Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization
Abstract
1. Introduction
2. Experimental
2.1. Materials and Methods of Synthesis
2.2. The Determination of CMC
2.3. Methods of Molecular Hydrodynamics and Optics
2.4. Investigation of Self-Assembly of polyOPG8OEG8MA-DMAPMA in Aqueous Solutions
3. Results and Discussion
3.1. Synthesis, Structure, Molar Masses, and Hydrodynamic Characteristics of polyOPG8OEG8MA-DMAPMA
3.2. Characteristics of polyOPG8OEG8MA-DMAPMA in Aqueous Solutions at Room Temperatures
3.3. Characteristics of Aqueous Solutions of polyOPG8OEG8MA-DMAPMA on Heating
3.4. The Dependence of Phase Separation Temperatures on the Concentration of polyOPG8OEG8MA-DMAPMA 90:10 Solution
3.5. The Influence of Composition of Copolymers on Phase Separation Temperatures at Fixed Concentration and pH Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanno, R.; Tanaka, K.; Takaya, I.; Ouchi, M.; Terashima, T. Reversible Co-Self-Assembly and Self-Sorting Systems of Polymer Micelles in Water: Polymers Switch Association Partners in Response to Salts. Macromolecules 2022, 55, 5213–5221. [Google Scholar] [CrossRef]
- Hogan, K.J.; Mikos, A.G. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer 2020, 211, 123063. [Google Scholar] [CrossRef]
- Varlas, S.; Lawrenson, S.B.; Arkinstall, L.A.; O’Reilly, R.K.; Foster, J.C. Self-assembled nanostructures from amphiphilic block copolymersprepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278. [Google Scholar] [CrossRef]
- da Silva, J.B.; Haddow, P.; Bruschi, M.L.; Cook, M.T. Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate)-ran-(polyethylene glycol methacrylate) graft copolymers exhibiting temperature-dependent rheology and self-assembly. J. Mol. Liquids. 2022, 346, 117906. [Google Scholar] [CrossRef]
- Zhang, B.-Y.; He, W.-D.; Li, W.-T.; Li, L.-Y.; Zhang, K.-R.; Zhang, H. Preparation of block-brush PEG-b-P(NIPAM-g-DMAEMA) and its dual stimulus-response. Polymer 2010, 51, 3039–3046. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Y. Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polym. Chem. 2019, 10, 2212–2222. [Google Scholar] [CrossRef]
- Xiao, L.; Li, J.; Peng, G.; Huang, G. The effect of grafting density and side chain length on the conformation of PEG grafted bottlebrush polymers. React. Funct. Polym. 2020, 156, 104736. [Google Scholar] [CrossRef]
- Johnson, E.C.; Gresham, I.J.; Prescott, S.W.; Nelson, A.; Wanless, E.J.; Webber, G.B. The direction of influence of specific ion effects on a pH and temperature responsive copolymer brush is dependent on polymer charge. Polymer 2021, 214, 123287. [Google Scholar] [CrossRef]
- Goseki, R.; Miyao, S.; Uchida, S.; Yokoyama, H.; Ito, K.; Ishizone, T. Surface characterization of amphiphilic block copolymers possessing polyisoprene and poly[tri(ethylene glycol) methacrylate] segments and the effect of side chain ω-function on surface energy. Polymer 2020, 190, 122257. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q.; Li, S.; Dan, M.; Huo, F.; Zhang, W. Doubly thermo-responsive brush-linear diblock copolymers and formation of core-shell-corona micelles. Polymer 2014, 55, 1955e1963. [Google Scholar] [CrossRef]
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; Hao, Y.S.; Choi, W.; Liu, Y.; Peng, J.; Lin, Z. Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Srivastava, A.; Yadav, T.; Sharma, S.; Nayak, A.; Kumari, A.; Mishra, N. Polymers in Drug Delivery. J. Biosci. Medicines. 2016, 4, 69–84. [Google Scholar] [CrossRef]
- Vittorio, O.; Curcio, M.; Cojoc, M.; Goy, G.F.; Hampel, S.; Iemma, F.; Dubrovska, A.; Cirillo, G. Polyphenols delivery by polymeric materials: Challenges in cancer treatment Cirillo. Drug Deliv. 2017, 24, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Elezaby, R.S.; Gad, H.A.; Metwally, A.A.; Geneidi, A.S.; Awad, G.A. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J. Control Release 2017, 261, 43–61. [Google Scholar] [CrossRef]
- Hibino, M.; Tanaka, K.; Ouchi, M.; Terashima, T. Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules 2022, 55, 178–189. [Google Scholar] [CrossRef]
- Kalaiarasi, S.; Arjun, P.; Nandhagopal, S.; Brijitta, J.; Iniyan, A.M.; Vincent, S.G.P.; Kannan, R.R. Development of biocompatible nanogel for sustained drug release by overcoming the blood brain barrier in zebrafish model. J. Appl. Biomed. 2016, 14, 157–169. [Google Scholar] [CrossRef]
- Stolnik, S.; Illum, L.; Davis, S.S. Long circulating microparticulate drug carriers. Adv.Drug Deliv. Rev. 1995, 16, 195–214. [Google Scholar] [CrossRef]
- Sun, C.; Ding, Y.; Zhou, L.; Shi, D.; Sun, L.; Webster, T.J.; Shen, Y. Noninvasive nanoparticle strategies for brain tumor targeting Nanomedicine. Nanotechnol. Biol. Med. 2017, 13, 2605–2621. [Google Scholar] [CrossRef]
- Peng, B.; Grishkewich, N.; Yao, Z.; Han, X.; Liu, H.; Tam, K.C. Self-Assembly Behavior of Thermoresponsive Oligo(ethylene glycol) Methacrylates Random Copolymer. Macromol. Res. 2013, 21, 1338–1348. [Google Scholar] [CrossRef]
- Remzi Becer, C.; Hahn, S.; Fijten, M.W.M.; Thijs, H.M.L.; Hoogenboom, R.; Schubert, U.S. Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7138–7147. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Awsiuk, K.; Raczkowska, J.; Bernasik, A.; Janiszewska, N.; Da̧bczyński, P.; Kostruba, A.; Budkowski, A. Temperature- and pH-Responsive Schizophrenic Copolymer Brush Coatings with Enhanced Temperature Response in Pure Water. ACS Appl. Mater. Interfaces 2023, 15, 8676–8690. [Google Scholar] [CrossRef]
- Ahmed, M.; Narain, R. Progress of RAFT based polymers in gene delivery. Prog. Polym. Sci. 2013, 38, 767–790. [Google Scholar] [CrossRef]
- Simonova, M.; Kamorin, D.; Sadikov, A.; Filippov, A.; Kazantsev, O. The Influence of Synthesis Method on Characteristics of Buffer and Organic Solutions of Thermo- and pH-Responsive Poly(N-[3-(diethylamino)propyl] methacrylamide)s. Polymers. 2022, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Xu, X.; McCormick, C.L. Stimuli-responsive Amphiphilic (Co)polymers via RAFT Polymerization. Prog. Polym. Sci. 2010, 35, 45–93. [Google Scholar] [CrossRef]
- Neugebauer, D. Graft copolymers with poly(ethylene oxide) segments. Polym. Intern. 2007, 56, 1469–1498. [Google Scholar] [CrossRef]
- Qian, W.; Song, X.; Feng, C.; Xu, P.; Jiang, X.; Li, Y.; Huang, X. Construction of PEG-based amphiphilic brush polymers bearing hydrophobic poly(lactic acid) side chains via successive RAFT polymerization and ROP. Polym. Chem. 2016, 7, 3300–3310. [Google Scholar] [CrossRef]
- Xu, B.; Gu, G.; Feng, C.; Jiang, X.; Hu, J.; Zhanga, G.L.S.; Huang, X. (PAA-g-PS)-co-PPEGMEMA asymmetric polymer brushes: Synthesis, self-assembly, and encapsulating capacity for both hydrophobic and hydrophilic agents. Polym.Chem. 2016, 7, 613–624. [Google Scholar] [CrossRef]
- Shymborska, Y.; ·Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Halyna, O.; Budkowski, A. Impact of the various buffer solutions on the temperature-responsive properties of POEGMA-grafted brush coatings. Colloid Polym. Sci. 2022, 300, 487–495. [Google Scholar] [CrossRef]
- Simonova, M.; Kamorin, D.; Kazantsev, O.; Nepomnyashaya, M.; Filippov, A. Conformation, self-organization and thermoresponsibility of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains. Polymers 2021, 13, 2715. [Google Scholar] [CrossRef]
- Simonova, M.; Simagin, A.; Kamorin, D.; Orekhov, S.; Filippov, A.; Kazantsev, O. The Solution Properties of Polymethacrylate Molecular Brushes with Oligo(ethylene glycol) and Oligo(propylene glycol) Side Chains. Polymers 2022, 14, 5556. [Google Scholar] [CrossRef]
- Kamorin, D.M.; Simagin, A.S.; Orekhov, D.V.; Kazantsev, O.A.; Bolshakova, E.A.; Sivokhin, A.P.; Savinova, M.V.; Orekhov, S.V. Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block- oligo(propylene glycol) side chains. Polym. Bull. 2022, 79, 8599–8616. [Google Scholar] [CrossRef]
- Simagin, A.S.; Savinova, M.V.; Kamorin, D.M.; Kazantsev, O.A.; Orekhov, D.V.; Simonova, M.A.; Orekhov, S.V. Amino- and Sulfo-Containing Molecular Brushes Based on Oligo(ethylene glycol) (Meth)Acrylates: Synthesis and Properties in Solutions. Polym. Sci. Ser. C 2022, 64, 232–244. [Google Scholar] [CrossRef]
- Zhao, C.L.; Winnik, M.A.; Riess, G.; Croucher, M.D. Fluorescence probe techniques used to study micelle formation in watersoluble block copolymers. Langmuir 1990, 6, 514–516. [Google Scholar] [CrossRef]
- Naksuriya, O.; Shi, Y.; van Nostrum, C.F.; Anuchapreeda, S.; Hennink, W.E.; Okonogi, S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Europ. J. Pharm. Biopharm. 2015, 94, 501–512. [Google Scholar] [CrossRef]
- Tsvetkov, V.N. Rigid-Chain Polymers, 1st ed.; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Kratochvil, P. Classical Light Scattering from Polymer Solution, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 1–346. [Google Scholar]
- Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, 1st ed.; Springer: Berlin, Germany, 2007; pp. 1–187. [Google Scholar]
- Tsvetkov, V.N.; Lavrenko, P.N.; Bushin, S.V. Hydrodynamic invariant of polymer molecules. J. Polym. Sci. 1984, 22, 3447–3486. [Google Scholar] [CrossRef]
- Tsvetkov, V.N.; Lavrenko, P.N.; Bushin, S.V. A hydrodynamic invariant of polymeric molecules. Russ. Chem. Rev. 1982, 51, 975–993. [Google Scholar] [CrossRef]
- Smirnova, A.; Kirila, T.; Blokhin, A.; Kozina, N.; Kurlykin, M.; Tenkovtsev, A.; Filippov, A. Linear and star-shaped poly(2-ethyl-2-oxazine)s. Synthesis, characterization and conformation in solution. Europ. Polym. J. 2021, 156, 110637. [Google Scholar] [CrossRef]
- Filippov, A.P.; Zamyshlyayeva, O.G.; Tarabukina, E.B.; Simonova, M.A.; Kozlov, A.V.; Semchikov, Y.D. Structural and conformational properties of hyperbranched copolymers based on perfluorinated germanium hydrides. Polym. Sci. Ser. A 2012, 54, 319–329. [Google Scholar] [CrossRef]
- Filippov, A.P.; Belyaeva, E.V.; Krasova, A.S.; Simonova, M.A.; Meleshko, T.K.; Ilgach, D.M.; Bogorad, N.N.; Yakimansky, A.V.; Larin, S.V.; Darinskii, A.A. Conformations of molecular brushes based on polyimide and poly(methylmethacrylate) in selective solvents: Experiment and computer simulation. Polym. Sci. Ser. A 2014, 56, 393–404. [Google Scholar] [CrossRef]
- Simonova, M.; Ivanov, I.; Meleshko, T.; Kopyshev, A.; Santer, S.; Yakimansky, A.; Filippov, A. Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents. Polymers 2020, 12, 2922. [Google Scholar] [CrossRef] [PubMed]
- Simonova, M.; Ilgach, D.; Kaskevich, K.; Nepomnyashaya, M.; Litvinova, L.; Filippov, A.; Yakimansky, A. Novel Amphiphilic Polyfluorene-Graft-(Polymethacrylic Acid) Brushes: Synthesis, Conformation, and Self-Assembly. Polymers 2021, 13, 4429. [Google Scholar] [CrossRef] [PubMed]
Solvents | Mw × 10−3, g·mol−1 SLS | Rh-D, nm | [η], cm3·g−1 | A0 × 1010, erg·K−1mol−1/3 | Mw × 10−3, g·mol−1 SEC (in THF) | Đ (in THF) |
---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | ||||||
acetonitrile | 55 | 4.2 | 8.7 | 3.20 | 16 | 1.4 |
DMFA | - | 2.7 | - | |||
water | 5.8 * | |||||
polyOPG8OEG8MA-DMAPMA 90:10 | ||||||
acetonitrile | 50 | 3.9 | 7.2 | 2.90 | 15 | 1.3 |
DMFA | - | 2.2 | - | |||
water | 5.4 * | |||||
polyOPG8OEG8MA-DMAPMA 95:5 | ||||||
acetonitrile | 40 | 3.9 | 8.8 | 2.85 | 16 | 1.3 |
DMFA | - | 3.0 | ||||
water | 5.2 * | |||||
polyOPG8OEG8MA | ||||||
acetonitrile | 50 | 4.2 | 5.4 | 2.40 | 17 | 1.2 |
DMFA | 3.5 | |||||
water | 4.9 * |
Sample | M0-cp, g∙mol−1 | Mw × 10−3, g∙mol−1 | Nb | Lb, nm | Lsc, nm | LDMAPMA, nm |
---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 757 | 55 | 73 | 18.4 | 6.4 | 0.9 |
polyOPG8OEG8MA-DMAPMA 90:10 | 831 | 50 | 60 | 15.1 | 6.4 | 0.9 |
polyOPG8OEG8MA-DMAPMA 95:5 | 867 | 40 | 46 | 11.6 | 6.4 | 0.9 |
polyOPG8OEG8MA | 904 | 50 | 55 | 13.9 | 6.4 | 0.9 |
Samples | pH | T1, °C | T2, °C | Rh-f Room, nm | Rh-s Room, nm | ΔT, °C | T ph °C | cf | CMC wt% |
---|---|---|---|---|---|---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 7 | 54 | 67 | 4.0 | 80.3 | 13 | 50 | 90 | 0.0013 |
polyOPG8OEG8MA-DMAPMA 90:10 | 7 | 46 | 56 | 4.2 | 83 | 10 | 50 | 96 | 0.0011 |
polyOPG8OEG8MA-DMAPMA 95:5 | 6 | 45 | 49 | 4.9 | 50 | 4 | 48 | 96 | 0.00057 |
polyOPG8OEG8MA | 6 | 44 | 47 | 5.4 | - | 3 | 46 | 96 | 0.00045 |
Concentration, g∙cm−3 | pH | T1, °C | T2, °C | Rh-F Room | Rh-s Room | ΔT, °C |
---|---|---|---|---|---|---|
polyOPG8OEG8MA 90:10 | ||||||
0.25 | 7 | 44 | 56 | 5.4 | 70 | 12 |
0.5 | 7 | 42 | 53 | 4.2 | 86 | 11 |
1 | 7 | 40 | 50 | 3.3 | 98 | 10 |
Samples | pH = 3.56 | pH = 6.86 | pH = 12.43 |
---|---|---|---|
polyOPG8OEG8MA-DMAPMA 80:20 | 56.0 | 49.0 | 46.8 |
polyOPG8OEG8MA-DMAPMA 90:10 | 50.1 | 46.5 | 46.8 |
polyOPG8OEG8MA-DMAPMA 95:5 | 47.4 | 45.1 | 47.0 |
polyOPG8OEG8MA | 45.4 | 44.1 | 47.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonova, M.; Kamorin, D.; Filippov, A.; Kazantsev, O. Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers 2023, 15, 1641. https://doi.org/10.3390/polym15071641
Simonova M, Kamorin D, Filippov A, Kazantsev O. Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers. 2023; 15(7):1641. https://doi.org/10.3390/polym15071641
Chicago/Turabian StyleSimonova, Maria, Denis Kamorin, Alexander Filippov, and Oleg Kazantsev. 2023. "Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization" Polymers 15, no. 7: 1641. https://doi.org/10.3390/polym15071641
APA StyleSimonova, M., Kamorin, D., Filippov, A., & Kazantsev, O. (2023). Synthesis, Characterization, Conformation in Solution, and Thermoresponsiveness of Polymer Brushes of methoxy[oligo (propylene glycol)-block-oligo(ethylene glycol)]methacrylate and N-[3-(dimethylamino)propyl]methacrylamide Obtained via RAFT Polymerization. Polymers, 15(7), 1641. https://doi.org/10.3390/polym15071641