Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silver Nanoparticles Synthesis
2.3. Latex Synthesis and Formulation Preparation
2.4. Material Preparation
2.4.1. Free-Standing Film Preparation
2.4.2. Sample Preparation
2.5. Characterization Methods
2.5.1. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
2.5.2. Cryo-Transmission Electron Microscopy (Cryo-TEM)
2.5.3. Scanning Electron Microscopy (SEM)
2.5.4. Sample Pre-Weathering
2.5.5. Black-Stain Fungi Resistance Tests
3. Results
3.1. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
3.2. Cryo-Transmission Electron Microscopy (Cryo-TEM)
3.3. Scanning Electron Microscopy (SEM)
3.4. Black-Stain Fungi Resistance Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharpe, P.R.; Dickson, D.J. Blue stain in service on wood surface coatings part II. The ability of A. pullulans to penetrate wood surface coatings. In Proceedings of the 23rd IRG Annual Meeting, Harrogate, UK, 10–14 May 1992. [Google Scholar]
- Ghosh, S.C.; Militz, H.; Mai, C. Natural Weathering of Scots Pine (Pinus sylvestris L.) Boards Modified with Functionalised Commercial Silicone Emulsions. BioResources 2009, 4, 659–673. [Google Scholar]
- Boivin, G.; Ritcey, A.; Landry, V. The effect of Silver Nanoparticles on the Black-Stain Resistance of Acrylic Resin for Translucent Wood Coating Application. BioResources 2019, 14, 6353–6369. [Google Scholar]
- Izdinsky, J.; Reinprecht, L.; Nosal, E. Antibacterial efficiency of silver and zinc-oxide nanoparticles in acrylate coating for surface treatment of wooden composites. Wood Res. 2018, 63, 365–372. [Google Scholar]
- Tomak, E.D.; Yazici, O.A.; Parmak, E.D.S.; Gonultas, O. Influence of tannin containing coatings on weathering resistance of wood: Combination with zinc and cerium oxide nanoparticles. Polym. Degrad. Stab. 2018, 152, 289–296. [Google Scholar] [CrossRef]
- Yadav, N. Cerium oxide nanostructures: Properties, biomedical applications and surface coatings. 3 Biotech 2022, 12, 121. [Google Scholar] [CrossRef]
- Nejad, M.; Shafaghi, R.; Pershin, L.; Mostaghimi, J.; Cooper, P. Thermal spray coating: A new way of protecting wood. Bioresources 2017, 1, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wu, Y.; Yang, F.; Wang, W. The Effect of Antibacterial and Waterproof Coating Prepared From Hexadecyltrimethoxysilane and Nano-Titanium Dioxide on Wood Properties. Front. Mater. 2021, 8, 699579. [Google Scholar] [CrossRef]
- Russell, A.; Hugo, W. 7 antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 351–370. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Cheng, L.; Ren, S.; Lu, X. Application of Eco-Friendly Waterborne Polyurethane Composite Coating Incorporated with Nano Cellulose Crystalline and Silver Nano Particles on Wood Antibacterial Board. Polymers 2020, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Zhang, S.; Wang, D.; Li, Y.; Zheng, P.; Gao, L.; Huo, D.; Cheng, L.; Wei, S. Study on antibacterial wood coatings with soybean protein isolate nano-silver hydrosol. Prog. Org. Coat. 2022, 165, 106766. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Pan, P. Preparation of Silver Antibacterial Agents with Different Forms and Their Effects on the Properties of Water-Based Primer on Tilia europaea Surface. Coatings 2021, 11, 1066. [Google Scholar] [CrossRef]
- Pereyra, A.M.; Gonzalez, M.R.; Rosato, V.G.; Basaldella, E.I. A-type zeolite containing Ag+/Zn2+ as inorganic antifungal for waterborne coating formulations. Prog. Org. Coat. 2014, 77, 213–218. [Google Scholar] [CrossRef]
- Can, A.; Palanti, S.; Sivrikaya, H.; Hazer, B.; Stefanı, P. Physical, biological and chemicalharacterizationn of wood treated with silver nanoparticles. Cellulose 2019, 26, 5075–5084. [Google Scholar] [CrossRef]
- Moya, R.; Rodriguez-Zuniga, A.; Berrocal, A.; Vega-Baudrit, J. Effect of silver nanoparticles synthesized with nPsAg-ethylene glycol (C2H6O2) on brown decay and white decay fungi of nine tropical woods. J. Nanosci. Nanotechnol. 2017, 17, 5233–5240. [Google Scholar] [CrossRef]
- Zielecka, M.; Bujnowska, E.; Kępska, B.; Wenda, M.; Piotrowska, M. Antimicrobial additives for architectural paints and impregnates. Prog. Org. Coat. 2011, 72, 193–201. [Google Scholar] [CrossRef]
- Landfester, K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 4488–4507. [Google Scholar] [CrossRef]
- Mori, Y.; Kawaguchi, H. Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization. Colloids Surf. B Biointerfaces 2007, 56, 246–254. [Google Scholar] [CrossRef]
- Chern, C.-S.; Liou, Y.-C. Styrene miniemulsion polymerization initiated by 2,2′-azobisisobutyronitrile. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2537–2550. [Google Scholar] [CrossRef]
- Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian, D.-J. Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 2007, 23, 5296–5304. [Google Scholar] [CrossRef] [PubMed]
- Stirling, R.; Uzunovic, A.; Morris, P.I. Control of black stain fungi with biocides in semitransparent wood coatings. For. Prod. J. 2011, 61, 359–364. [Google Scholar] [CrossRef]
- ASTM G155-21; Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Substrates. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D5590-00; Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay. ASTM International: West Conshohocken, PA, USA, 2010.
- Nordtest. Coatings: Mold resistance (NT Build 338); Nordtest: Espoo, Finland, 1988; 13p, Available online: http://www.nordtest.info/index.php/methods/building/item/coatingsmould-resistance-nt-build-338.html (accessed on 8 November 2022).
- Desbiens, J. Synthèse et Caractérisation de Nanoparticules de Polymère Dopées d’un Complexe Luminescent et de Nanoparticules D’argent; Université Laval: Québec, QC, Canada, 2012. [Google Scholar]
- Martinez-Castanon, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Helmlinger, J.; Sengstock, C.; Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T.A.; Köller, M.; Epple, M. Silver nanoparticles with different size and shape: Equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016, 6, 18490–18501. [Google Scholar] [CrossRef] [Green Version]
- Gibała, A.; Zeliszewska, P.; Gosiewski, T.; Krawczyk, A.; Duraczynska, D.; Szaleniec, J.; Szaleniec, M.; Ocwieja, M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021, 11, 1481. [Google Scholar] [CrossRef]
- Bondarenko, O.; Ivask, A.; Kakinen, A.; Kurvet, I.; Kahru, A. Particle–cell contact enhances antibacterial activity of silver nanoparticles. PLoS ONE 2013, 8, e64060. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Li, J.; Cui, L.; Xu, B.; Zhang, H.; Yu, C.-P. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 2013, 90, 1404–1411. [Google Scholar] [CrossRef]
- Hwang, E.T.; Lee, J.H.; Chae, Y.J.; Kim, Y.S.; Kim, B.C.; Sang, B.-I.; Gu, M.B. Analysis of the Toxic Mode of Action of Silver Nanoparticles Using Stress-Specific Bioluminescent Bacteria. Small 2008, 4, 746–750. [Google Scholar] [CrossRef]
- Ivask, A.; El-Badawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.-H.; Liu, R.; Tolaymat, T.; Telesca, D.; et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 2014, 8, 374–386. [Google Scholar] [CrossRef]
- Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [Green Version]
- Durán, N.; Marcato, P.D.; De Conti, R.; Alves, O.L.; Costa, F.T.M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 2010, 21, 949–959. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.; Evgrafova, S.; Cho, S.Y. The preparation of Ag-nanoparticle-embedded paints and their antimicrobial activity. In Paints: Types, Components and Applications; Sarrica, S.M., Ed.; Nova Science Publisher’s: Hauppauge, NY, USA, 2011; pp. 161–167. [Google Scholar]
Formulation | Description | Initiator | Theoretical Fungicide Concentration [% on Total Formulation Weight] | Experimental Fungicide Concentration [% on Total Formulation Weight] * | Experimental Fungicide Concentration [% on Total Solid Weight] |
---|---|---|---|---|---|
A | Latex without fungicide | KPS | - | - | - |
B | Latex with IPBC and propiconazole | KPS | 0.1 IPBC + 1 propiconazole | - | 0.3 IPBC + 3 propiconazole |
C | Latex with Ag NPs | KPS | 0.11 | 0.04 | 0.1 |
D | Latex with Ag NPs | AIBN | 0.11 | 0.06 | 0.2 |
Parameters | |
---|---|
Exposition Time | 180 h |
Filter | Daylight—Q |
Irradiance (W/m2/nm) | 0.35 |
Wavelength (nm) | 340 |
Step 1 | 102 min of light, 30% RH, 63 °C (black panel temperature) |
Exposition time | 180 h |
Rating | Degree of Fungal Growth |
---|---|
0 | No visible growth |
1 | Black stain covering up to 10% of surfaces providing growth is not as intense or colored as to obscure the sample color over more than 5% of surfaces. |
2 | Black stain covering between 10% and 30% of surfaces providing growth is not as intense or colored as to obscure the sample color on more than 10% of surfaces. |
3 | Black stain covering between 30% and 70% of surfaces providing growth is not as intense or colored as to obscure the sample color on more than 30% of surfaces. |
4 | Black stain on greater than 70% of surfaces providing growth is not as intense or colored as to obscure the sample color over more than 70% of surfaces. |
5 | Black stain on 100% of surfaces or with less than 100% coverage and with intense or colored growth obscuring greater than 70% of the sample color. |
Formulations | Ag Concentration (mg/g) in Dry Film |
---|---|
With KPS | 4.85 |
With AIBN | 8.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boivin, G.; Ritcey, A.M.; Landry, V. Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance. Polymers 2023, 15, 1586. https://doi.org/10.3390/polym15061586
Boivin G, Ritcey AM, Landry V. Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance. Polymers. 2023; 15(6):1586. https://doi.org/10.3390/polym15061586
Chicago/Turabian StyleBoivin, Gabrielle, Anna M. Ritcey, and Véronic Landry. 2023. "Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance" Polymers 15, no. 6: 1586. https://doi.org/10.3390/polym15061586
APA StyleBoivin, G., Ritcey, A. M., & Landry, V. (2023). Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance. Polymers, 15(6), 1586. https://doi.org/10.3390/polym15061586