRef]
- Yang, X.; Sun, R.; Wang, Y.; Chen, M.; Xia, X.; Lu, X.; Lu, G.; Min, J. Ternary All-Polymer Solar Cells with Efficiency up to 18.14% Employing a Two-Step Sequential Deposition. Adv. Mater. 2023, 35, 2209350. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile Ternary Organic Solar Cells: A Critical Review. Energy Environ. Sci. 2016, 9, 281–322. [Google Scholar] [CrossRef]
- Hrostea, L.; Dumitras, M.; Leontie, L. Study of Electrical Properties of PBDB-T-2Cl Based Ternary Thin Films for Photovoltaic Applications. Mater. Sci. Semicond. Process. 2023, 166, 107743. [Google Scholar] [CrossRef]
- Hrostea, L.; Leontie, L.; Girtan, M. Chemical Sensitization for Electric Properties Improvement of PBDB-T-SF Polymer for Solar Cells Application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012002. [Google Scholar] [CrossRef]
- Hrostea, L.; Leontie, L.; Girtan, M. Characterization of PBDB-T-SF: Fullerene Blend Thin Films for Solar Cell Applications. Rom. Rep. Phys. 2020, 72, 504. [Google Scholar]
- Huang, T.; Zhang, Y.; Wang, J.; Cao, Z.; Geng, S.; Guan, H.; Wang, D.; Zhang, Z.; Liao, Q.; Zhang, J. Dual-Donor Organic Solar Cells with 19.13% Efficiency through Optimized Active Layer Crystallization Behavior. Nano Energy 2024, 121, 109226. [Google Scholar] [CrossRef]
- Hu, H.; Mu, X.; Qin, W.; Gao, K.; Hao, X.; Yin, H. Rationalizing Charge Carrier Transport in Ternary Organic Solar Cells. Appl. Phys. Lett. 2022, 120, 023302. [Google Scholar] [CrossRef]
- Juska, G.; Arlauskas, K.; Viliunas, M.; Genevicius, K.; Osterbacka, R.; Stubb, H. Charge Transport in Pi-Conjugated Polymers from Extraction Current Transients. Phys. Rev. B 2000, 62, R16235–R16238. [Google Scholar] [CrossRef]
- Juska, G.; Arlauskas, K.; Genevicius, K. Charge carrier transport and recombination in disordered materials. Lith. J. Phys. 2016, 56, 182–189. [Google Scholar] [CrossRef]
- Grynko, O.; Juška, G.; Reznik, A. Charge Extraction by Linearly Increasing Voltage (CELIV) Method for Investigation of Charge Carrier Transport and Recombination in Disordered Materials. Photocond. Photocond. Mater. Fundam. Tech. Appl. 2022, 1, 339–368. [Google Scholar]
- Khan, M.D.; Nikitenko, V.R. On the Charge Mobility in Disordered Organics from Photo-CELIV Measurements. Chem. Phys. 2020, 539, 110954. [Google Scholar] [CrossRef]
- Aukstuolis, A.; Girtan, M.; Mousdis, G.A.; Mallet, R.; Socol, M.; Rasheed, M.; Stanculescu, A. measurement of charge carrier mobility in perovskite nanowire films by photo-celiv method. Proc. Rom. Acad. Ser. A-Math. Phys. Tech. Sci. Inf. Sci. 2017, 18, 34–41. [Google Scholar]
- Stephen, M.; Genevičius, K.; Juška, G.; Arlauskas, K.; Hiorns, R.C. Charge Transport and Its Characterization Using Photo-CELIV in Bulk Heterojunction Solar Cells: Photo-CELIV to Probe Charge Transport in Solar Cells. Polym. Int. 2017, 66, 13–25. [Google Scholar] [CrossRef]
- Semeniuk, O.; Juska, G.; Oelerich, J.-O.; Wiemer, M.; Baranovskii, S.D.; Reznik, A. Charge Transport Mechanism in Lead Oxide Revealed by CELIV Technique. Sci. Rep. 2016, 6, 33359. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Dai, T.; Ha, W.; Du, H.; Li, S.; Wang, K.; Meng, F.; Xu, D.; Geng, A. Charge Transport and Extraction of Bilayer Interdiffusion Heterojunction Organic Solar Cells. J. Phys. Chem. C 2019, 123, 24446–24452. [Google Scholar] [CrossRef]
- Chang, L.; Sheng, M.; Duan, L.; Uddin, A. Ternary Organic Solar Cells Based on Non-Fullerene Acceptors: A Review. Org. Electron. 2021, 90, 106063. [Google Scholar] [CrossRef]
- Yin, P.; Yin, Z.; Ma, Y.; Zheng, Q. Improving the Charge Transport of the Ternary Blend Active Layer for Efficient Semitransparent Organic Solar Cells. Energy Environ. Sci. 2020, 13, 5177–5185. [Google Scholar] [CrossRef]
- Hrostea, L.; Bulai, G.-A.; Tiron, V.; Leontie, L. Study of Tunable Dielectric Permittivity of PBDB-T-2CL Polymer in Ternary Organic Blend Thin Films Using Spectroscopic Ellipsometry. Polymers 2023, 15, 3771. [Google Scholar] [CrossRef]
- An, K.; Zhong, W.; Peng, F.; Deng, W.; Shang, Y.; Quan, H.; Qiu, H.; Wang, C.; Liu, F.; Wu, H. Mastering Morphology of Non-Fullerene Acceptors towards Long-Term Stable Organic Solar Cells. Nat. Commun. 2023, 14, 2688. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; An, Q.; Ma, X.; Hu, Z.; Xu, C.; Zhang, X.; Zhang, F. Over 16.7% Efficiency of Ternary Organic Photovoltaics by Employing Extra PC 71 BM as Morphology Regulator. Sci. China Chem. 2020, 63, 83–91. [Google Scholar] [CrossRef]
- Liu, X.; Du, S.; Fu, Z.; Chen, C.; Tong, J.; Li, J.; Zheng, N.; Zhang, R.; Xia, Y. Ternary Solar Cells via Ternary Polymer Donors and Third Component PC71BM to Optimize Morphology with 13.15% Efficiency. Sol. Energy 2021, 222, 18–26. [Google Scholar] [CrossRef]
- Juska, G.; Genevicius, K.; Viliunas, M.; Arlauskas, K.; Osterbacka, R.; Stubb, H. Transport Features of Photogenerated and Equilibrium Charge Carriers in Thin PPV Polymer Layers. In Proceedings of the Optical Organic and Inorganic Materials; Asmontas, S.P., Gradauskas, J., Eds.; Semicond Phys Inst; SPIE Balt Chapter; Lithuanian Minist & Educ & Res; Lithuanian State Sci & Studies Fdn; SPIE. European Commiss: Vilnius, Lituania, 2001; Volume 4415, pp. 145–149. [Google Scholar]
- Aukstuolis, A.; Nekrasas, N.; Genevicius, K.; Juska, G. Investigation of Charge Carrier Mobility and Recombination in PBDTTPD Thin Layer Structures. Org. Electron. 2021, 90, 106066. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Meng, X.; Yang, S.; Ke, L.; Zhou, C.; Yan, H.; Hu, X.; Zhang, S.; Ma, W. Regulating Crystallization to Maintain Balanced Carrier Mobility via Ternary Strategy in Blade-Coated Flexible Organic Solar Cells. Org. Electron. 2021, 89, 106027. [Google Scholar] [CrossRef]
- Juška, G.; Arlauskas, K.; Viliūnas, M.; Kočka, J. Extraction Current Transients: New Method of Study of Charge Transport in Microcrystalline Silicon. Phys. Rev. Lett. 2000, 84, 4946. [Google Scholar] [CrossRef]
- Dahlstrom, S.; Liu, X.; Yan, Y.; Sandberg, O.J.; Nyman, M.; Liang, Z.; Osterbacka, R. Extraction Current Transients for Selective Charge-Carrier Mobility Determination in Non-Fullerene and Ternary Bulk Heterojunction Organic Solar Cells. ACS Appl. Energy Mater. 2020, 3, 9190–9197. [Google Scholar] [CrossRef]
- Juška, G.; Genevičius, K.; Arlauskas, K.; Österbacka, R.; Stubb, H. Charge Transport at Low Electric Fields in π-Conjugated Polymers. Phys. Rev. B 2002, 65, 233208. [Google Scholar] [CrossRef]
- Mozer, A.J.; Sariciftci, N.S.; Pivrikas, A.; Österbacka, R.; Juška, G.; Brassat, L.; Bässler, H. Charge Carrier Mobility in Regioregular Poly (3-Hexylthiophene) Probed by Transient Conductivity Techniques: A Comparative Study. Phys. Rev. B 2005, 71, 035214. [Google Scholar] [CrossRef]
- Rao, A.D.; Murali, M.G.; Kesavan, A.V.; Ramamurthy, P.C. Experimental Investigation of Charge Transfer, Charge Extraction, and Charge Carrier Concentration in P3HT: PBD-DT-DPP: PC70BM Ternary Blend Photovoltaics. Sol. Energy 2018, 174, 1078–1084. [Google Scholar] [CrossRef]
- Dai, T.; Li, X.; Zhang, Y.; Xu, D.; Geng, A.; Zhao, J.; Chen, X. Performance Improvement of Polymer Solar Cells with Binary Additives Induced Morphology Optimization and Interface Modification Simultaneously. Sol. Energy 2020, 201, 330–338. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Yao, Y.; Liang, Z. Ternary Blend Strategy for Achieving High-efficiency Organic Solar Cells with Nonfullerene Acceptors Involved. Adv. Funct. Mater. 2018, 28, 1802004. [Google Scholar] [CrossRef]
Sample | D:A1:A2 Weight Ratio | Thickness (nm) | Absorption Edge (nm) | RRMS (nm) |
---|---|---|---|---|
S1 | 1:0:0 | 100 | 656 | 4.97 |
S2 | 1:1.4:0 | 400 | 685 | 8.24 |
S3 | 1:1:0.4 | 250 | 780 | 4.65 |
S4 | 1:0.7:0.7 | 285 | 775 | 3.91 |
S5 | 1:0.4:1 | 350 | 775 | 3.37 |
S6 | 1:0:1.4 | 210 | 656 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrostea, L.; Oajdea, A.; Leontie, L. Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers 2024, 16, 1324. https://doi.org/10.3390/polym16101324
Hrostea L, Oajdea A, Leontie L. Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers. 2024; 16(10):1324. https://doi.org/10.3390/polym16101324
Chicago/Turabian StyleHrostea, Laura, Anda Oajdea, and Liviu Leontie. 2024. "Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends" Polymers 16, no. 10: 1324. https://doi.org/10.3390/polym16101324
APA StyleHrostea, L., Oajdea, A., & Leontie, L. (2024). Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers, 16(10), 1324. https://doi.org/10.3390/polym16101324