Biopolymer Materials in Triboelectric Nanogenerators: A Review
Abstract
:1. Introduction
2. Basic Principle and Working Modes of TENGs
3. Recent Progress in BP-TENGs
3.1. BP-TENG Based on Natural Polymers
3.1.1. Polysaccharide-Based BP
3.1.2. Protein-Based BP
3.2. BP-TENG Based on Microbial Synthetic Polymers
3.2.1. Bacterial BP
3.2.2. Fungal BP
3.2.3. Algae BP
3.3. BP-TENG Based on Chemically Synthesized/Modified Biopolymers
3.3.1. Ring-Opening Polymerization
3.3.2. Enzyme-Catalyzed Polymerization
3.3.3. Chemical Modification
4. Possible Applications of BP-TENG
4.1. Energy Harvesting
4.2. Medical and Health
4.2.1. Human Health Diagnosis
4.2.2. Motion Tracking
4.2.3. Anti-Mite and Antibacterial
4.3. Environmental Monitoring
4.3.1. Air Quality
4.3.2. Marine Accident
4.3.3. Agricultural Production
4.3.4. Urban Safety
Fire Alarm
Traffic Warning
Smart Home
5. Conclusions and Prospect
5.1. Output Performance
5.2. Stability and Durability
5.3. Scalable Production and Standardization
5.4. Controlled Degradation
5.5. Integration and Compatibility
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, S.; Oh, J.; Yang, U.J.; Lee, S.M.; Lee, J.; Jeong, M.; Cho, Y.; Kim, S.; Baik, J.M.; Yang, C. 3d cu ball-based hybrid triboelectric nanogenerator with non-fullerene organic photovoltaic cells for self-powering indoor electronics. Nano Energy 2020, 77, 105271. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ouyang, H.; Zhou, J.; Chang, Y.; Xu, D.; Zhao, H. A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance. Meccanica 2021, 56, 461–480. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, N.; Li, J.; Dong, L.; Wang, T.; Wang, Z.; Wang, G.; Zhou, X.; Zhang, J. Harvesting ultralow frequency (< 1 hz) mechanical energy using triboelectric nanogenerator. Nano Energy 2019, 65, 104011. [Google Scholar]
- Xu, G.; Guan, D.; Yin, X.; Fu, J.; Wang, J.; Zi, Y. A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output. EcoMat 2020, 2, e12037. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, Z.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z.L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Tian, Z.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Ko, Y.H.; Nagaraju, G.; Lee, S.H.; Yu, J.S. Pdms-based triboelectric and transparent nanogenerators with zno nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 6631–6637. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, H.; Ding, P.; Pan, R.; Wang, W.; Xuan, W.; Wang, X.; Jin, H.; Dong, S.; Luo, J. Transparent triboelectric generators based on glass and polydimethylsiloxane. Nano Energy 2016, 30, 235–241. [Google Scholar] [CrossRef]
- Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, eaaz7946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, X.; Wu, Y.; Zhang, H.; Lin, Z.; Meng, K.; Lin, Z.; He, Q.; Sun, C.; Yang, J.; et al. Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring. Nano Energy 2018, 53, 501–507. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Lin, Z.; Du, Z.; Wang, Z.L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.; Yao, G.; Khan, S.A.; Gao, M.; Su, Y.; Yang, W.; Lin, Y. Intelligent sensing system based on hybrid nanogenerator by harvesting multiple clean energy. Adv. Eng. Mater. 2018, 20, 1700886. [Google Scholar] [CrossRef]
- Gang, X.; Guo, Z.H.; Cong, Z.; Wang, J.; Chang, C.; Pan, C.; Pu, X.; Wang, Z.L. Textile triboelectric nanogenerators simultaneously harvesting multiple “high-entropy” kinetic energies. ACS Appl. Mater. Interfaces 2021, 13, 20145–20152. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Z.; Xu, L.; Gao, F.; Zhao, B.; Kang, Z.; Liao, Q.; Zhang, Y. Tumbler-shaped hybrid triboelectric nanogenerators for amphibious self-powered environmental monitoring. Nano Energy 2020, 76, 104960. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, L.; Xia, Y.; Qiu, R.; Liu, W.; Wu, M.; Zhu, Y.; Zhu, S.; Jia, C.; Zhu, M.; et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709. [Google Scholar] [CrossRef]
- Gao, L.; Hu, D.; Qi, M.; Gong, J.; Zhou, H.; Chen, X.; Chen, J.; Cai, J.; Wu, L.; Hu, N.; et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 2018, 10, 19781–19790. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, Y.; Chen, C.; Chen, X.; Yao, T.; Peng, M.; Chen, X.; Nie, B.; Wen, Z.; Sun, X. Frequency-independent self-powered sensing based on capacitive impedance matching effect of triboelectric nanogenerator. Nano Energy 2019, 65, 103984. [Google Scholar] [CrossRef]
- Pan, Y.; Li, M.; Huang, T.; Hao, X.; Lu, M.; Chen, S.; Zhang, K.; Qin, A. Dynamic co-irradiation techniques: A new method improving the electrical output of teng by optimizing the charge capture capacity of polypropylene membrane. Appl. Mater. Today 2023, 35, 101979. [Google Scholar] [CrossRef]
- Ahmed, R.F.S.M.; Mohan, S.B.; Ankanathappa, S.M.; Ravindranath, M.B.; Sannathammegowda, K. Effect of humidity on the performance of polyvinyl chloride based triboelectric nanogenerator. Mater. Today Proc. 2022, 66, 2468–2473. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, J.; Liao, S.; Chen, D.; Wei, Q. All-electrospun performance-enhanced triboelectric nanogenerator based on the charge-storage process. J. Mater. Sci. 2022, 57, 5334–5345. [Google Scholar] [CrossRef]
- Gulahmadov, O.; Muradov, M.B.; Mamedov, H.; Kim, J. Enhancement of triboelectric nanogenerators with nylon/tio2 nanocomposite films. MRS Commun. 2024, 14, 114–120. [Google Scholar] [CrossRef]
- Xia, K.; Zhu, Z.; Zhang, H.; Du, C.; Wang, R.; Xu, Z. Cost-effective triboelectric nanogenerator based on teflon tape and conductive copper foil tape. Microelectron. Eng. 2018, 199, 114–117. [Google Scholar] [CrossRef]
- Saadatnia, Z.; Mosanenzadeh, S.G.; Li, T.; Esmailzadeh, E.; Naguib, H.E. Polyurethane aerogel-based triboelectric nanogenerator for high performance energy harvesting and biomechanical sensing. Nano Energy 2019, 65, 104019. [Google Scholar] [CrossRef]
- Chi, Y.; Xia, K.; Zhu, Z.; Fu, J.; Zhang, H.; Du, C.; Xu, Z. Rice paper-based biodegradable triboelectric nanogenerator. Microelectron. Eng. 2019, 216, 111059. [Google Scholar] [CrossRef]
- Chao, S.; Ouyang, H.; Jiang, D.; Fan, Y.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072. [Google Scholar] [CrossRef]
- Niu, Z.; Cheng, W.; Cao, M.; Wang, D.; Wang, Q.; Han, J.; Long, Y.; Han, G. Recent advances in cellulose-based flexible triboelectric nanogenerators. Nano Energy 2021, 87, 106175. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Lin, X.; Qian, X.; Zhang, L.; Zhou, J.; Lu, A. High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydr. Polym. 2022, 291, 119586. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wang, Y.; Liu, Q.; Yuan, T.; Yao, C. The recent progress in cellulose paper-based triboelectric nanogenerators. Adv. Sustain. Syst. 2021, 5, 2100034. [Google Scholar] [CrossRef]
- Sarkar, L.; Kandala, A.B.; Bonam, S.; Mohanty, S.; Singh, S.G.; Vanjari, S. Flexible polymer-based triboelectric nanogenerator using poly(vinylidene fluoride) and bombyx mori silk. Mater. Today Sustain. 2022, 20, 100230. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, Y.; Wang, Y.; Zhang, S.; Yang, W.; Pan, X.; Wang, Z.L. Cellulose ii aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 2020, 30, 2001763. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, J.; Jun, K.; Kim, J.; Seung, W.; Kwon, O.H.; Park, J.; Kim, S.; Oh, I. Silk nanofiber-networked bio-triboelectric generator: Silk bio-teg. Adv. Energy Mater. 2016, 6, 1502329. [Google Scholar] [CrossRef]
- Yao, C.; Hernandez, A.; Yu, Y.; Cai, Z.; Wang, X. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108. [Google Scholar] [CrossRef]
- Candido, I.C.M.; Oliveira, G.D.S.; Ribeiro, S.J.L.; Cavicchioli, M.; Barud, H.S.; Silva, L.G.; de Oliveira, H.P. Pva-silk fibroin bio-based triboelectric nanogenerator. Nano Energy 2023, 105, 108035. [Google Scholar] [CrossRef]
- Wang, R.; Ma, J.; Ma, S.; Zhang, Q.; Li, N.; Ji, M.; Jiao, T.; Cao, X. A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chem. Eng. J. 2022, 450, 137985. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Chougale, M.Y.; Khan, M.U.; Shaukat, R.A.; Kim, J.; Bhat, K.S.; Bae, J. Triboelectric nanogenerator based on lignocellulosic waste fruit shell tribopositive material: Comparative analysis. Mater. Today Sustain. 2022, 18, 100146. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Yang, G.; Hu, S.; Shi, Z.; Yang, G. Fabric-based teng woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection. Adv. Funct. Mater. 2023, 33, 2304809. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, L.; Yue, X.; Zhang, L.; Ren, G.; Li, D.; Wang, H.; Han, Y.; Xiao, L.; Lu, G.; et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy 2021, 89, 106329. [Google Scholar] [CrossRef]
- Ding, Z.; Tian, Z.; Ji, X.; Wang, D.; Ci, X.; Shao, X.; Rojas, O.J. Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biol. Macromol. 2023, 234, 122903. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Lee, H.; Oh, I. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at parkinson disease. Nano Energy 2021, 82, 105705. [Google Scholar] [CrossRef]
- Men, C.; Liu, X.; Chen, Y.; Liu, S.; Wang, S.; Gao, S. Cotton-assisted dual rotor-stator triboelectric nanogenerator for real-time monitoring of crop growth environment. Nano Energy 2022, 101, 107578. [Google Scholar] [CrossRef]
- Yang, M.; Liu, J.; Hu, C.; Zhang, W.; Jiao, J.; Cui, N.; Gu, L. Highly sensitive self-powered ammonia gas detection enabled by a rationally designed pani/commercial cellulosic paper based triboelectric nanogenerator. J. Mater. Chem. A 2023, 11, 21937–21947. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.; Tcho, I.; Kim, J.; Kim, M.; Choi, Y. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Zhou, Z.; Wang, J.; Kuang, H.; Shen, Q.; Yang, H. High-power triboelectric nanogenerators by using in-situ carbon dispersion method for energy harvesting and self-powered wireless control. Nano Energy 2022, 101, 107561. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y.; Jing, Q.; Cao, X.; Wang, Z.L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, Y.; Lang, J.; Li, L.; Zhang, Y. Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. Nano Energy 2022, 92, 106783. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Xie, Y.; Jing, Q.; Niu, S.; Wang, Z.L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, W.; Zhang, H.; Wang, H.; Cai, H.; Zhang, Y.; Yang, Z. Electron transfer mechanism of graphene/cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 2020, 70, 104540. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, Y.; Jiao, S.; Wang, C.; Jia, Y.; Dai, K.; Zheng, G.; Liu, C.; Wan, P.; Shen, C. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021, 31, 2101696. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, W.; Zi, Y.; Lu, Y.; Ji, L.; Liu, F.; Wu, C.; Wang, Z.L. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 2018, 9, 3733. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z.L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, R.; Lu, Y.; Wu, W. Lignin biopolymer based triboelectric nanogenerators. APL Mater. 2017, 5, 74109. [Google Scholar] [CrossRef]
- Ccorahua, R.; Huaroto, J.; Luyo, C.; Quintana, M.; Vela, E.A. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy 2019, 59, 610–618. [Google Scholar] [CrossRef]
- Diaz, A.F.; Felix-Navarro, R.M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrost. 2004, 62, 277–290. [Google Scholar] [CrossRef]
- Khandelwal, G.; Joseph Raj, N.P.M.; Alluri, N.R.; Kim, S. Enhancing hydrophobicity of starch for biodegradable material-based triboelectric nanogenerators. ACS Sustain. Chem. Eng. 2021, 9, 9011–9017. [Google Scholar] [CrossRef]
- Zhang, X.; Brugger, J.; Kim, B. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 2016, 20, 37–47. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, W.; Fan, X.; Shi, Y.; Gong, H.; Huang, J.; Patil, A.; Li, X.; Wang, S.; Lin, H.; et al. Stretchable, stable, and degradable silk fibroin enabled by mesoscopic doping for finger motion triggered color/transmittance adjustment. ACS Nano 2021, 15, 12429–12437. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; He, C.; Lin, R.; Li, X.; Zhao, Q.; Ying, Y.; Song, J.; Ping, J. Engineering squandered plant protein into eco-friendly triboelectric films for highly efficient energy harvesting. Nano Energy 2022, 101, 107589. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Sun, L.; Liu, Z.; Xia, X.; Tao, T.H. “genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv. Mater. 2018, 30, 1805722. [Google Scholar] [CrossRef] [PubMed]
- Gogurla, N.; Roy, B.; Kim, S. Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 2020, 77, 105242. [Google Scholar] [CrossRef]
- Chang, T.; Peng, Y.; Chen, C.; Chang, T.; Wu, J.; Hwang, J.; Gan, J.; Lin, Z. Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting. Nano Energy 2016, 21, 238–246. [Google Scholar] [CrossRef]
- Wei, D.; Dao, J.; Chen, G. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater. 2018, 30, 1802273. [Google Scholar] [CrossRef]
- Wang, C.; Peng, Z.; Huang, X.; Yan, C.; Yang, T.; Zhang, C.; Lu, J.; Yang, W. Expecting the unexpected: High pressure crystallization significantly boosts up triboelectric outputs of microbial polyesters. J. Mater. Chem. A 2021, 9, 6306–6315. [Google Scholar] [CrossRef]
- Linko, S.; Vaheri, H.; Seppälä, J. Production of poly-β-hydroxybutyrate by alcaligenes eutrophus on different carbon sources. Appl. Microbiol. Biotechnol. 1993, 39, 11–15. [Google Scholar] [CrossRef]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Shi, Z.; Wang, Y.; Lei, Y.; Han, J.; Xiong, Y.; Sun, J.; Zheng, L.; Sun, Q.; et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy 2021, 89, 106354. [Google Scholar] [CrossRef]
- Suktep, N.; Pongampai, S.; Pakawanit, P.; Noisak, J.; Bongkarn, T.; Charoonsuk, T.; Vittayakorn, N. Silk fibroin/amino acid hybrid organic piezoelectric-triboelectric nanogenerator. Integr. Ferroelectr. 2023, 238, 101–114. [Google Scholar] [CrossRef]
- Khandelwal, G.; Ediriweera, M.K.; Kumari, N.; Raj, N.; Cho, S.K.; Kim, S.J. Metal-amino acid nanofibers based triboelectric nanogenerator for self-powered thioacetamide sensor. ACS Appl. Mater. Interfaces 2021, 13, 18887–18896. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.R.; Chougale, M.Y.; Kim, J.; Shaukat, R.A.; Noman, M.; Saqib, Q.M.; Patil, C.S.; Ghode, S.B.; Dongale, T.D.; Dubal, D.; et al. Nature-driven edible black soldier fly (bsf) insect larvae derived chitin biofilm for sustainable multifunctional energy harvesting. Adv. Sustain. Syst. 2024, 8, 2300312. [Google Scholar] [CrossRef]
- Kang, M.; Bin Mohammed Khusrin, M.S.; Kim, Y.; Kim, B.; Park, B.J.; Hyun, I.; Imani, I.M.; Choi, B.; Kim, S. Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy 2022, 100, 107480. [Google Scholar] [CrossRef]
- Petchnui, K.; Uwanno, T.; Phonyiem Reilly, M.; Pinming, C.; Treetong, A.; Yordsri, V.; Moolsradoo, N.; Klamcheun, A.; Wongwiriyapan, W. Preparation of chitin nanofibers and natural rubber composites and their triboelectric nanogenerator applications. Materials 2024, 17, 738. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Xi, F.; Luo, J.; Liu, G.; Guo, T.; Zhang, C. An alginate film-based degradable triboelectric nanogenerator. RSC Adv. 2018, 8, 6719–6726. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Yan, H.; Jiang, H.; Luo, J.; Zhang, C.; Pang, Y.; Tan, Y. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chem. Eng. J. 2023, 468, 143572. [Google Scholar] [CrossRef]
- Xia, K.; Wu, D.; Fu, J.; Hoque, N.A.; Ye, Y.; Xu, Z. Tunable output performance of triboelectric nanogenerator based on alginate metal complex for sustainable operation of intelligent keyboard sensing system. Nano Energy 2020, 78, 105263. [Google Scholar] [CrossRef]
- Bui, V.T.N.T.; Nguyen, B.T.; Nicolai, T.; Renou, F. Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydr. Polym. 2019, 223, 115107. [Google Scholar] [CrossRef] [PubMed]
- Day, D.F.; Yaphe, W. Enzymatic hydrolysis of agar: Purification and characterization of neoagarobiose hydrolase and p-nitrophenyl α-galactoside hydrolases. Can. J. Microbiol. 1975, 21, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.P.; Fortunati, E.; Dominici, F.; López, J.; Kenny, J.M. Bionanocomposite films based on plasticized pla–phb/cellulose nanocrystal blends. Carbohydr. Polym. 2015, 121, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yu, D.; Zhang, W.; Wang, Z.; Wang, Y. Fabrication and output performance of triboelectric nanogenerator from helical structure of biodegradable polylactic acid by 3d printing. Curr. Appl. Phys. 2023, 51, 44–52. [Google Scholar] [CrossRef]
- Luo, N.; Feng, Y.; Wang, D.; Zheng, Y.; Ye, Q.; Zhou, F.; Liu, W. New self-healing triboelectric nanogenerator based on simultaneous repair friction layer and conductive layer. ACS Appl. Mater. Interfaces 2020, 12, 30390–30398. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Feng, Y.; Zheng, Y.; Wu, Z.; Zhang, X.; Wang, N.; Wang, D.; Zhou, F. Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 2021, 31, 2010220. [Google Scholar] [CrossRef]
- Hajra, S.; Sahu, M.; Padhan, A.M.; Lee, I.S.; Yi, D.K.; Alagarsamy, P.; Nanda, S.S.; Kim, H.J. A green metal–organic framework-cyclodextrin mof: A novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting. Adv. Funct. Mater. 2021, 31, 2101829. [Google Scholar] [CrossRef]
- Varghese, H.; Hakkeem, H.M.A.; Chauhan, K.; Thouti, E.; Pillai, S.; Chandran, A. A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned pdms films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 2022, 98, 107339. [Google Scholar] [CrossRef]
- Ma, C.; Gao, S.; Gao, X.; Wu, M.; Wang, R.; Wang, Y.; Tang, Z.; Fan, F.; Wu, W.; Wan, H.; et al. Chitosan biopolymer-derived self-powered triboelectric sensor with optimized performance through molecular surface engineering and data-driven learning. InfoMat 2019, 1, 116–125. [Google Scholar] [CrossRef]
- Menge, H.G.; Huynh, N.D.; Choi, K.; Cho, C.; Choi, D.; Park, Y.T. Body-patchable, antimicrobial, encodable tengs with ultrathin, free-standing, translucent chitosan/alginate/silver nanocomposite multilayers. Adv. Funct. Mater. 2023, 33, 2210571. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Z.; Zhu, Q.; Lu, S.; Li, Y.; Ionov, L. Electrospun cellulose acetate nanofibrous composites for multi-responsive shape memory actuators and self-powered pressure sensors. Carbohydr. Polym. 2023, 313, 120868. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Zhang, J.; Jiang, Y.; Wang, S.; Zhao, H. High toughness, multi-dynamic self-healing polyurethane for outstanding energy harvesting and sensing. ACS Appl. Mater. Interfaces 2023, 15, 58806–58814. [Google Scholar] [CrossRef] [PubMed]
- Piwbang, S.; Kaeochana, W.; Luechar, P.; Bunriw, W.; Chimsida, P.; Yamklang, W.; Sintusiri, J.; Harnchana, V. Using natural dye additives to enhance the energy conversion performance of a cellulose paper-based triboelectric nanogenerator. Polymers 2024, 16, 476. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Li, X.; Jiang, C.; Zhang, Q.; Peng, B.; Ping, J.; Ying, Y. Omnidirectional wind energy harvester for self-powered agro-environmental information sensing. Nano Energy 2022, 91, 106686. [Google Scholar] [CrossRef]
- Wang, T.; Li, S.; Tao, X.; Yan, Q.; Wang, X.; Chen, Y.; Huang, F.; Li, H.; Chen, X.; Bian, Z. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022, 93, 106787. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Yuan, Z.; Duan, Z.; Zhao, Q.; Zhang, Y.; Su, Y.; Jiang, Y.; Xie, G.; Tai, H. Novel chitosan/zno bilayer film with enhanced humidity-tolerant property: Endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Shi, X.; Wei, Y.; Yan, R.; Hu, L.; Zhi, J.; Tang, B.; Li, Y.; Yao, Z.; Shi, C.; Yu, H.; et al. Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator. Nano Energy 2023, 109, 108231. [Google Scholar] [CrossRef]
- Lin, C.; Chen, D.; Hua, Z.; Wang, J.; Cao, S.; Ma, X. Cellulose paper modified by a zinc oxide nanosheet using a ZnCl2-urea eutectic solvent for novel applications. Nanomaterials 2021, 11, 1111. [Google Scholar] [CrossRef]
- Nie, S.; Cai, C.; Lin, X.; Zhang, C.; Lu, Y.; Mo, J.; Wang, S. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustain. Chem. Eng. 2020, 8, 18678–18685. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, H.; Jie, Y.; Cao, X.; Wang, Z.L. Antibacterial triboelectric nanogenerator for mite removal and intelligent human monitoring. Adv. Mater. Technol. 2023, 8, 2300192. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, D.; Wang, D.; Xu, Z.; Zhang, J. A high-stability weighing paper/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered in2o3 nanocubes/sns2 nanoflower no2 gas sensors. J. Mater. Chem. A 2021, 9, 14495–14506. [Google Scholar] [CrossRef]
- Zheng, N.; Xue, J.; Jie, Y.; Cao, X.; Wang, Z.L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219. [Google Scholar] [CrossRef]
- Xia, K.; Xu, Z.; Hong, Y.; Wang, L. A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring. Mater. Today Sustain. 2023, 24, 100467. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Z.; Gao, X.; Zhao, H.; Li, X.; Wang, Z.L.; Yu, Z.; Yang, D. All-weather self-powered intelligent traffic monitoring system based on a conjunction of self-healable piezoresistive sensors and triboelectric nanogenerators. Adv. Funct. Mater. 2023, 33, 2308845. [Google Scholar] [CrossRef]
- Hao, S.; Jiao, J.; Chen, Y.; Wang, Z.L.; Cao, X. Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy 2020, 75, 104957. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
Synthesis Method | Material | Type | Size | Electrical Output | Application | Ref. |
---|---|---|---|---|---|---|
Natural | Silk | Proteins | 4 × 7 cm2 | 2 V/4.3 mW·m−2 | Energy harvesting | [34] |
Natural | SF | Proteins | 2 × 4 cm2 | 68 V/5.78 μA | Drive microdevice | [63] |
Natural | SF | Proteins | 2 × 1 cm2 | 172 V/8.5 μA | Drive microdevice | [36] |
Natural | SF | Proteins | 2 × 2 cm2 | ∼50 V/∼3 μA | Intelligent vehicle | [64] |
Natural | Spider silk protein | Proteins | 6 × 8 cm2 | ≈2.6 kV/≈0.48 mA | Implantable anti-bacterial patch | [66] |
Natural | RP | Proteins | 6 cm (diameter) | ∼70 V/∼2.6 μA | Medical devices | [65] |
Natural | Cellulose | Polysaccharides | 2 × 2 cm2 | ~96 V/130 mW·m−2 | E-skin | [58] |
Natural | Cellulose | Polysaccharides | 1 × 1 cm2 | ~30 V/~90 μA | Power board | [61] |
Natural | Lignin | Polysaccharides | 6.5 × 6.5 cm2 | 1.04 V/cm2/3.96 nA/cm2 | Biomedical devices | [59] |
Natural | Lignin | Polysaccharides | 4.5 × 4.5 cm2 | 700V/95 μA | Energy harvesting | [38] |
Natural | Starch | Polysaccharides | 2 × 2 cm2 | 22 V | Biomedical devices | [60] |
Natural | Gelatin | Proteins | 3 × 3 cm2 | 500 V/4 μA | Wearable devices | [40] |
Natural | Paper | Polysaccharides | 6 × 3 cm2 | 180 V/20 μA | Health care | [96] |
Microbial Synthetic | PHB | — | 8 mm (diameter) | 25.6 V/cm−2/550.2 nA·cm−2 | Athletic monitoring | [72] |
Microbial Synthetic | BC | Polysaccharides | 6 × 6 cm2 | 29 V/0.6 μA | Wearable devices | [73] |
Microbial Synthetic | BC | Polysaccharides | 20 × 0.5 cm2 | 266.0 V/5.9 µA | Athletic monitoring | [39] |
Microbial Synthetic | γ-glycine | — | 3 × 3 cm2 | 81 V/121 μA | Energy harvesting | [74] |
Microbial Synthetic | Aspartic acid | — | 2.5 × 2.5 cm2 | 200 V/6 μA | Gas sensor | [75] |
Microbial Synthetic | CTS | Polysaccharides | 3 × 4 cm2 | 121 V/15 µA | Energy harvesting | [76] |
Microbial Synthetic | CTS | Polysaccharides | 1 × 1 cm2 | 106.04 ± 2.3 V | Energy harvesting | [77] |
Microbial Synthetic | SA | Polysaccharides | 5 × 5 cm2 | 33 V/150 nA | Energy harvesting | [78] |
Microbial Synthetic | SA | Polysaccharides | 5 × 5 cm2 | 53 V/18 nC | Wearable devices | [79] |
Microbial Synthetic | SA | Polysaccharides | 3 × 3 cm2 | 629 V/40.16 μA | Self-powered sensing array | [80] |
Microbial Synthetic | κ-Carrageenan-agar | Polysaccharides | 3 × 3 cm2 | 0.45 mA·m−2/0.15 mW·m−2 | Energy harvesting | [83] |
Chemically Synthesized | PLA | — | 8 cm (Diameter) | 395 V/28 μA | Drive microdevice | [85] |
Chemically Synthesized | PCL | — | 3×3 cm2 | 800 V/30 μA | Self-healing | [86] |
Chemically Synthesized | PCL | — | 16 cm2 | ~1.1V/~45 nA | Wearable devices | [87] |
Chemically Synthesized | CD | Polysaccharides | 2 × 2 cm2 | 152 V/1.2 μA | Energy harvesting | [88] |
Chemical Modification | CA | Polysaccharides | 20 × 3 × 0.08 mm3 | 103.2 V/7.93 mA·m−2 | Motion tracking and wind speed | [92] |
Chemical Modification | CA | Polysaccharides | 2 × 1 cm2 | ~400 V/~3 mA/m2 | Vibration sensor | [89] |
Chemical Modification | PU | — | 2 × 2 cm2 | 120 V/1.2 μA | Self-healing | [93] |
Chemical Modification | Cellulose paper | Polysaccharides | 4 × 4 cm2 | 126 V/11.4 μA | Energy harvesting | [94] |
Chemical Modification | Hydroxyethyl cellulose | Polysaccharides | 5 × 1 × 7 mm3 | 584 V/41 μA | Agricultural production | [95] |
Chemical Modification | Cellulose | Polysaccharides | 2 × 4 cm2 | 195 V/13.4 μA | Wearable devices | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Sun, E.; Zhao, Z.; Wu, T.; Meng, S.; Ma, Z.; Shoaib, M.; Ur Rehman, H.; Cao, X.; Wang, N. Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers 2024, 16, 1304. https://doi.org/10.3390/polym16101304
Zhu Q, Sun E, Zhao Z, Wu T, Meng S, Ma Z, Shoaib M, Ur Rehman H, Cao X, Wang N. Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers. 2024; 16(10):1304. https://doi.org/10.3390/polym16101304
Chicago/Turabian StyleZhu, Qiliang, Enqi Sun, Zequan Zhao, Tong Wu, Shuchang Meng, Zimeng Ma, Muhammad Shoaib, Hafeez Ur Rehman, Xia Cao, and Ning Wang. 2024. "Biopolymer Materials in Triboelectric Nanogenerators: A Review" Polymers 16, no. 10: 1304. https://doi.org/10.3390/polym16101304
APA StyleZhu, Q., Sun, E., Zhao, Z., Wu, T., Meng, S., Ma, Z., Shoaib, M., Ur Rehman, H., Cao, X., & Wang, N. (2024). Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers, 16(10), 1304. https://doi.org/10.3390/polym16101304