Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review
Abstract
:1. Introduction
2. Properties of Kevlar Fibres
2.1. Mechanical Properties of Kevlar Fibres
2.2. Thermal Properties of Kevlar Fibres
2.3. Impact Properties of Kevlar Fibres
2.4. Influence of Water Absorption on Kevlar Fibres
2.5. Effects of Ultraviolet (UV) Light on Kevlar Fibres
2.6. Commercial Forms for Kevlar Fibres and Products
3. Properties of Carbon Fibres
3.1. Mechanical Properties of Carbon Fibres
3.2. Thermal Properties of Carbon Fibres
3.3. Electrical Conductivity of Carbon Fibres
3.4. Carbon Fibres and Product Forms
4. Kevlar–Carbon Hybrid Fabrics
4.1. Plain Weave Hybrid Kevlar–Carbon Fabrics
4.2. Twill Weave Hybrid Kevlar-Carbon Fabrics
4.3. Braided Hybrid Kevlar-Carbon Fabrics
5. Mechanical Characteristics of Kevlar–Carbon Hybrid Composite Materials
6. Structural Applications of Composite Materials Reinforced with Carbon and Kevlar Fibres in Civil Engineering
6.1. Current Trends in the Design of the Load-Bearing Structural Beams Strengthened with Composite Materials
6.2. Concrete Beams Strengthened with Carbon and Kevlar Composite Materials
6.3. Wooden Beams Strengthened with Carbon and Kevlar Composite Materials
7. Conclusions and Outlook
- Kevlar–carbon hybrid composite materials combine the advantages of the individual components and, as a result, the resultant composite materials are characterized by high strength, high stiffness, good flexibility, high impact strength and a low coefficient of thermal expansion.
- Engineers have to take into account the environmental conditions when designing structural elements strengthened with Kevlar fibres because these are sensitive to the effects of the thermal changes and water absorption. It was shown that the tensile strength and Young’s modulus of Kevlar fibres at saturation with water can be usually up to 37% and 48% lower, respectively, than the values corresponding to dry fibres. On the other hand, Kevlar29 is less sensitive to water absorption.
- Reinforcing external layers of composite materials with Kevlar fabric or Kevlar–carbon fabric, which are hit by the impactor in impact tests, has led to an increase in absorbed strain energy.
- The results of the low velocity impact tests performed using composite materials reinforced with carbon and/or with Kevlar fibres have shown that for multilayer hybridization (carbon-reinforced layers alternating with Kevlar-reinforced layers), the absorbed strain energy can be 29.17% or 10.71% higher than the values recorded for composites reinforced either with only carbon fibres or with Kevlar fibres, respectively.
- Composite materials reinforced with carbon fibres, Kevlar fibres or hybrid Kevlar–carbon fabrics are increasingly used to strengthen structural elements and these have begun to play an important role in the structural behaviour of concrete and wooden beams.
- Increasing the number of layers of composite materials used to strengthen concrete beams has a positive influence on the load-bearing capacity of the beam, on the impact strain energy absorbed and last but not least, on modes of failure because the number of cracks decrease.
- Strengthening of wooden beams by bonding CFRP to the lower surface of the beam led to an increase in maximum flexural force of up to 48.3% with respect to the beam without strengthening. Absorbed strain energy also increased up to 182.2% due to the strengthening of the wooden beam with two CFRP layers on the lower surface of the beam.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhas, J.E.R.; Arun, M. A review on development of hybrid composites for aerospace applications. Mater. Today Proc. 2022, 64, 267–273. [Google Scholar] [CrossRef]
- Reddy, G.V.; Naidu, S.V.; Rani, T.S. Impact Properties of Kapok Based Unsaturated Polyester Hybrid Composites. J. Reinf. Plast. Compos. 2008, 27, 1789–1804. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Part A-Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Saba, N.; Tahir, P.M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Zweben, C. Tensile-strength of hybrid composites. J. Mater. Sci. 1977, 12, 1325–1337. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Naveen, J.; Satheeshkumar, S. Hybrid fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 454–471. [Google Scholar] [CrossRef]
- Ravishankar, B.; Nayak, S.K.; Kader, M.A. Hybrid composites for automotive applications—A review. J. Reinf. Plast. Compos. 2019, 38, 835–845. [Google Scholar] [CrossRef]
- Qu, Z.T.; Gao, S.S.; Zhang, Y.J.; Jia, J.H. Analysis of the Mechanical and Preforming Behaviors of Carbon-Kevlar Hybrid Woven Reinforcement. Polymers 2021, 13, 4088. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Athiyah, S.F.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- Nunna, S.; Chandra, P.R.; Shrivastava, S.; Jalan, A.K. A review on mechanical behavior of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 2012, 31, 759–769. [Google Scholar] [CrossRef]
- Priyanka, P.; Dixit, A.; Mali, H.S. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review. Mech. Compos. Mater. 2017, 53, 685–704. [Google Scholar] [CrossRef]
- Singh, T.J.; Samanta, S. Characterization of Kevlar Fiber and Its Composites: A Review. Mater. Today-Proc. 2015, 2, 1381–1387. [Google Scholar] [CrossRef]
- Priyanka, P.; Dixit, A.; Mali, H.S. High strength Kevlar fiber reinforced advanced textile composites. Iran. Polym. J. 2019, 28, 621–638. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, D.S.; Singh, I.; Sharma, A. Behavior of Kevlar/Epoxy Composite Plates Under Ballistic Impact. J. Reinf. Plast. Compos. 2010, 29, 2048–2064. [Google Scholar] [CrossRef]
- Minoshima, K.; Tsuru, K.; Komai, K. Influence of vacuum and water on tensile fracture behaviour of aramid fibres. In Damage and Fracture Mechanics: Computer Aided Assessment and Control; WIT Press: Southampton, UK, 1998; pp. 595–604. [Google Scholar]
- Kevlar Aramid Fiber Technical Guide. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf (accessed on 20 October 2023).
- Simil, T.S.; Midhun, A.J.; James, V.J.; Lakshmidasan, S.K.; Usha, K.M.; Rakesh, S. Study on Mechanical Properties of Carbon-Carbon Composites Developed for Aerospace Applications. In Proceedings of the National Conference on Carbon Materials (CCM)—Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology (Carbon Materials), Mumbai, India, 1–3 November 2012; pp. 163–167. [Google Scholar]
- Zhang, Z.H.; Yang, W.M.; Cheng, L.S.; Cao, W.Y.; Sain, M.N.; Tan, J.; Wang, A.; Jia, H.B. Carbon Fibers with High Electrical Conductivity: Laser Irradiation of Mesophase Pitch Filaments Obtains High Graphitization Degree. ACS Sustain. Chem. Eng. 2020, 8, 17629–17638. [Google Scholar] [CrossRef]
- Svitak, M.; Veith, P.; Barcik, S. Research and application of carbon fibers for timbering wooden beam. In Proceedings of the 4th International Science Conference Woodworking Techniques, Zagreb, Croatia, 12–13 December 2011; pp. 300–305. [Google Scholar]
- Stanescu, M.M.; Bolcu, D.; Cluca, I.; Dinita, A. Non Uniformity of Composite Materials Reinforced with Carbon and Carbon-Kevlar Fibers Fabric. Mater. Plast. 2014, 51, 355–358. [Google Scholar]
- Shokrieh, M.M.; Daneshvar, A.; Akbari, S.; Chitsazzadeh, M. The use of carbon nanofibers for thermal residual stress reduction in carbon fiber/epoxy laminated composites. Carbon 2013, 59, 255–263. [Google Scholar] [CrossRef]
- Hadar, A.; Baciu, F.; Voicu, A.D.; Vlasceanu, D.; Tudose, D.I.; Adetu, C. Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads. Polymers 2022, 14, 3213. [Google Scholar] [CrossRef]
- Cotet, A.; Bastiurea, M.; Andrei, G.; Cantaragiu, A.; Hadar, A. Mechanical and Thermal Behavior of Carbon Nanotubes/Vinyl Ester Nanocomposites. Mater. Plast. 2019, 56, 735–743. [Google Scholar] [CrossRef]
- Cotet, A.; Bastiurea, M.; Andrei, G.; Cantaragiu, A.; Hadar, A. Dry Sliding Friction Analysis and Wear Behavior of Carbon Nanotubes/Vinylester Nanocomposites, Using Pin-on-Disc Test. Rev. Chim. 2019, 70, 3592–3596. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Yogesha, B. Study on Mechanical Properties of Natural—Glass Fibre Reinforced Polymer Hybrid Composites: A Review. Mater. Today-Proc. 2015, 2, 2959–2967. [Google Scholar] [CrossRef]
- Xu, D.H.; Cerbu, C.; Wang, H.W.; Rosca, I.C. Analysis of the hybrid composite materials reinforced with natural fibers considering digital image correlation (DIC) measurements. Mech. Mater. 2019, 135, 46–56. [Google Scholar] [CrossRef]
- Pincheira, G.; Canales, C.; Medina, C.; Fernandez, E.; Flores, P. Influence of aramid fibers on the mechanical behavior of a hybrid carbon-aramid-reinforced epoxy composite. Proc. Inst. Mech. Eng. Part L-J. Mater.-Des. Appl. 2018, 232, 58–66. [Google Scholar] [CrossRef]
- Wagih, A.; Sebaey, T.A.; Yudhanto, A.; Lubineau, G. Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites. Compos. Struct. 2020, 239, 1–9. [Google Scholar] [CrossRef]
- Priyanka, P.; Mali, H.S.; Dixit, A. Dynamic mechanical behaviour of kevlar and carbon-kevlar hybrid fibre reinforced polymer composites. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2021, 235, 4181–4193. [Google Scholar] [CrossRef]
- Ramana, M.V.; Ramprasad, S. Experimental Investigation on Jute/Carbon Fibre reinforced Epoxy based Hybrid Composites. Mater. Today-Proc. 2017, 4, 8654–8664. [Google Scholar] [CrossRef]
- Peebles, L.H. Carbon fibres: Structure and mechanical properties. Int. Mater. Rev. 1988, 39, 75–92. [Google Scholar] [CrossRef]
- Emmerich, F.G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers. Carbon 2014, 79, 274–293. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Goodhew, P.J.; Clarke, A.J.; Bailey, J.E. A Review of the Fabrication and Properties of Carbon Fibres. Mater. Sci. Eng. 1975, 17, 3–30. [Google Scholar] [CrossRef]
- Tanner, D.; Fitzgerald, J.A.; Phillips, B.R. The Kevlar story—An advanced materials case-study. Angew. Chem.-Int. Ed. Engl. 1989, 28, 649–654. [Google Scholar] [CrossRef]
- Vinay, H.B.; Govindaraju, H.K.; Prashanth, B. A Review on Investigation on the Influence of Reinforcement on Mechanical Properties of Hybrid Composites. Int. J. Pure Appl. Sci. Technol. 2014, 24, 39–48. [Google Scholar]
- Alann, A.; Robert, K. Strengthening of timber beams using FRP, with emphasis on compression strength: A state of the art review. In Proceedings of the APFIS2009, Seoul, Korea, 9–11 December 2009. [Google Scholar]
- Saad, K.; Lengyel, A. Strengthening Timber Structural Members with CFRP and GFRP: A State-of-the-Art Review. Polymers 2022, 14, 2381. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198. [Google Scholar] [CrossRef]
- Yuhazri, M.Y.; Zulfikar, A.J.; Ginting, A. Fiber Reinforced Polymer Composite as a Strengthening of Concrete Structures: A Review. In Proceedings of the 2nd International Conference on Industrial Manufacturing Engineering, Medan, Indonesia, 3–4 September 2020. [Google Scholar]
- Pawlak, A.M.; Górny, T.; Dopierała, Ł.; Paczos, P. The Use of CFRP for Structural Reinforcement—Literature Review. Metals 2022, 12, 1470. [Google Scholar] [CrossRef]
- Jassal, M.; Ghosh, S. Aramid fibres—An overview. Indian J. Fibre Text. Res. 2002, 27, 290–306. [Google Scholar]
- Manigandan, S.; Nandita, P.G.; Teja, D.K.; Gunasekar, P.; Nithya, S.; Devipriya, J. Numerical investigation of low velocity out of plane impact behavior of Kevlar composites. Mater. Today Proc. 2019, 16, 994–998. [Google Scholar] [CrossRef]
- Potluri, R.; Paul, K.J.; Babu, B.M. Effect of Silicon Carbide Particles Embedmenton the properties of Kevlar Fiber ReinforcedPolymer Composites. Mater. Today-Proc. 2018, 5, 6098–6108. [Google Scholar] [CrossRef]
- Li, X.G.; Huang, M.R. Thermal degradation of Kevlar fiber by high-resolution thermogravimetry. J. Appl. Polym. Sci. 1999, 71, 565–571. [Google Scholar] [CrossRef]
- Kunugi, T.; Watanabe, H.; Hashimoto, M. Dynamic mechanical-properties of poly(P-PHENYLENETEREPHTHALAMIDE) fiber. J. Appl. Polym. Sci. 1979, 24, 1039–1051. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yu, W.D. Evaluating the thermal stability of high performance fibers by TGA. J. Appl. Polym. Sci. 2006, 99, 937–944. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Cohn, D.; Marom, G. Thermal-expansion of Kevlar fibres and composites. J. Mater. Sci. Lett. 1985, 4, 1233–1236. [Google Scholar] [CrossRef]
- Dixit, P.; Ghosh, A.; Majumdar, A. Hybrid approach for augmenting the impact resistance of p-aramid fabrics: Grafting of ZnO nanorods and impregnation of shear thickening fluid. J. Mater. Sci. 2019, 54, 13106–13117. [Google Scholar] [CrossRef]
- Ertekin, M. Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 153–167. [Google Scholar]
- Lertwassana, W.; Parnklang, T.; Mora, P.; Jubsilp, C.; Rimdusit, S. High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials. Compos. Part B Eng. 2019, 177, 107280. [Google Scholar] [CrossRef]
- Haro, E.E.; Odeshi, A.G.; Szpunar, J.A. The Effects of Micro- and Nano-Fillers’ Additions on the Dynamic Impact Response of Hybrid Composite Armors Made of HDPE Reinforced with Kevlar Short Fibers. Polym. Plast. Technol. Eng. 2018, 57, 609–624. [Google Scholar] [CrossRef]
- Ou, R.X.; Zhao, H.; Sui, S.J.; Song, Y.M.; Wang, Q.W. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1272–1278. [Google Scholar] [CrossRef]
- Dupont. Available online: www.dupont.com/Kevlar/en_US/products/aramid_pulp.html (accessed on 20 October 2023).
- Tye, L. The tensile behavior of high-strength carbon fibers. Microsc. Microanal. 2016, 22, 841–844. [Google Scholar]
- Bhatt, P.; Goel, A. Carbon Fibers: Production, Properties and Potential Use. Mater. Sci. Res. India 2017, 14, 52–57. [Google Scholar] [CrossRef]
- Frank, E.; Hermanutz, F.; Buchmeiser, M.R. Carbon Fibers: Precursors, Manufacturing, and Properties. Macromol. Mater. Eng. 2012, 297, 493–501. [Google Scholar] [CrossRef]
- Wielage, B.; Richter, D.; Mucha, H.; Lampke, T. Influence of Fabric Parameters on Microstructure, Mechanical Properties and Failure Mechanisms in Carbon-Fibre Reinforced Composites. J. Mater. Sci. Technol. 2008, 24, 953–959. [Google Scholar]
- Huang, X.S. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Alam, P.; Mamalis, D.; Robert, C.; Floreani, C.; Brádaigh, C.M.O. The fatigue of carbon fibre reinforced plastics—A review. Compos. Part B Eng. 2019, 166, 555–579. [Google Scholar] [CrossRef]
- Krucinska, I.; Stypka, T. Direct measurement of the axial Poisson ratio of single carbon-fibers. Compos. Sci. Technol. 1991, 41, 1–12. [Google Scholar] [CrossRef]
- Dieter, L.; Herwig, P.; Oskar, P.; Martin, M.; Manfred, B.; Christian, R. Poisson Ratio Carbon Fibers at the Microscopic and the Nanoscopic Scale. In Proceedings of the Carbon Conference, Providence, RI, USA, 11–16 July 2004. [Google Scholar]
- Chung, D.D.L. Carbon Fiber Composites; Butterworth-Heinemann: Oxford, UK, 1994; pp. 65–78. [Google Scholar]
- Zollner, M.; Lieberwirth, H.; Kempkes, P.; Fendel, A. Thermal resistance of carbon fibres/carbon fibre reinforced polymers under stationary atmospheric conditions and varying exposure times. Waste Manag. 2019, 85, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Lu, Y.; Zhao, W.; Qin, X. The effect of heat treatment temperature and time on the microstructure and mechanical properties of PAN-based carbon fibers. J. Mater. Sci. 2014, 49, 794–804. [Google Scholar] [CrossRef]
- Pradere, C.; Sauder, C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2500 K). Carbon 2008, 46, 1874–1884. [Google Scholar] [CrossRef]
- Pradere, C.; Batsale, J.C.; Goyheneche, J.M.; Pailler, R.; Delhaire, S. Thermal properties of carbon fibers at very high temperature. Carbon 2009, 47, 737–743. [Google Scholar] [CrossRef]
- Gupta, A.; Dhakate, S.R.; Pal, P.; Dey, A.; Iyer, P.K.; Singh, D.K. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diam. Relat. Mater. 2017, 78, 31–38. [Google Scholar] [CrossRef]
- Sun, Z.F.; Geng, D.X.; Meng, F.X.; Zhou, L.; Jiang, R.G.; Zhang, D.Y. High performance drilling of T800 CFRP composites by combining ultrasonic vibration and optimized drill structure. Ultrasonics 2023, 134, 107097. [Google Scholar] [CrossRef]
- Ying, E.Z.; Zhou, Z.H.; Geng, D.X.; Shao, Z.; Sun, Z.; Liu, Y.; Liu, L.; Jiang, X.; Zhang, D. High efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions. J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.) 2019, 1775–1862. Available online: https://jzus.zju.edu.cn/iparticle.php?doi=10.1631/jzus.A2300227 (accessed on 20 October 2023).
- Easycomposites. Available online: https://www.easycomposites.eu/188g-plain-weave-carbon-kevlar (accessed on 20 October 2023).
- Hp-Textiles. Available online: https://shop.hp-textiles.com/shop/en/165g-m-Hybrid-Fabric-Plain--Carbon-Kevlar-HP-P167AC-1653.html (accessed on 20 October 2023).
- Rockwest Composites. Available online: https://www.rockwestcomposites.com/br-ca-group (accessed on 20 October 2023).
- Cerbu, C.; Ursache, S.; Botis, M.F.; Hadar, A. Simulation of the Hybrid Carbon-Aramid Composite Materials Based on Mechanical Characterization by Digital Image Correlation Method. Polymers 2021, 13, 4184. [Google Scholar] [CrossRef] [PubMed]
- Dorey, G.; Sidey, G.R.; Hutchings, J. Impact properties of carbon fibre/Kevlar 49 fibre hybrid composites. Composites 1978, 9, 25–32. [Google Scholar] [CrossRef]
- Ursache, S.; Cerbu, C.; Hadar, A.; Dumbrava, F. Aspects regarding the mechanical characteristics of the carbon-Kevlar composite materials. In Proceedings of the the 9th International Conference on Advanced Composite Materials Engineering—COMAT 2022, Brasov, Romania, 17–18 October 2022. [Google Scholar]
- Haidzir, H.; Majid, D.L.; Rafie, A.S.M.; Harmin, M.Y. Modal Properties of Hybrid Carbon/Kevlar Composite Thin Plate and Hollow Wing Model. Appl. Mech. Mater. 2013, 446–447, 597–601. [Google Scholar] [CrossRef]
- Karthik, K.; Rajamani, D.; Manimaran, A.; Udayaprakash, J. Evaluation of tensile properties on Glass/Carbon/Kevlar fiber reinforced hybrid composites. Mater. Today-Proc. 2021, 39, 1655–1660. [Google Scholar] [CrossRef]
- Jang, B.Z.; Chen, L.C.; Wang, C.Z.; Lin, H.T.; Zee, R.H. Impact resistance and energy-absorption mechanisms in hybrid composites. Compos. Sci. Technol. 1989, 34, 305–335. [Google Scholar] [CrossRef]
- Gustin, J.; Joneson, A.; Mahinfalah, M.; Stone, J. Low velocity impact of combination Kevlar/carbon fiber sandwich composites. Compos. Struct. 2005, 69, 396–406. [Google Scholar] [CrossRef]
- Garcia, P.D.; Escamilla, A.C.; Garcia, M.N.G. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites 2013, 55, 528–536. [Google Scholar] [CrossRef]
- Shekarchi, M.; Oskouei, A.V.; Raftery, G.M. Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles. Compos. Struct. 2020, 241, 112062. [Google Scholar] [CrossRef]
- Chen, D.; Liao, Y.D.; Zhang, Y. Experimental Study of RC Beams Strengthened with Basalt Fiber Sheets. Chin.-Ger. Jt. Symp. Hydraul. Ocean. Eng. 2010, 2010, 463–466. [Google Scholar]
- Bardak, T. Effects of Different Advanced Engineering Materials on Deformation Behaviour of Wood Structural Materials. Bioresources 2019, 14, 180–192. [Google Scholar] [CrossRef]
- Han, Y.; Liu, H.B.; Guo, T. Analysis of Bending Stiffness of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet. In Proceedings of the International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2012), Zhangjiajie, China, 10–12 August 2012; pp. 2887–2890. [Google Scholar]
- Takeda, K.; Mitsui, Y.; Murakami, K.; Sakai, H.; Nakamura, M. Flexural behaviour of reinforced concrete beams strengthened with carbon fibre sheets. Compos. Part A Appl. Sci. Manuf. 1996, 27, 981–987. [Google Scholar] [CrossRef]
- Karthik, K.; Rajamani, D.; Raja, T.; Subramani, K. Experimental investigation on the mechanical properties of Carbon/Kevlar fibre reinforced epoxy LY556 composites. Mater. Today Proc. 2021, 52, 668–674. [Google Scholar] [CrossRef]
- Alagusundaramoorthy, P.; Harik, I.E.; Choo, C.C. Flexural behavior of R/C beams strengthened with carbon fiber reinforced polymer sheets or fabric. J. Compos. Constr. 2003, 7, 292–301. [Google Scholar] [CrossRef]
- Pandulu, G.; Jayaseelan, R.; Jeganathan, S. Performance of RCC Beams Laminated with Kevlar Fabric. Jordan J. Civ. Eng. 2020, 14, 225–237. [Google Scholar]
- Cakir, F.; Acar, V.; Aydin, M.R.; Aksar, B.; Yildirim, P. Strengthening of reinforced concrete beams without transverse reinforcement by using intraply hybrid composites. Case Stud. Constr. Mater. 2021, 15, e00700. [Google Scholar] [CrossRef]
- Tang, T.P.; Saadatmanesh, H. Behavior of concrete beams strengthened with fiber-reinforced polymer laminates under impact loading. J. Compos. Constr. 2003, 7, 209–218. [Google Scholar] [CrossRef]
- Sitorus, T.; Desharma, S. Analysis and experiments of the effect of reinforcement of wood beam using carbon fiber reinforced polymer against bending strength. In Proceedings of the 4th International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM), Yogyakarta, Indonesia, 5–7 September 2018. [Google Scholar]
- Zweben, C. Flexural strength of aramid fiber composites. J. Compos. Mater. 1978, 12, 422–430. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, C.; Yan, L.B.; Kasal, B. Flexural behavior of U-shape FRP profile-RC composite beams with inner GFRP tube confinement at concrete compression zone. Compos. Struct. 2018, 184, 674–687. [Google Scholar] [CrossRef]
- Mohana Sundaria, S.; Vigneshkannanb, S.; Kannanc, C.; Rangarajd, A.; Amuthae, M.; Prakhashf, N.; Lingeshwarang, N. Performance analysis and experimental investigation on mechanical properties of RCC beam with fibre wrapping. Mater. Today Proc. 2023, 72, 3193–3200. [Google Scholar] [CrossRef]
- Li, Y.F.; Xie, Y.M.; Tsai, M.J. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr. Build. Mater. 2009, 23, 411–422. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Y.; Zhang, Z.X.; Liu, C.Y.; Tong, Y. Impact resistance of CFRP-reinforced wood beams under axial force using a digital image correlation method. Compos. Struct. 2021, 261, 113276. [Google Scholar] [CrossRef]
Fibre Name | Young’s Modulus E (GPa) | Poisson’s Coefficient ν | Tensile Strength σt (GPa) | Extension to Break ε (%) | Density ρ (g/cm3) | References |
---|---|---|---|---|---|---|
Kevlar29 | 70 | 0.37 | 2.9 | 4.0 | 1.44 | [42,43,44] |
Kevlar49 | 135 | 0.36 | 2.9 | 2.8 | 1.45 | |
Kevlar100 | 60 | - | 2.9 | 3.9 | 1.44 | |
Kevlar119 | 55 | - | 3.1 | 4.4 | 1.44 | |
Kevlar129 | 99 | - | 3.4 | 3.3 | 1.45 | |
Kevlar149 | 143 | 0.30 | 2.3 | 1.5 | 1.47 | |
KevlarKM2 | 85 | 0.24 | 3.8 | 4.5 | 1.44 |
Fibre Name | Heating Rate (°C/min) | Degradation Rate (%/min) | Temperature of Decomposition (°C) | Weight Reduction (Until Decomposition) (%) | Reference | |||
---|---|---|---|---|---|---|---|---|
Air | Nitrogen | Air | Nitrogen | Air | Nitrogen | |||
Kevlar | variable | 8.2 | 3.5 | 521.0 | 546.0 | 8 | 6 | [45] |
Kevlar29 | 20 | 26.0 | 21.0 | 449.1 | 480.0 | 9 | 8 | [47] |
Kevlar49 | 20 | 27.0 | 22.0 | 451.0 | 474.7 | 9 | 8 | [47] |
Kevlar49 | 10 | - | - | 482.0 | 538.0 | 9 | 8 | [16] |
Kevlar129 | 20 | 28.0 | 23.0 | 437.1 | 464.2 | 8 | 7 | [47] |
Fibre Name | Temperature Range (°C) | Coefficient of Thermal Expansion (×10−6 °C−1) | Reference | |
---|---|---|---|---|
Longitudinal | Transverse | |||
Kevlar29 | 25–150 | −4.0 | - | [16] |
Kevlar49 | 25–150 | −4.0 | - | [16] |
Kevlar49 | 20–80 | −5.7 | 66.3 | [48] |
Fibre Name | Mechanical Properties for Dried Fibres | Mechanical Properties at Saturation | Water Absorption at Saturation | Reference | ||
---|---|---|---|---|---|---|
Young’s Modulus E (GPa) | Tensile Strength σt (GPa) | Young’s Modulus E (GPa) | Tensile Strength σt (GPa) | (%) | ||
Kevlar29 | 70 | 2.9 | 64.0 | 2.48 | 5.3 | [15] |
Kevlar49 | 135 | 2.9 | 69.8 | 1.81 | 4.3 | |
Kevlar149 | 143 | 2.3 | 100.2 | 1.69 | 2.1 |
Fibre Size (Deniers) 1 | UV Ray Exposure (h) | Tensile Strength Loss (%) | Reference |
---|---|---|---|
1500 | 450 | 65 | [16] |
3000 | 45 | ||
4500 | 35 |
Fibre Length (mm) | Colour | Density (g/cm3) | Work Temperature Range (°C) | Reference |
---|---|---|---|---|
0.5–1.0 | yellow | 1.45 | −200/+350 | [54] |
Fibre Type | Main Characteristic | Young’s Modulus E (GPa) | Tensile Strength σmax (GPa) | Reference |
---|---|---|---|---|
UHM | Ultra-high modulus | 600–950 | 2.5–4 | [32,33,34,56,57,58,59,60] |
HM | High modulus | 350–600 | >2.5 | |
IM | Intermediate-modulus | 280–350 | >3.5 | |
HT | High tensile strength (or standard modulus) | 200–280 | >3.0 | |
LM | Low modulus | 40–200 | 1–3.5 | |
SHT | Super-high tensile strength | - | >4.5 |
Carbon Fibre Type | Temperature Exposure (°C) | Tensile Strength σt (GPa) | Reference |
---|---|---|---|
UHM 1 | room temperature | 5.47 | [63] |
UHM 1 | 350 | 5.20 | |
UHM 1 | 450 | 4.27 | |
HT 2 | room temperature | 4.6 | [65] |
HT 2 | 2840 | 2.6 |
Fibre Name | Precursor | Temperature Range (K) | Coefficient of Thermal Expansion (10−6/K) | Reference | |
---|---|---|---|---|---|
Longitudinal | Transverse | ||||
P 100 | Pitch | room temperature | −0.1 | 7.0 | [66] |
PANEX 33 | PAN 1 | 350 | 1.0 | 5.0 | |
HTA 5131 | PAN 1 | 450 | 0.8 | 6.0 | |
K-1100 | Pitch 1 | room temperature | −1.45 | - | [32] |
T 1000 | PAN 1 | room temperature | −0.55 | - | |
M40J | PAN 1 | room temperature | −0.83 | - |
Graphitization Temperature (°C) | Electrical Conductivity (S/cm) | Reference |
---|---|---|
1000 | 5.32 | [68] |
1800 | 51.01 | |
2200 | 75.91 |
Composite Structure 1 | Fibre Content | Matrix | Young’s Modulus E (GPa) | Tensile Strength σt (GPa) | Flexural Strength σb (GPa) | Poisson’s Coefficient ν12 | Shearing Modulus of Elasticity G12 (GPa) | Reference |
---|---|---|---|---|---|---|---|---|
2K/8C/2K | 60.0 vol.% | epoxy resin | - | 1.25 | 1.150 | - | - | [75] |
3C/2K/2C/2K/3C | 60.0 vol.% | epoxy resin | - | - | 0.954 | - | - | [75] |
8CK plain | - | epoxy resin | 11.34 | - | - | 0.090 | 1.49 | [77] |
8CK twill | 45.0 wt.% | epoxy resin | 35.25 | 4.07 | 4.180 | 0.141 | - | [74] |
CKCKC | 37.2 vol.% | epoxy resin | - | 2.00 | 0.430 | - | - | [78] |
KCKCK | 20.2 vol.% | epoxy resin | - | 2.40 | 0.500 | - | - | [78] |
KKCKK | 38.4 vol.% | epoxy resin | - | 2.60 | 0.600 | - | - | [78] |
CCKCC | 42.0 vol.% | epoxy resin | - | 2.70 | 0.460 | - | - | [78] |
Composite Structure 1 | Impact Speed (m/s) | Failure Mode | Absorbed Strain Energy at Impact 2 (J) | Reference |
---|---|---|---|---|
K-K | 4.5 | Penetrated | 2.8 | [79] |
C-C | Penetrated | 2.4 | ||
C-K | Penetrated | 3.1 | ||
K-C | Penetrated | 3.1 |
Code of Sandwich Structure | Description of the Upper Face Sheet of the Sandwich Composite | Young’s Modulus E1 (GPa) | Young’s Modulus E2 (GPa) | Absorbed Strain Energy at Impact (J) | Reference |
---|---|---|---|---|---|
CF | 4 layers of composite material reinforced with plain carbon fabric | 52.0 | 52.0 | 31.0 | [80] |
1K | 1 layer of composite material reinforced with Kevlar49 fabric and 3 layers of composite material reinforced with plain carbon fabric | 47.4 | 47.4 | 34.9 | |
2K | 2 layers of composite material reinforced with Kevlar49 fabric and 2 layers of composite material reinforced with plain carbon fabric | 42.5 | 42.5 | 33.2 | |
3K | 3 layers of composite material reinforced with Kevlar49 fabric and 1 layer of composite material reinforced with plain carbon fabric | 37.0 | 37.0 | 34.5 | |
4K | 4 layers of composite material reinforced with Kevlar49 fabric | 31.0 | 31.0 | 33.5 | |
1H | 1 layer of composite material reinforced with hybrid Kevlar–carbon twill fabric and 3 layers of composite material reinforced with plain carbon fabric | 50.25 | 45.5 | 32.4 | |
2H | 2 layers of composite material reinforced with hybrid Kevlar–carbon twill fabric and 2 layers of composite material reinforced with plain carbon fabric | 48.5 | 39.0 | 31.9 | |
3H | 3 layers of composite material reinforced with hybrid Kevlar–carbon twill fabric and 1 layer of composite material reinforced with plain carbon fabric | 46.75 | 32.5 | 33.1 | |
4H | 4 layers of composite material reinforced with hybrid Kevlar–carbon twill fabric | 45.0 | 26.0 | 32.8 |
Beam Structure * | Size of CFRP Sheet/Carbon Fibre Fabric (Thickness and Width) mm × mm | Failure Load (kN) | Failure Modes | Reference |
---|---|---|---|---|
Concrete beam without CFRP/carbon fabric | - | 190 | Concrete crushing | [88] |
Concrete beam with bottom surface strengthened with CFRP sheets (2 layers) | 1.40 × 76 | 263 | Concrete crushing and delamination at the CFRP-concrete interface | |
Concrete beam with bottom surface strengthened with CFRP (3 layers) | 1.40 × 76 | 287 | Concrete crushing and delamination at the CFRP-concrete interface | |
Concrete beam with bottom surface strengthened with carbon fabric (1 layer) | 0.18 × 203 | 223 | Carbon fabric breaking | |
Concrete beam with bottom surface strengthened with carbon fabric (2 layers) | 0.18 × 203 | 270 | Carbon fabric breaking |
Beam Structure * | Failure Force (kN) | Number of Cracks | Failure Mode | Reference |
---|---|---|---|---|
Concrete beam without Kevlar layers | 70.50 | 6 | Flexural failure | [89] |
Concrete beam with 1 Kevlar-laminated layer at bottom | 84.06 | 3 | Flexural failure and fabric rupture | |
Concrete beam with 2 Kevlar-laminated layers at bottom | 97.07 | 2 | Flexural failure and fabric rupture | |
Concrete beam with 1 Kevlar-laminated layer in U shape | 119.26 | No visible cracks | Flexural failure and fabric rupture | |
Concrete beam with 2 Kevlar-laminated layers in a U shape | 132.86 | No visible cracks | Flexural failure and fabric rupture |
Beam Structure | Beam Size b × h (mm × mm) | Maximum Force (N) | Reference |
---|---|---|---|
Wooden beam without CFRP strengthening | 75 × 100 | 35,313.45 | [92] |
Wooden beam with CFRP strengthening along the entire span | 52,378.00 | ||
Wooden beam with CFRP strengthening along ¾ of the span | 48,499.67 | ||
Wooden beam with CFRP strengthening along ¼ of the span | 36,864.77 |
Beam Structure | Impact Strain Energy Absorbed (J) | Reference |
---|---|---|
Wooden beam without CFRP strengthening | 48.67 | [97] |
Wooden beam strengthened with 1 layer of CFRP | 71.33 | |
Wooden beam strengthened with 2 layers of CFRP | 137.33 | |
Wooden beam strengthened with 11 layers of CFRP | 98.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursache, Ș.; Cerbu, C.; Hadăr, A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers 2024, 16, 127. https://doi.org/10.3390/polym16010127
Ursache Ș, Cerbu C, Hadăr A. Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers. 2024; 16(1):127. https://doi.org/10.3390/polym16010127
Chicago/Turabian StyleUrsache, Ștefania, Camelia Cerbu, and Anton Hadăr. 2024. "Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review" Polymers 16, no. 1: 127. https://doi.org/10.3390/polym16010127
APA StyleUrsache, Ș., Cerbu, C., & Hadăr, A. (2024). Characteristics of Carbon and Kevlar Fibres, Their Composites and Structural Applications in Civil Engineering—A Review. Polymers, 16(1), 127. https://doi.org/10.3390/polym16010127