Elucidating the Role of Optical Activity of Polymers in Protein–Polymer Interactions
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Photopolymerization of B5AMA
2.3. Optical Activity
2.4. Gel Permeation Chromatography (GPC)
2.5. Fluorescence Spectroscopy
2.6. CD Spectroscopy
2.7. Thermal Denaturation
2.8. NMR Spectroscopy
2.8.1. Polymer Conversion Studies
2.8.2. Protein Interaction Studies
3. Results and Discussion
3.1. Fluorescence Spectroscopy
3.2. ANS Fluorescence Characterization
3.3. CD Spectroscopy
3.4. Thermal Denaturation
3.5. NMR Spectroscopy
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Ng, D.Y.W.; Kuan, S.L.; Weil, T. Protein–Polymer Therapeutics: A Macromolecular Perspective. Biomater. Sci. 2015, 3, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Imamura, R.; Mori, H. Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment. ACS Omega 2019, 4, 18234–18247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, F.; Tsao, C.; Liu, S.; Jain, P.; Sinclair, A.; Hung, H.-C.; Bai, T.; Wu, K.; Jiang, S. Zwitterionic Gel Encapsulation Promotes Protein Stability, Enhances Pharmacokinetics, and Reduces Immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051. [Google Scholar] [CrossRef] [PubMed]
- Sayre, T.C.; Lee, T.M.; King, N.P. Yeates TO. Protein Stabilization in a Highly Knotted Protein Polymer. Protein Eng. Des. Sel. 2011, 24, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, C.; Duce, C.; Wurm, F.R.; Maria, R.T. Effect of Polymer Hydrophilicity and Molar Mass on the Properties of the Protein in Protein-Polymer Conjugates: The Case of PPEylated Myoglobin. Biomacromolecules 2021, 10, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.S.; Ko, J.H.; Yang, Z.; Strouse, M.J.; Houk, K.N.; Maynard, H.D. Effect of Trehalose Polymer Regioisomers on Protein Stabilization. Polym. Chem. 2017, 8, 4781–4788. [Google Scholar] [CrossRef]
- Morgenstern, J.; Gil Alvaradejo, G.; Bluthardt, N.; Beloqui, A.; Delaittre, G.; Hubbuch, J. Impact of Polymer Bioconjugation on Protein Stability and Activity Investigated with Discrete Conjugates: Alternatives to PEGylation. Biomacromolecules 2018, 19, 4250–4262. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.; Mansfield, K.M.; Ko, J.H.; Sallam, S.; Wesdemiotis, C.; Maynard, H.D. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjug. Chem. 2017, 28, 836–845. [Google Scholar] [CrossRef]
- Qi, Y.; Chilkoti, A. Protein-Polymer Conjugation-Moving Beyond PEGylation. Curr. Opin. Chem. Biol. 2015, 28, 181–193. [Google Scholar] [CrossRef]
- Belén, L.H.; De Oliveira Rangel-Yagui, C.; Beltrán Lissabet, J.F.; Effer, B.; Lee-Estevez, M.; Pessoa, A.; Castillo, R.L.; Farías, J.G. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front. Pharmacol. 2019, 10, 1450. [Google Scholar] [CrossRef]
- Hamley, I.W. PEG-Peptide Conjugates. Biomacromolecules 2014, 15, 1543–1559. [Google Scholar] [CrossRef] [PubMed]
- Dozier, J.K.; Distefano, M.D. Site-specific Pegylation of Therapeutic Proteins. Intl. J. Mol. Sci. 2015, 16, 25831–25864. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.H.; Hahm, J.I. Protein-Polymer Interaction Characteristics Unique to Nanoscale Interfaces: A Perspective on Recent Insights. J. Phys. Chem. B 2021, 125, 6040–6057. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.L.; Deval, P.; Tsai, W.B. Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition. Polymers 2023, 15, 2731. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.J.; Peel, A.; Horne, R.; Chamberlain, J.; Xu, L.; Hansen, M.R.; Guymon, C.A. Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density. ACS Biomater. Sci. Eng. 2021, 7, 4494–4502. [Google Scholar] [CrossRef]
- Asadi, A.; Saboury, A.A.; Moosavi-Movahedi, A.A.; Divsalar, A.; Sarbolouki, M.N. Interaction of Bovine Serum Albumin with Some Novel PEG-Containing Diblock Copolymers. Int. J. Biol. Macromol. 2008, 43, 262–270. [Google Scholar] [CrossRef]
- Hsieh, S.R.; Reddy, P.M.; Chang, C.J.; Kumar, A.; Wu, W.C.; Lin, H.Y. Exploring the Behavior of Bovine Serum Albumin in Response to Changes in the Chemical Composition of Responsive Polymers: Experimental and Simulation Studies. Polymers 2016, 8, 238. [Google Scholar] [CrossRef]
- Castelletto, V.; Krysmann, M.; Kelarakis, A.; Jauregi, P. Complex Formation of Bovine Serum Albumin with a Poly(Ethylene Glycol) Lipid Conjugate. Biomacromolecules 2007, 8, 2244–2249. [Google Scholar] [CrossRef]
- Bekale, L.; Agudelo, D.; Tajmir-Riahi, H.A. The Role of Polymer Size and Hydrophobic End-Group In PEG–Protein Interaction. Colloids Surf. B Biointerfaces 2015, 130, 141–148. [Google Scholar] [CrossRef]
- Munasinghe, A.; Mathavan, A.; Mathavan, A.; Lin, P.; Colina, C.M. PEGylation within a Confined Hydrophobic Cavity of a Protein. Phys. Chem. Chem. Phys. 2019, 21, 25584–25596. [Google Scholar] [CrossRef] [PubMed]
- Acuña, S.M.; Bastías, J.M.; Toledo, P.G. Direct Measurement of Interaction Forces between Bovine Serum Albumin and Poly (Ethylene Oxide) In Water and Electrolyte Solutions. PLoS ONE 2017, 12, e0173910. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Raman Suri, C.; Sahoo, D.K. Molecular Mechanism of Polyethylene Glycol Mediated Stabilization of Protein. Biochem. Biophys. Res. Commun. 2010, 392, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Ragi, C.; Sedaghat-Herati, M.R.; Ouameur, A.A.; Tajmir-Riahi, H.A. The Effects of Poly(Ethylene Glycol) on the Solution Structure of Human Serum Albumin. Biopolymers 2005, 78, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, C.; Lin, W.; Hu, R.; Wang, Q.; Chen, H.; Li, L.; Chen, S.; Zheng, J. Binding Characteristics between Polyethylene Glycol (PEG) And Proteins in Aqueous Solution. J. Mater. Chem. B. 2014, 2, 2983–2992. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, C.; Hu, R.; Lin, W.; Wang, Q.; Zhao, J.; Bilinovich, S.M.; Leeper, T.C.; Li, L.; Cheung, H.M.; et al. Probing the Weak Interaction of Proteins with Neutral and Zwitterionic Antifouling Polymers. Acta Biomater. 2014, 10, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.J.; Jiang, S. Poly(zwitterionic)Protein Conjugates Offer Increased Stability Without Sacrificing Binding Affinity or Bioactivity. Nat. Chem. 2012, 4, 59–63. [Google Scholar] [CrossRef]
- Combita, D.; Nazeerm, N.; Bhayo, A.M.; Ahmeda, M. Biomimetic and Hydrophilic Vitamin B5 Analogous Methacrylamide Polymers Prevent Surface Fouling. ACS Appl. Polym. Mater. 2022, 4, 575–585. [Google Scholar] [CrossRef]
- Nazeer, N.; Rodriguez-Lecompte, J.C.; Ahmed, M. Bacterial-Specific Aggregation and Killing of Immunomodulatory Host Defense Peptides. Pharmaceuticals 2021, 14, 839. [Google Scholar] [CrossRef]
- Combita, D.; Pamunuwegedara, R.; Ahmed, M. Photoiniferter RAFT Polymerization of Optically Active Hydrophilic Vitamin B5 Analogous Methacrylamide. ACS Appl. Polym. Mater. 2023, 5, 2289–2297. [Google Scholar] [CrossRef]
- Kabir, A.; Ahmed, M. Elucidating the Role of Thermal Flexibility of Hydrogels in Protein Refolding. ACS Appl. Bio. Mater. 2020, 3, 4253–4262. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.D.; Arnold, A.E.; Gallant, S.T.; Grinton, C.; Locke, J.K.; Mills, N.D.; Snow, C.A.; Uhlig, T.B.; Vessey, C.N. The Polarity Sensitivity Factor of Some Fluorescent Probe Molecules Used for Studying Supramolecular Systems and Other Heterogeneous Environments. Can. J. Chem. 2018, 96, 629–635. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Ghiron, C.A. Role of Specific Solvation in the Fluorescence Sensitivity of 1,8-ANS to Water. J. Phys. Chem. 1989, 93, 7139–7143. [Google Scholar] [CrossRef]
- Hellmann, N.; Schneider, D. Hands On: Using Tryptophan Fluorescence Spectroscopy to Study Protein Structure BT—Protein Supersecondary Structures: Methods and Protocols; Kister, A.E., Ed.; Springer: New York, NY, USA, 2019; pp. 379–401. [Google Scholar]
- Krishnan, S.; Chi, E.Y.; Webb, J.N.; Chang, B.S.; Shan, D.; Goldenber, M.; Manning, M.C.; Randolph, T.W.; Carpenter, J.F. Aggregation of Granulocyte Colony Stimulating Factor under Physiological Conditions: Characterization and Thermodynamic Inhibition. Biochemistry 2002, 41, 6422–6431. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Protein Fluorescence. In Principles of Fluoresence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Semsarilar, M.; Abetz, V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. Macromol. Chem. Phys. 2021, 222, 2000311. [Google Scholar] [CrossRef]
- Fairbanks, B.D.; Gunatillake, P.A.; Meagher, L. Biomedical Applications of Polymers Derived by Reversible Addition—Fragmentation Chain-Transfer (RAFT). Adv. Drug Deliv. Rev. 2015, 91, 141–352. [Google Scholar] [CrossRef]
- Wu, J.; Lin, W.; Wang, Z.; Chen, S.; Chang, Y. Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir 2012, 28, 7436–7441. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, S. An New Avenue to Nonfouling Materials. Adv. Mater. 2008, 20, 335–338. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef]
Sample | Mn (g/mol) | Mw (g/mol) | PDI | Optical Activity |
---|---|---|---|---|
Poly (R-(+)-B5AMA)38 | 7942 | 8943 | 1.13 | +30.9° |
Poly (S-(+)-B5AMA)38 | 7777 | 8877 | 1.14 | −34.8° |
Poly (R/S-(+/−)-B5AMA)38 | 7754 | 8867 | 1.14 | −4.8° |
PEG | 10,000 | - | n/a | 0 |
Sample | Tm (°C) [Polymer:BSA Ratio] | |
---|---|---|
BSA | 71 | |
PEG/BSA | 71 [1] | 79 [8] |
Poly (R-(+)-B5AMA)38/BSA | 72 [1] | 80 [8] |
Poly (S-(−)-B5AMA)38/BSA | 73 [1] | 74 [8] |
Poly (R/S-(+/−)-B5AMA)38/BSA | 72 [1] | N/D a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan, S.; Doyle, C.; Ghimire, A.; Combita, D.; Rainey, J.K.; Wagner, B.D.; Ahmed, M. Elucidating the Role of Optical Activity of Polymers in Protein–Polymer Interactions. Polymers 2024, 16, 65. https://doi.org/10.3390/polym16010065
Jahan S, Doyle C, Ghimire A, Combita D, Rainey JK, Wagner BD, Ahmed M. Elucidating the Role of Optical Activity of Polymers in Protein–Polymer Interactions. Polymers. 2024; 16(1):65. https://doi.org/10.3390/polym16010065
Chicago/Turabian StyleJahan, Samin, Catherine Doyle, Anupama Ghimire, Diego Combita, Jan K. Rainey, Brian D. Wagner, and Marya Ahmed. 2024. "Elucidating the Role of Optical Activity of Polymers in Protein–Polymer Interactions" Polymers 16, no. 1: 65. https://doi.org/10.3390/polym16010065
APA StyleJahan, S., Doyle, C., Ghimire, A., Combita, D., Rainey, J. K., Wagner, B. D., & Ahmed, M. (2024). Elucidating the Role of Optical Activity of Polymers in Protein–Polymer Interactions. Polymers, 16(1), 65. https://doi.org/10.3390/polym16010065