Metal–Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of LRF Cryogels
2.2. Preparation of LRF Carbon Cryogels
2.3. Characterizations
2.4. Electrochemical Measurements
3. Results
3.1. Effect of DES Ratio on the LRF Gelation
3.2. MOF Catalysis of LRF Cryogels Gelation
3.3. Characterization of LRF Carbon Cryogels
3.4. Electrochemical Performances of LRF Carbon Cryogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Li, Z.; Hao, F.; Wang, X.; Li, Q.; Qi, Y.; Fan, R.; Yin, L. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv. Funct. Mater. 2014, 24, 2500–2510. [Google Scholar] [CrossRef]
- Tian, H.; Liang, J.; Liu, J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 2019, 31, 1903886. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; He, Z.J.; Liu, Z.H.; Ragauskas, A.J.; Li, B.Z.; Yuan, Y.J. Emerging modification technologies of lignin-based activated carbon toward advanced applications. ChemSusChem 2022, 15, e202201284. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Ma, L.; Renner, P.; Parkinson, D.Y.; Liang, H. Design and synthesis of lignin-based flexible supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 498–511. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M. Pore structure improvement of lignin composite carbon aerogels by introducing manganese ion and its application in supercapacitors. Mater. Res. Express 2019, 6, 065036. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, S.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. 2011, 50, 5947–5952. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.T.; Ma, R.; Wang, P.; Xin, J.; Zhang, J.; Wolcott, M.P.; Zhang, X. Deep eutectic solvent assisted facile synthesis of lignin-based cryogel. Macromolecules 2018, 52, 227–235. [Google Scholar] [CrossRef]
- Wu, X.L.; Wen, T.; Guo, H.L.; Yang, S.; Wang, X.; Xu, A.W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597. [Google Scholar] [CrossRef]
- Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Electrochemical performance of Cu- and Ag- doped carbon aerogels. Mater. Chem. Phys. 2013, 138, 870–876. [Google Scholar] [CrossRef]
- Zapata-Benabithe, Z.; de Vicente, J.; Carrasco-Marín, F.; Moreno-Castilla, C. Synthesis, surface characteristics, and electrochemical capacitance of Cu-doped carbon xerogel microspheres. Carbon 2013, 55, 260–268. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Rubio, F.; del Monte, F. Resorcinol-formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites. Chem. Mater. 2010, 22, 2711–2719. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Ma, Z.; Wang, Y.; Zhang, S.; Yan, L. Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chem. 2021, 23, 5120–5128. [Google Scholar] [CrossRef]
- Geng, S.; Wei, J.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage. ACS Appl. Mater. Inter. 2020, 12, 7432–7441. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour. Technol. 2019, 281, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Grishechko, L.I.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.N.; Celzard, A. Lignin-phenol-formaldehyde aerogels and cryogels. Micropor. Mesopor. Mat. 2013, 168, 19–29. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Nagaraju, D.H.; Jiang, L.; Marinov, V.R.; Lubineau, G.; Oh, M. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 2015, 25, 3193–3202. [Google Scholar] [CrossRef]
- Baumann, T.F.; Fox, G.A.; Satcher, J.H.; Yoshizawa, N.; Fu, R.; Dresselhaus, M.S. Synthesis and characterization of copper-doped carbon aerogels. Langmuir 2002, 18, 7073–7076. [Google Scholar] [CrossRef]
- Usman, M.; Zeb, Z.; Ullah, H.; Suliman, M.H.; Humayun, M.; Ullah, L.; Saeed, M. A review of metal-organic frame-works/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. J. Environ. Chem. Eng. 2022, 3, 107548. [Google Scholar] [CrossRef]
- Helal, A.; Shah, S.S.; Usman, M.; Khan, M.Y.; Aziz, M.A.; Rahman, M.M. Potential applications of nickel-based metal-organic frameworks and their derivatives. Chem. Rec. 2022, 22, e202200055. [Google Scholar] [CrossRef]
- Li, R.; Huang, D.; Lei, L.; Chen, S.; Chen, Y.; Wang, G.; Du, L.; Zhou, W.; Tao, J.; Chen, H. Lignin and metal-organic frameworks: Mutual partners on the road to sustainability. J. Mater. Chem. A 2023, 11, 2595–2618. [Google Scholar] [CrossRef]
- Sun, J.; Shang, M.; Zhang, M.; Yu, S.; Yuan, Z.; Yi, X.; Filatov, S.; Zhang, J. Konjac glucomannan/cellulose nanofibers composite aerogel supported HKUST-1 for CO2 adsorption. Carbohyd. Polym. 2022, 293, 119720. [Google Scholar] [CrossRef]
- Gu, C.; Wang, Q.; Zhang, L.; Yang, P.; Xie, Y.; Fei, J. Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide@mesoporous carbon composite. Sensor. Actuat. B-Chem. 2020, 305, 127478. [Google Scholar] [CrossRef]
- Lou, R.; Ma, R.; Lin, K.T.; Ahamed, A.; Zhang, X. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 10248–10256. [Google Scholar] [CrossRef]
- Aziz, M.A.; Shah, S.S.; Nayem, S.M.A.; Shaikh, M.N.; Hakeem, A.S.; Bakare, I.A. Peat soil-derived silica doped porous graphitic carbon with high yield for high-performance all-solid-state symmetric supercapacitors. J. Energy Storage 2022, 50, 104278. [Google Scholar] [CrossRef]
- Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 2012, 41, 4996–5014. [Google Scholar] [CrossRef]
- Alcalde, R.; Gutiérrez, A.; Atilhan, M.; Aparicio, S. An experimental and theoretical investigation of the physicochemical properties on choline chloride-lactic acid based natural deep eutectic solvent (NADES). J. Mol. Liq. 2019, 290, 110916. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M.; Shi, S.; Cao, Y. Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Micropor. Mesopor. Mat. 2018, 265, 258–265. [Google Scholar] [CrossRef]
- Rong, K.; Wei, J.; Wang, Y.; Liu, J.; Qiao, Z.A.; Fang, Y.; Dong, S. Deep eutectic solvent assisted zero-waste electrospinning of lignin fiber aerogels. Green Chem. 2021, 23, 6065–6075. [Google Scholar] [CrossRef]
- Carriazo, D.; Gutierrez, M.C.; Ferrer, M.L.; del Monte, F. Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths. Chem. Mater. 2010, 22, 6146–6152. [Google Scholar] [CrossRef]
- Sing, K.S.W. Physisorption of nitrogen by porous materials. J. Porous Mater. 1995, 2, 5–8. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, J.; Li, L.; Kong, L.; Liu, S.; Guo, K.; Chen, X. Interconnected hierarchical porous carbon synthesized from freeze-dried celery for supercapacitor with high performance. Int. J. Energy Res. 2021, 45, 9058–9069. [Google Scholar] [CrossRef]
- Wan, C.; Jiao, Y.; Wei, S.; Zhang, L.; Wu, Y.; Li, J. Functional nanocomposites from sustainable regenerated cellulose aerogels: A review. Chem. Eng. J. 2019, 359, 459–475. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Wei, T.; Fan, Z.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Meng, C. Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors. ACS Appl. Energy Mater. 2019, 2, 3830–3839. [Google Scholar] [CrossRef]
- Yu, B.; Chang, Z.; Wang, C. The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Mater. Chem. Phys. 2016, 181, 187–193. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M. Microwave-assisted synthesis of Cu-doped hierarchical porous carbon aerogels derived from lignin for high-performance supercapacitors. Mater. Res. Express 2018, 5, 095002. [Google Scholar] [CrossRef]
- Lou, R.; Tian, J.; Zhang, Y.; Chen, W. Fabrication of hierarchical lignin-based carbon through direct high-temperature pyrolysis and its electrochemical application. ACS Omega 2021, 6, 34129–34136. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, R.; Wang, D.W.; Jiang, S.P.; Yamauchi, Y.; Qiao, S.Z.; Monteiro, M.J.; Liu, J. Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chem. Commun. 2015, 51, 2518–2521. [Google Scholar] [CrossRef]
- Lou, R.; Liu, Y.; Tian, J.; Zhang, Y. Preparation of LNP-based hierarchical porous carbon and its electrochemical properties. Chem. Ind. Eng. Prog. 2022, 41, 3170–3178. [Google Scholar] [CrossRef]
- Guo, S.; Li, H.; Zhang, X.; Nawaz, H.; Chen, S.; Zhang, X.; Xu, F. Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance. Carbon 2021, 174, 500–508. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; Wang, S. Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon 2022, 199, 258–268. [Google Scholar] [CrossRef]
Entry# | LNP (mg) | Resorcinol (mg) | Formaldehyde (mg) | HKUST–1 (mg) | ChCl to LA | Gelation Time (h) |
---|---|---|---|---|---|---|
DES1:2 | 150 | 50 | 200 | – | 1:2 | 48 |
DES1:2+5%MOF | 150 | 50 | 200 | 7.5 | 1:2 | 16 |
DES1:2+10%MOF | 150 | 50 | 200 | 15 | 1:2 | 9 |
DES1:5 | 150 | 50 | 200 | – | 1:5 | 11 |
DES1:5+5%MOF | 150 | 50 | 200 | 7.5 | 1:5 | 4 |
DES1:5+10%MOF | 150 | 50 | 200 | 15 | 1:5 | 5 |
DES1:10 | 150 | 50 | 200 | – | 1:10 | 6 |
DES1:10+5%MOF | 150 | 50 | 200 | 7.5 | 1:10 | 5 |
DES1:10+10%MOF | 150 | 50 | 200 | 15 | 1:10 | 5 |
Sample | SBET (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | Pore Size (nm) |
---|---|---|---|---|---|
DES1:5 | 421 | 0.23 | 0.19 | 0.02 | 1.96 |
DES1:5+5%MOF | 457 | 0.26 | 0.21 | 0.05 | 1.96 |
DES1:5+10%MOF | 482 | 0.27 | 0.22 | 0.04 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, R.; Cao, Q.; Niu, T.; Zhang, Y.; Zhang, Y.; Wang, Z.; Zhang, X. Metal–Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications. Polymers 2023, 15, 1824. https://doi.org/10.3390/polym15081824
Lou R, Cao Q, Niu T, Zhang Y, Zhang Y, Wang Z, Zhang X. Metal–Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications. Polymers. 2023; 15(8):1824. https://doi.org/10.3390/polym15081824
Chicago/Turabian StyleLou, Rui, Qihang Cao, Taoyuan Niu, Yiyi Zhang, Yanan Zhang, Zhiwei Wang, and Xiao Zhang. 2023. "Metal–Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications" Polymers 15, no. 8: 1824. https://doi.org/10.3390/polym15081824
APA StyleLou, R., Cao, Q., Niu, T., Zhang, Y., Zhang, Y., Wang, Z., & Zhang, X. (2023). Metal–Organic-Framework-Mediated Fast Self-Assembly 3D Interconnected Lignin-Based Cryogels in Deep Eutectic Solvent for Supercapacitor Applications. Polymers, 15(8), 1824. https://doi.org/10.3390/polym15081824