Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jenkins, A.D.; Kratochvíl, P.; Stepto, R.F.T.; Suter, U.W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2287–2311. [Google Scholar] [CrossRef]
- Wünsch, J.R. Polystyrene: Synthesis, Production and Applications; Smithers Rapra Publishing: Shrewsbury, UK, 2000. [Google Scholar]
- Ronca, S. Chapter 10—Polyethylene. In Brydson’s Plastics Materials, 8th ed.; Gilbert, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 247–278. ISBN 978-0-323-35824-8. [Google Scholar]
- Busico, V.; Cipullo, R. Microstructure of Polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2020, 10, 65. [Google Scholar] [CrossRef]
- Babutan, I.; Lucaci, A.-D.; Botiz, I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers 2021, 13, 1552. [Google Scholar] [CrossRef]
- Fukada, E. History and Recent Progress in Piezoelectric Polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1277–1290. [Google Scholar] [CrossRef]
- Smith, M.; Kar-Narayan, S. Piezoelectric Polymers: Theory, Challenges and Opportunities. Int. Mater. Rev. 2022, 67, 65–88. [Google Scholar] [CrossRef]
- Chang, W.B.; Fang, H.; Liu, J.; Evans, C.M.; Russ, B.; Popere, B.C.; Patel, S.N.; Chabinyc, M.L.; Segalman, R.A. Electrochemical Effects in Thermoelectric Polymers. ACS Macro Lett. 2016, 5, 455–459. [Google Scholar] [CrossRef]
- Yao, H.; Fan, Z.; Cheng, H.; Guan, X.; Wang, C.; Sun, K.; Ouyang, J. Recent Development of Thermoelectric Polymers and Composites. Macromol. Rapid Commun. 2018, 39, 1700727. [Google Scholar] [CrossRef] [PubMed]
- Garel, T.; Orland, H.; Orlandini, E. Phase Diagram of Magnetic Polymers. Eur. Phys. J. B 1999, 12, 261–268. [Google Scholar] [CrossRef]
- Foster, D.P.; Majumdar, D. Critical Behavior of Magnetic Polymers in Two and Three Dimensions. Phys. Rev. E 2021, 104, 024122. [Google Scholar] [CrossRef]
- Botiz, I.; Astilean, S.; Stingelin, N. Altering the Emission Properties of Conjugated Polymers. Polym. Int. 2016, 65, 157–163. [Google Scholar] [CrossRef]
- Botiz, I.; Freyberg, P.; Leordean, C.; Gabudean, A.-M.; Astilean, S.; Yang, A.C.-M.; Stingelin, N. Emission Properties of MEH-PPV in Thin Films Simultaneously Illuminated and Annealed at Different Temperatures. Synth. Met. 2015, 199, 33–36. [Google Scholar] [CrossRef]
- Todor-Boer, O.; Petrovai, I.; Tarcan, R.; Vulpoi, A.; David, L.; Astilean, S.; Botiz, I. Enhancing Photoluminescence Quenching in Donor–Acceptor PCE11:PPCBMB Films through the Optimization of Film Microstructure. Nanomaterials 2019, 9, 1757. [Google Scholar] [CrossRef]
- Botiz, I.; Durbin, M.M.; Stingelin, N. Providing a Window into the Phase Behavior of Semiconducting Polymers. Macromolecules 2021, 54, 5304–5320. [Google Scholar] [CrossRef]
- Dimov, I.B.; Moser, M.; Malliaras, G.G.; McCulloch, I. Semiconducting Polymers for Neural Applications. Chem. Rev. 2022, 122, 4356–4396. [Google Scholar] [CrossRef] [PubMed]
- de Leon, A.C.C.; da Silva, Í.G.M.; Pangilinan, K.D.; Chen, Q.; Caldona, E.B.; Advincula, R.C. High Performance Polymers for Oil and Gas Applications. React. Funct. Polym. 2021, 162, 104878. [Google Scholar] [CrossRef]
- Pham, Q.-T.; Chern, C.-S. Applications of Polymers in Lithium-Ion Batteries with Enhanced Safety and Cycle Life. J. Polym. Res. 2022, 29, 124. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/Electro-responsive Polymers toward Manufacturing, Characterization, and Biomedical/ Soft Robotic Applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- Angel, N.; Li, S.; Yan, F.; Kong, L. Recent Advances in Electrospinning of Nanofibers from Bio-Based Carbohydrate Polymers and Their Applications. Trends Food Sci. Technol. 2022, 120, 308–324. [Google Scholar] [CrossRef]
- He, Y.; Kukhta, N.A.; Marks, A.; Luscombe, C.K. The Effect of Side Chain Engineering on Conjugated Polymers in Organic Electrochemical Transistors for Bioelectronic Applications. J. Mater. Chem. C 2022, 10, 2314–2332. [Google Scholar] [CrossRef]
- Handrea-Dragan, M.; Botiz, I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers 2021, 13, 445. [Google Scholar] [CrossRef]
- Tarcan, R.; Handrea-Dragan, M.; Leordean, C.-I.; Cioban, R.C.; Kiss, G.-Z.; Zaharie-Butucel, D.; Farcau, C.; Vulpoi, A.; Simon, S.; Botiz, I. Development of Polymethylmethacrylate/Reduced Graphene Oxide Composite Films as Thermal Interface Materials. J. Appl. Polym. Sci. 2022, 139, e53238. [Google Scholar] [CrossRef]
- Holmes, P.F.; Bohrer, M.; Kohn, J. Exploration of Polymethacrylate Structure–Property Correlations: Advances towards Combinatorial and High-Throughput Methods for Biomaterials Discovery. Prog. Polym. Sci. 2008, 33, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gan, B.; Qi, S.; Guo, H.; Tang, C.Y.; Zhou, Y.; Gao, C. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure–Property Correlation. Environ. Sci. Technol. 2020, 54, 3559–3569. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, H.; Qin, M.; Wang, Y.; Zhao, J.; Sun, H.; Wang, H.; Wang, Y.; Zhou, X.; Facchetti, A.; et al. Imide-Functionalized Thiazole-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, Charge Carrier Polarity, and Thin-Film Transistor Performance. Chem. Mater. 2018, 30, 7988–8001. [Google Scholar] [CrossRef]
- Park, K.S.; Kwok, J.J.; Kafle, P.; Diao, Y. When Assembly Meets Processing: Tuning Multiscale Morphology of Printed Conjugated Polymers for Controlled Charge Transport. Chem. Mater. 2021, 33, 469–498. [Google Scholar] [CrossRef]
- MacFarlane, L.R.; Shaikh, H.; Garcia-Hernandez, J.D.; Vespa, M.; Fukui, T.; Manners, I. Functional Nanoparticles through π-Conjugated Polymer Self-Assembly. Nat. Rev. Mater. 2021, 6, 7–26. [Google Scholar] [CrossRef]
- Stevens, C.A.; Kaur, K.; Klok, H.-A. Self-Assembly of Protein-Polymer Conjugates for Drug Delivery. Adv. Drug Deliv. Rev. 2021, 174, 447–460. [Google Scholar] [CrossRef]
- Scanga, R.A.; Reuther, J.F. Helical Polymer Self-Assembly and Chiral Nanostructure Formation. Polym. Chem. 2021, 12, 1857–1897. [Google Scholar] [CrossRef]
- Sun, H.; Hong, Y.; Xi, Y.; Zou, Y.; Gao, J.; Du, J. Synthesis, Self-Assembly, and Biomedical Applications of Antimicrobial Peptide–Polymer Conjugates. Biomacromolecules 2018, 19, 1701–1720. [Google Scholar] [CrossRef] [PubMed]
- Fernández-d’Arlas, B.; Arteaga, A.G.; Saralegi, A.; Corcuera, M.Á.; Eceiza, A.; Müller, A.J. Self-Assembly and Crystallization of Double Crystalline Aliphatic Thermoplastic Biopolyurethane and Its Nucleation with Cellulose Nanocrystals. Polymer 2022, 241, 124521. [Google Scholar] [CrossRef]
- Politakos, N.; Kortaberria, G. Exploring the Self-Assembly Capabilities of ABA-Type SBS, SIS, and Their Analogous Hydrogenated Copolymers onto Different Nanostructures Using Atomic Force Microscopy. Materials 2018, 11, 1529. [Google Scholar] [CrossRef]
- Darko, C.; Botiz, I.; Reiter, G.; Breiby, D.W.; Andreasen, J.W.; Roth, S.V.; Smilgies, D.M.; Metwalli, E.; Papadakis, C.M. Crystallization in Diblock Copolymer Thin Films at Different Degrees of Supercooling. Phys. Rev. E 2009, 79, 041802. [Google Scholar] [CrossRef] [PubMed]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Thomann, R.; Heck, B.; Shokri, R.; Stille, W.; Reiter,, G. Crystallization of Poly(γ-Benzyl L-Glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules 2013, 46, 1470–1476. [Google Scholar] [CrossRef]
- Jin, F.; Yuan, S.; Wang, S.; Zhang, Y.; Zheng, Y.; Hong, Y.; Miyoshi, T. Polymer Chains Fold Prior to Crystallization. ACS Macro Lett. 2022, 11, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Chen, W.; Cui, K.; Li, L. Polymer Crystallization under External Flow. Rep. Prog. Phys. 2022, 85, 036601. [Google Scholar] [CrossRef] [PubMed]
- Guliyeva, A.; Vayer, M.; Warmont, F.; Faugère, A.M.; Andreazza, P.; Takano, A.; Matsushita, Y.; Sinturel, C. Thin Films with Perpendicular Tetragonally Packed Rectangular Rods Obtained from Blends of Linear ABC Block Terpolymers. ACS Macro Lett. 2018, 7, 789–794. [Google Scholar] [CrossRef]
- Antoine, S.; Aissou, K.; Mumtaz, M.; Pécastaings, G.; Buffeteau, T.; Fleury, G.; Hadziioannou, G. Nanoscale Archimedean Tilings Formed by 3-Miktoarm Star Terpolymer Thin Films. Macromol. Rapid Commun. 2019, 40, 1800860. [Google Scholar] [CrossRef]
- De Rosa, C.; Di Girolamo, R.; Malafronte, A.; Scoti, M.; Talarico, G.; Auriemma, F.; Ruiz de Ballesteros, O. Polyolefins Based Crystalline Block Copolymers: Ordered Nanostructures from Control of Crystallization. Polymer 2020, 196, 122423. [Google Scholar] [CrossRef]
- Song, D.-P.; Zhao, T.H.; Guidetti, G.; Vignolini, S.; Parker, R.M. Hierarchical Photonic Pigments via the Confined Self-Assembly of Bottlebrush Block Copolymers. ACS Nano 2019, 13, 1764–1771. [Google Scholar] [CrossRef]
- Botiz, I.; Codescu, M.-A.; Farcau, C.; Leordean, C.; Astilean, S.; Silva, C.; Stingelin, N. Convective Self-Assembly of π-Conjugated Oligomers and Polymers. J. Mater. Chem. C 2017, 5, 2513–2518. [Google Scholar] [CrossRef]
- Peterson, G.W.; Lee, D.T.; Barton, H.F.; Epps, T.H.; Parsons, G.N. Fibre-Based Composites from the Integration of Metal–Organic Frameworks and Polymers. Nat. Rev. Mater. 2021, 6, 605–621. [Google Scholar] [CrossRef]
- Botiz, I. Prominent Processing Techniques to Manipulate Semiconducting Polymer Microstructure. J. Mater. Chem. C 2023, 11, 364–405. [Google Scholar] [CrossRef]
- Li, Y.; Ma, R.; Zhao, L.; Tao, Q.; Xiong, D.; An, Y.; Shi, L. A Valid Way of Quasi-Quantificationally Controlling the Self-Assembly of Block Copolymers in Confined Space. Langmuir 2009, 25, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Qiang, X.; Müller, A.H.E.; Gröschel, A.H. Self-Assembly of Block Copolymers into Internally Ordered Microparticles. Prog. Polym. Sci. 2020, 102, 101211. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Mayes, A.M.; Ross, C.A. Nanostructure Engineering by Templated Self-Assembly of Block Copolymers. Nat. Mater. 2004, 3, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Zhu, Y.; Jiang, W. Recent Progress in the Self-Assembly of Block Copolymers Confined in Emulsion Droplets. Chem. Commun. 2018, 54, 13183–13195. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Z.; Wang, Z.; Yin, Y.; Jiang, R.; Li, B.; Wang, Q. Self-Assembly in Block Copolymer Thin Films upon Solvent Evaporation: A Simulation Study. Macromolecules 2017, 50, 4384–4396. [Google Scholar] [CrossRef]
- Xiong, S.; Li, D.; Hur, S.-M.; Craig, G.S.W.; Arges, C.G.; Qu, X.-P.; Nealey, P.F. The Solvent Distribution Effect on the Self-Assembly of Symmetric Triblock Copolymers during Solvent Vapor Annealing. Macromolecules 2018, 51, 7145–7151. [Google Scholar] [CrossRef]
- Shi, L.-Y.; Yin, C.; Zhou, B.; Xia, W.; Weng, L.; Ross, C.A. Annealing Process Dependence of the Self-Assembly of Rod–Coil Block Copolymer Thin Films. Macromolecules 2021, 54, 1657–1664. [Google Scholar] [CrossRef]
- Ginige, G.; Song, Y.; Olsen, B.C.; Luber, E.J.; Yavuz, C.T.; Buriak, J.M. Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches. ACS Appl. Mater. Interfaces 2021, 13, 28639–28649. [Google Scholar] [CrossRef]
- Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Simon, S.; Botiz, I. Self-Assembly of Block Copolymers on Surfaces Exposed to Space-Confined Solvent Vapor Annealing. Polymer 2023, 273, 125881. [Google Scholar] [CrossRef]
- Botiz, I.; Grozev, N.; Schlaad, H.; Reiter, G. The Influence of Protic Non-Solvents Present in the Environment on Structure Formation of Poly(γ-Benzyl-L-Glutamate in Organic Solvents. Soft Matter 2008, 4, 993–1002. [Google Scholar] [CrossRef]
- Jahanshahi, K.; Botiz, I.; Reiter, R.; Scherer, H.; Reiter, G. Reversible Nucleation, Growth, and Dissolution of Poly(γ-Benzyl l-Glutamate) Hexagonal Columnar Liquid Crystals by Addition and Removal of a Nonsolvent. Cryst. Growth Des. 2013, 13, 4490–4494. [Google Scholar] [CrossRef]
- Soum, A.; Fontanille, M.; Sigwalt, P. Anionic Polymerization of 2-Vinylpyridine Initiated by Symmetrical Organomagnesium Compounds in Tetrahydrofuran. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 659–673. [Google Scholar] [CrossRef]
- Atanase, L.I.; Riess, G. Micellization of Poly(2-Vinylpyrridine)-b-Poly(Cyclohexyl Methacrylate) (P2VP-b-PCHMA) Block Copolymers and Their Interpolymer Complex Formation in Non-Aqueous Medium. J. Colloid Interface Sci. 2019, 549, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Atanase, L.I.; Riess, G. Stabilization of Non-Aqueous Emulsions by Poly(2-Vinylpyridine)-b-Poly(Butadiene) Block Copolymers. Colloids Surf. A Physicochem. Eng. Asp. 2014, 458, 19–24. [Google Scholar] [CrossRef]
- Botiz, I.; Schlaad, H.; Reiter, G. Processes of Ordered Structure Formation in Polypeptide Thin Film Solutions. Adv. Polym. Sci. Self-Organ. Nanostruct. Amphiphilic Block Copolym. 2011, 242, 117–149. [Google Scholar]
- Li, H.-J.; Tsiang, R.C.-C. Preparation and Characterization of a Linear Poly(4-Vinyl Pyridine)-b-Polybutadiene-b-Poly(4-Vinylpyridine) Using a t-Butyllithium/m-Diisopropenylbenzene Diadduct as a Dicarbanion Initiator. Polymer 2000, 41, 5601–5610. [Google Scholar] [CrossRef]
- Valentini, L.; Lopez-Manchado, M.A. Classification of Rubbers and Components for Harsh Environmental Systems. In High-Performance Elastomeric Materials Reinforced by Nano-Carbons; Valentini, L., Lopez Manchado, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–14. ISBN 978-0-12-816198-2. [Google Scholar]
- Burkert, S.; Bittrich, E.; Kuntzsch, M.; Müller, M.; Eichhorn, K.-J.; Bellmann, C.; Uhlmann, P.; Stamm, M. Protein Resistance of PNIPAAm Brushes: Application to Switchable Protein Adsorption. Langmuir 2010, 26, 1786–1795. [Google Scholar] [CrossRef]
- Kennemur, J.G. Poly(Vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019, 52, 1354–1370. [Google Scholar] [CrossRef]
- Lysenko, E.A.; Bronich, T.K.; Slonkina, E.V.; Eisenberg, A.; Kabanov, V.A.; Kabanov, A.V. Block Ionomer Complexes with Polystyrene Core-Forming Block in Selective Solvents of Various Polarities. 2. Solution Behavior and Self-Assembly in Nonpolar Solvents. Macromolecules 2002, 35, 6344–6350. [Google Scholar] [CrossRef]
- Changez, M.; Kang, N.-G.; Koh, H.-D.; Lee, J.-S. Effect of Solvent Composition on Transformation of Micelles to Vesicles of Rod−Coil Poly(n-Hexyl Isocyanate-Block-2-Vinylpyridine) Diblock Copolymers. Langmuir 2010, 26, 9981–9985. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Goldmann, A.S.; Yelamanchili, R.S.; Drechsler, M.; Schmalz, H.; Eisenberg, A.; Müller, A.H.E. Multiple Morphologies, Phase Transitions, and Cross-Linking of Crew-Cut Aggregates of Polybutadiene-Block-Poly(2-Vinylpyridine) Diblock Copolymers. Macromolecules 2008, 41, 3254–3260. [Google Scholar] [CrossRef]
- Ansarifar, M.A.; Luckham, P.F. Measurement of the Interaction Force Profiles between Block Copolymers of Poly(2-Vinylpyridine)/Poly(t-Butylstyrene) in a Good Solvent. Polymer 1988, 29, 329–335. [Google Scholar] [CrossRef]
- Chuang, V.P.; Ross, C.A.; Gwyther, J.; Manners, I. Self-Assembled Nanoscale Ring Arrays from a Polystyrene-b-Polyferrocenylsilane-b-Poly(2-Vinylpyridine)Triblock Terpolymer Thin Film. Adv. Mater. 2009, 21, 3789–3793. [Google Scholar] [CrossRef]
- Marzocca, A.J.; Rodríguez Garraza, A.L.; Mansilla, M.A. Evaluation of the Polymer–Solvent Interaction Parameter χ for the System Cured Polybutadiene Rubber and Toluene. Polym. Test. 2010, 29, 119–126. [Google Scholar] [CrossRef]
- Narasimhan, V.; Huang, R.Y.M.; Burns, C.M. Polymer–Polymer Interaction Parameters of Polystyrene and Polybutadiene from Studies in Solutions of Toluene or Tetrahydrofuran. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 1993–2001. [Google Scholar] [CrossRef]
- Gu, X.; Gunkel, I.; Russell, T.P. Russell Pattern Transfer Using Block Copolymers. Philos. Trans. R. Soc. A 2013, 371, 20120306. [Google Scholar] [CrossRef]
- Arges, C.G.; Kambe, Y.; Dolejsi, M.; Wu, G.-P.; Segal-Pertz, T.; Ren, J.; Cao, C.; Craig, G.S.W.; Nealey, P.F. Interconnected Ionic Domains Enhance Conductivity in Microphase Separated Block Copolymer Electrolytes. J. Mater. Chem. A 2017, 5, 5619–5629. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.; Cirpan, A.; Russell, T.P. Preparation of Metallic Line Patterns from Functional Block Copolymers. Small 2009, 5, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwak, J.; Choi, C.; Han, S.H.; Kim, J.K. Phase Behavior of Poly(2-Vinylpyridine)-Block-Poly(4-Vinylpyridine) Copolymers Containing Gold Nanoparticles. Macromolecules 2017, 50, 9373–9379. [Google Scholar] [CrossRef]
- Rahman, M.S.; Samal, S.; Lee, J.-S. Quantitative in Situ Coupling of Living Diblock Copolymers for the Preparation of Amphiphilic Coil−Rod−Coil Triblock Copolymer Poly(2-Vinylpyridine)-b-Poly(n-Hexyl Isocyanate)-b-Poly(2-Vinylpyridine). Macromolecules 2007, 40, 9279–9283. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Liu, Y.; Rafailovich, M.H.; Sokolov, J.; Khougaz, K.; Eisenberg, A.; Lennox, R.B.; Krausch, G. Self-Ordering of Diblock Copolymers from Solution. J. Am. Chem. Soc. 1996, 118, 10892–10893. [Google Scholar] [CrossRef]
- Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef]
- Fillod, E. Synthesis and Characterization of (Meth)Acrylic Block Copolymers Containing a Polar Sequence; Colloidal Properties in Organic Medium (In French). Ph.D. Thesis, University of Haute Alsace, Brunstatt-Didenheim, France, 1997. [Google Scholar]
- Xu, P.; Ji, X.; Abetz, V.; Jiang, S. Uniformly Gold Nanoparticles Derived from P2VP-b-PCHMA Block Copolymer Templates with Different Reduction Methods. J. Nanosci. Nanotechnol. 2011, 11, 6973–6978. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Ji, X.; Abetz, V.; Jiang, S. Micropatterning of Ag and Au Nanoparticles by Microcontact Printing and Block Copolymer Micelles. J. Nanosci. Nanotechnol. 2011, 11, 1135–1140. [Google Scholar] [CrossRef]
- Li, X.; Tian, S.; Ping, Y.; Kim, D.H.; Knoll, W. One-Step Route to the Fabrication of Highly Porous Polyaniline Nanofiber Films by Using PS-b-PVP Diblock Copolymers as Templates. Langmuir 2005, 21, 9393–9397. [Google Scholar] [CrossRef]
- Huang, H.; Chung, B.; Jung, J.; Park, H.-W.; Chang, T. Toroidal Micelles of Uniform Size from Diblock Copolymers. Angew. Chem. Int. Ed. 2009, 48, 4594–4597. [Google Scholar] [CrossRef]
- Larison, T.; Stefik, M. Persistent Micelle Corona Chemistry Enables Constant Micelle Core Size with Independent Control of Functionality and Polyelectrolyte Response. Langmuir 2021, 37, 9817–9825. [Google Scholar] [CrossRef]
- Jeong, J.W.; Park, W.I.; Kim, M.-J.; Ross, C.A.; Jung, Y.S. Highly Tunable Self-Assembled Nanostructures from a Poly(2-Vinylpyridine-b-Dimethylsiloxane) Block Copolymer. Nano Lett. 2011, 11, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babutan, I.; Todor-Boer, O.; Atanase, L.I.; Vulpoi, A.; Botiz, I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers 2023, 15, 1900. https://doi.org/10.3390/polym15081900
Babutan I, Todor-Boer O, Atanase LI, Vulpoi A, Botiz I. Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers. 2023; 15(8):1900. https://doi.org/10.3390/polym15081900
Chicago/Turabian StyleBabutan, Iulia, Otto Todor-Boer, Leonard Ionut Atanase, Adriana Vulpoi, and Ioan Botiz. 2023. "Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors" Polymers 15, no. 8: 1900. https://doi.org/10.3390/polym15081900
APA StyleBabutan, I., Todor-Boer, O., Atanase, L. I., Vulpoi, A., & Botiz, I. (2023). Self-Assembly of Block Copolymers in Thin Films Swollen-Rich in Solvent Vapors. Polymers, 15(8), 1900. https://doi.org/10.3390/polym15081900