Influence of Epilobium parviflorum Herbal Extract on Physicochemical Properties of Thermoplastic Starch Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hoary Willowherb Tea Preparation
2.3. TPS Film Preparation
2.4. Characterization of TPS Films
2.4.1. Mechanical Tests
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. UV-Vis Spectrophotometric Analysis of TPS Films
2.4.4. Water Vapor Transmission Rate (WVTR)
2.4.5. Determination of Swelling Degrees
2.4.6. Contact Angle Measurements
2.4.7. Determination of Total Phenolic Content (TPC) and the Compounds’ Migration into Tested Liquid
Determination of TPC in Epilobium parviflorum Tea
Determination of TPC Migrated from TPS Films
2.4.8. Determination of Antioxidative Properties of Willowherb Tea and TPS Films
2.4.9. Color Determination of TPS Films
2.4.10. Scanning Electron Microscopy
3. Results and Discussion
3.1. Mechanical Test Results
3.2. FTIR Spectroscopy
3.3. UV-Vis Spectrophotometric Analysis of TPS Films
3.4. Behavior in Water, WVTR and Surface Contact Angle of TPS Films
3.5. Phenolic Compounds’ Migration from the Films
3.6. Antioxidative Properties
3.7. Color of TPS Films
3.8. Surface Morphology Analyzed with Scanning Electron Microscopy (SEM)
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, I.; Chow, W.S. Antimicrobial Poly(Lactic Acid)/Cellulose Bionanocomposite for Food Packaging Application: A Review. Food Pack. Shelf Life 2018, 17, 150–161. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(Lactic Acid) (PLA) and Polyhydroxyalkanoates (PHAs), Green Alternatives to Petroleum-Based Plastics: A Review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef] [PubMed]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current Status of Biobased and Biodegradable Food Packaging Materials: Impact on Food Quality and Effect of Innovative Processing Technologies. Comp. Rev. Food Sci. Food Safe 2021, 20, 1333–1380. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M. Polymer Nanocomposites as a New Trend for Packaging Applications. Polym. Plast. Technol. Eng. 2013, 52, 635–660. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; Melo, N.R.D.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Valdés, A.; Mellinas, A.C.; Ramos, M.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Use of Herbs, Spices and Their Bioactive Compounds in Active Food Packaging. RSC Adv. 2015, 5, 40324–40335. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Kiss, A.K.; Bazylko, A.; Filipek, A.; Granica, S.; Jaszewska, E.; Kiarszys, U.; Kośmider, A.; Piwowarski, J. Oenothein B’s Contribution to the Anti-Inflammatory and Antioxidant Activity of Epilobium sp. Phytomedicine 2011, 18, 557–560. [Google Scholar] [CrossRef]
- Mohammadi Bazargani, M.; Falahati-Anbaran, M.; Rohloff, J. Comparative Analyses of Phytochemical Variation within and Between Congeneric Species of Willow Herb, Epilobium hirsutum and E. parviflorum: Contribution of Environmental Factors. Front. Plant Sci. 2021, 11, 595190. [Google Scholar] [CrossRef]
- Remmel, I.; Vares, L.; Toom, L.; Matto, V.; Raal, A. Phenolic Compounds in Five Epilobium Species Collected from Estonia. Nat. Prod. Commun. 2012, 7, 1323–1324. [Google Scholar] [CrossRef]
- Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Composition and Antimicrobial Activity of the Essential Oil, Distilled Aromatic Water and Herbal Infusion from Epilobium parviflorum Schreb. Ind. Crops Prod. 2017, 100, 95–105. [Google Scholar] [CrossRef]
- Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, Pharmacology and Traditional Uses of Different Epilobium Species (Onagraceae): A Review. J. Ethnopharm. 2014, 156, 316–346. [Google Scholar] [CrossRef] [PubMed]
- Kavaz Yüksel, A.; Dikici, E.; Yüksel, M.; Işık, M.; Tozoğlu, F.; Köksal, E. Phytochemical, Phenolic Profile, Antioxidant, Anticholinergic and Antibacterial Properties of Epilobium angustifolium (Onagraceae). Food Meas. 2021, 15, 4858–4867. [Google Scholar] [CrossRef]
- Nowak, A.; Zagórska-Dziok, M.; Ossowicz-Rupniewska, P.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Prowans, P.; Czapla, N.; Bargiel, P.; et al. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021, 26, 3456. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Ossowicz-Rupniewska, P.; Rakoczy, R.; Konopacki, M.; Perużyńska, M.; Droździk, M.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Wenelska, K.; et al. Bacterial Cellulose Membrane Containing Epilobium angustifolium L. Extract as a Promising Material for the Topical Delivery of Antioxidants to the Skin. Int. J. Mol. Sci. 2021, 22, 6269. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zagórska-Dziok, M.; Perużyńska, M.; Cybulska, K.; Kucharska, E.; Ossowicz-Rupniewska, P.; Piotrowska, K.; Duchnik, W.; Kucharski, Ł.; Sulikowski, T.; et al. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front. Pharmacol. 2022, 13, 896706. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, D.; Szymanowska, U.; Skrzypek, T.; Bartkowiak, A.; Materska, M.; Łupina, K. Release of Fireweed Extract (Epilobium angustifolium L.) from Corn Starch- and Methylcellulose-Based Films—A Comparative Study. Food Hydrocoll. 2021, 120, 106887. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Szymanowska, U.; Skrzypek, T.; Basiura-Cembala, M.; Bartkowiak, A.; Łupina, K. A Comprehensive Study on Gelatin- and Whey Protein Isolate-Based Edible Films as Carriers of Fireweed (Epilobium angustifolium L.) Extract. Food Bioprocess. Technol. 2022, 15, 2547–2561. [Google Scholar] [CrossRef]
- Marczyński, Z.; Zgoda, M.M.; Jambor, J. Application of silicified microcrystalline cellulose (Prosolv) as a polymer carrier of Epilobium parviflorum Schreb. extract in oral solid drug form. Polim. Med. 2007, 37, 21–32. [Google Scholar]
- Egil, A.C.; Ozdemir, B.; Gok, B.; Kecel-Gunduz, S.; Budama-Kilinc, Y. Synthesis, Characterization, Biological Activities and Molecular Docking of Epilobium parviflorum Aqueous Extract Loaded Chitosan Nanoparticles. Int. J. Biol. Macromol. 2020, 161, 947–957. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Markowska-Szczupak, A.; Spychaj, T. Carboxymethyl Starch/Medium Chain Fatty Acid Compositions: Rheological Changes during Storage and Selected Film Properties. Starch/Stärke 2020, 72, 1900240. [Google Scholar] [CrossRef]
- ISO 2528:2017; Sheet Materials—Determination of Water Vapour Transmission Rate (WVTR)—Gravimetric (Dish). International Standard Organization (ISO): Vernier, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/23/72382.html (accessed on 12 November 2023).
- Zdanowicz, M.; Jędrzejewski, R.; Pilawka, R. Deep Eutectic Solvents as Simultaneous Plasticizing and Crosslinking Agents for Starch. Int. J. Biol. Macromol. 2019, 129, 1040–1046. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch. Polymers 2015, 7, 1106–1124. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Díaz-Cruz, C.A.; Castro-Rosas, J.; Jiménez-Regalado, E.J.; Velazquez, G.; Gutierrez, M.C.; Aguirre-Loredo, R.Y. Development of Antimicrobial Biodegradable Films Based on Corn Starch with Aqueous Extract of Hibiscus sabdariffa L. Starch/Stärke 2021, 73, 2000096. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible Cassava Starch Films Carrying Rosemary Antioxidant Extracts for Potential Use as Active Food Packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Díaz-Galindo, E.P.; Nesic, A.; Cabrera-Barjas, G.; Mardones, C.; Von Baer, D.; Bautista-Baños, S.; Dublan Garcia, O. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape Cane Extract. Molecules 2020, 25, 1306. [Google Scholar] [CrossRef]
- Kim, S.; Baek, S.-K.; Go, E.; Song, K. Application of Adzuki Bean Starch in Antioxidant Films Containing Cocoa Nibs Extract. Polymers 2018, 10, 1210. [Google Scholar] [CrossRef]
- Nouri, L.; Mohammadi Nafchi, A. Antibacterial, Mechanical, and Barrier Properties of Sago Starch Film Incorporated with Betel Leaves Extract. Int. J. Biol. Macromol. 2014, 66, 254–259. [Google Scholar] [CrossRef]
- Feng, M.; Yu, L.; Zhu, P.; Zhou, X.; Liu, H.; Yang, Y.; Zhou, J.; Gao, C.; Bao, X.; Chen, P. Development and Preparation of Active Starch Films Carrying Tea Polyphenol. Carbohydr. Polym. 2018, 196, 162–167. [Google Scholar] [CrossRef]
- Torres Vargas, O.L.; Galeano Loaiza, Y.V.; González, M.L. Effect of Incorporating Extracts from Natural Pigments in Alginate/Starch Films. J. Mat. Res. Technol. 2021, 13, 2239–2250. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods 2020, 9, 1657. [Google Scholar] [CrossRef] [PubMed]
- Todhanakasem, T.; Jaiprayat, C.; Sroysuwan, T.; Suksermsakul, S.; Suwapanich, R.; Maleenont, K.K.; Koombhongse, P.; Young, B.M. Active Thermoplastic Starch Film with Watermelon Rind Extract for Future Biodegradable Food Packaging. Polymers 2022, 14, 3232. [Google Scholar] [CrossRef] [PubMed]
- Syed Draman, S.F.; Daik, R.; Abdul Latif, F.; El-Sheikh, S.M. Characterization and Thermal Decomposition Kinetics of Kapok (Ceiba pentandra L.)–Based Cellulose. BioRes. 2013, 9, 16. [Google Scholar] [CrossRef]
- Grylewicz, A.; Spychaj, T.; Zdanowicz, M. Thermoplastic Starch/Wood Biocomposites Processed with Deep Eutectic Solvents. Comp. Part A Appl. Sci. Manufact. 2019, 121, 517–524. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and Plasticizing Effect of Yerba Mate Extract on Cassava Starch Edible Films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Luis Aleixandre-Tudo, J.; Du Toit, W. The Role of UV-Visible Spectroscopy for Phenolic Compounds Quantification in Winemaking. In Frontiers and New Trends in the Science of Fermented Food and Beverages; Lidia Solís-Oviedo, R., De La Cruz Pech-Canul, Á., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-78985-495-4. [Google Scholar]
- Rajapaksha, S.W.; Shimizu, N. Development and Characterization of Functional Starch-Based Films Incorporating Free or Microencapsulated Spent Black Tea Extract. Molecules 2021, 26, 3898. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Johansson, C. Impact of Additives on Mechanical and Barrier Properties of Starch-based Films Plasticized with Deep Eutectic Solvents. Starch/Stärke 2017, 69, 1700030. [Google Scholar] [CrossRef]
- Perazzo, K.K.N.C.L.; Conceição, A.C.D.V.; Santos, J.C.P.D.; Assis, D.D.J.; Souza, C.O.; Druzian, J.I. Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. PLoS ONE 2014, 9, e105199. [Google Scholar] [CrossRef]
- Kumar, R.; Ghoshal, G.; Goyal, M. Effect of Basil Leaves Extract on Modified Moth Bean Starch Active Film for Eggplant Surface Coating. LWT 2021, 145, 111380. [Google Scholar] [CrossRef]
- Hevesi, B.T.; Houghton, P.J.; Habtemariam, S.; Kéry, Á. Antioxidant and Antiinflammatory Effect of Epilobium parviflorum Schreb. Phytother. Res. 2009, 23, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Yun, D.; Cai, H.; Liu, Y.; Xiao, L.; Song, J.; Liu, J. Development of Active and Intelligent Films Based on Cassava Starch and Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Anthocyanins. RSC Adv. 2019, 9, 30905–30916. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active Properties of Edible Marine Polysaccharide-Based Coatings Containing Larrea Nitida Polyphenols Enriched Extract. Food Hydrocoll. 2020, 102, 105595. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.F.A.; Silva, J.M.; Braz, M.; Almeida, A.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Biobased Ternary Films of Thermoplastic Starch, Bacterial Nanocellulose and Gallic Acid for Active Food Packaging. Food Hydrocoll. 2023, 144, 108934. [Google Scholar] [CrossRef]
- Garcia-Hernandez, A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Impact of Ghosts on the Mechanical, Optical, and Barrier Properties of Corn Starch Films. Starch 2017, 69, 1600308. [Google Scholar] [CrossRef]
Sample | Mechanical Properties | ||
---|---|---|---|
TS [MPa] | EB [%] | YM [MPa] | |
TPS | 6.0 (±0.87) | 35 (±8.4) | 225 (±12.0) |
TPS E1 | 6.3 (±0.43) | 70 (±16.0) | 230 (±6.5) |
TPS E2 | 8.7 (±1.00) | 59 (±18.0) | 285 (±11.2) |
Sample | Behavior in Moisture and Water | ||||
---|---|---|---|---|---|
WVTR Slope | WVTRRH75% [g/m2·24 h] | Swelling Degree [%] | Contact Angle [°] | Moisture Content [%] | |
TPS | 0.0692 | 524 (±0.4) | 438 (±18.2) | 36.9 (±5.51) | 10.2 (±1.29) |
TPS E1 | 0.0567 | 430 (±27.4) | 355 (±17.6) | 46.0 (±2.82) | 8.8 (±0.38) |
TPS E2 | 0.0561 | 425 (±15.2) | 388 (±20.5) | 50.5 (±5.68) | 9.9 (±0.93) |
Sample Acronym | L* | a* | b* | c* | Transparency T700 nm [%] |
---|---|---|---|---|---|
TPS | 94.2 (±0.09) | 0.08 (±0.00) | 0.28 (±0.08) | 0.28 | 73 (±0.71) |
TPS E1 | 93.4 (±0.21) | −2.0 (±0.06) | 16.8 (±0.92) | 16.9 | 64 (±1.41) |
TPS E2 | 88.7 (±0.29) | −2.1 (±0.03) | 29.6 (±0.79) | 31.7 | 65 (±1.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, M. Influence of Epilobium parviflorum Herbal Extract on Physicochemical Properties of Thermoplastic Starch Films. Polymers 2024, 16, 64. https://doi.org/10.3390/polym16010064
Zdanowicz M. Influence of Epilobium parviflorum Herbal Extract on Physicochemical Properties of Thermoplastic Starch Films. Polymers. 2024; 16(1):64. https://doi.org/10.3390/polym16010064
Chicago/Turabian StyleZdanowicz, Magdalena. 2024. "Influence of Epilobium parviflorum Herbal Extract on Physicochemical Properties of Thermoplastic Starch Films" Polymers 16, no. 1: 64. https://doi.org/10.3390/polym16010064
APA StyleZdanowicz, M. (2024). Influence of Epilobium parviflorum Herbal Extract on Physicochemical Properties of Thermoplastic Starch Films. Polymers, 16(1), 64. https://doi.org/10.3390/polym16010064