Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Membrane and Ionomer Preparation
2.2. Determination of Ion Exchange Capacity (IEC), Dimensional Variation and Swelling
2.3. In-Plane Anion Conductivity
2.4. Membrane Electrode Assembly (MEA)
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Membrane Characterization
3.2. Hardware Set-Up for AEM-DMFC Tests
3.3. AEM-DMFC Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. [Google Scholar] [CrossRef]
- Huang, W.C.; Zhang, Q.; You, F. Impacts of Battery Energy Storage Technologies and Renewable Integration on the Energy Transition in the New York State. Adv. Appl. Energy 2023, 9, 100126. [Google Scholar] [CrossRef]
- Pagliaro, M. Renewable Energy Systems: Enhanced Resilience, Lower Costs. Energy Technol. 2019, 7, 1900791. [Google Scholar] [CrossRef]
- Aricò, A.; Baglio, V.; Antonucci, V. Direct Methanol Fuel Cells: History, Status and Perspectives. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; Volume 7, pp. 1–78. [Google Scholar] [CrossRef]
- Barton, S.C.; Patterson, T.; Wang, E.; Fuller, T.F.; West, A.C. Mixed-Reactant, Strip-Cell Direct Methanol Fuel Cells. J. Power Sources 2001, 96, 329–336. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.M.; Pinto, A.M.F.R. Review on Micro-Direct Methanol Fuel Cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef]
- Wee, J.H. A Feasibility Study on Direct Methanol Fuel Cells for Laptop Computers Based on a Cost Comparison with Lithium-Ion Batteries. J. Power Sources 2007, 173, 424–436. [Google Scholar] [CrossRef]
- Ali, S.; Razzaq, A.; Kim, H.; In, S.-I. Activity, Selectivity, and Stability of Earth-Abundant CuO/Cu2O/Cu0-Based Photocatalysts toward CO2 Reduction. Chem. Eng. J. 2022, 429, 131579. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2017, 5, 1700275. [Google Scholar] [CrossRef]
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Zhang, B.; Gong, F.; Feng, J.; Huang, H.; Vanka, S.; Fan, R.; Cao, Q.; Shen, M.; et al. Renewable Formate from Sunlight, Biomass and Carbon Dioxide in a Photoelectrochemical Cell. Nat. Commun. 2023, 14, 1013. [Google Scholar] [CrossRef]
- De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What Would It Take for Renewably Powered Electrosynthesis to Displace Petrochemical Processes? Science 2019, 364, 3506. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, X.; Sun, H.; Wang, S.; Sun, G. Recent Advances in Multi-Scale Design and Construction of Materials for Direct Methanol Fuel Cells. Nano Energy 2019, 65, 104048. [Google Scholar] [CrossRef]
- Rambabu, G.; Bhat, S.D.; Figueiredo, F.M.L. Carbon Nanocomposite Membrane Electrolytes for Direct Methanol Fuel Cells—A Concise Review. Nanomaterials 2019, 9, 1292. [Google Scholar] [CrossRef] [PubMed]
- Donnadio, A.; Pica, M.; Carbone, A.; Gatto, I.; Posati, T.; Mariangeloni, G.; Casciola, M. Double Filler Reinforced Ionomers: A New Approach to the Design of Composite Membranes for Fuel Cell Applications. J. Mater. Chem. A Mater. 2015, 3, 23530–23538. [Google Scholar] [CrossRef]
- Prapainainar, P.; Du, Z.; Theampetch, A.; Prapainainar, C.; Kongkachuichay, P.; Holmes, S.M. Properties and DMFC Performance of Nafion/Mordenite Composite Membrane Fabricated by Solution-Casting Method with Different Solvent Ratio. Energy 2020, 190, 116451. [Google Scholar] [CrossRef]
- Yadav, V.; Niluroutu, N.; Bhat, S.D.; Kulshrestha, V. Sulfonated Poly(Ether Sulfone) Based Sulfonated Molybdenum Sulfide Composite Membranes: Proton Transport Properties and Direct Methanol Fuel Cell Performance. Mater. Adv. 2020, 1, 820–829. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; di Noto, V. An Efficient Barrier toward Vanadium Crossover in Redox Flow Batteries: The Bilayer [Nafion/(WO3)x] Hybrid Inorganic-Organic Membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Monteverde Videla, A.H.A.; Fierro, J.L.G.; Ocón, P.; Specchia, S. Fe-N/C Catalysts for Oxygen Reduction Reaction Supported on Different Carbonaceous Materials. Performance in Acidic and Alkaline Direct Alcohol Fuel Cells. Appl. Catal B 2017, 205, 637–653. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Fang, Y.; Zhu, J.; Luo, H.; Qi, J.; Wu, W. Self-Assembled Flower-like MnO2 Grown on Fe-Containing Urea-Formaldehyde Resins Based Carbon as Catalyst for Oxygen Reduction Reaction in Alkaline Direct Methanol Fuel Cells. Appl. Surf. Sci. 2019, 496, 143566. [Google Scholar] [CrossRef]
- Mclean, G.F.; Niet, T.; Prince-Richard, S.; Djilali, N. An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy 2002, 27, 507–526. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Lyu, X.; Gatto, I.; Zulevi, B.; Serov, A.; Baglio, V.; Vecchio, C.L.; Gatto, I.; Baglio, V. Performance Investigation of Alkaline Direct Methanol Fuel Cell with Commercial PGM-Free Cathodic Materials. J. Power Sources 2023, 561, 232732. [Google Scholar] [CrossRef]
- Janarthanan, R.; Kishore Pilli, S.; Horan, J.L.; Gamarra, D.A.; Hibbs, M.R.; Herring, A.M. A Direct Methanol Alkaline Fuel Cell Based on Poly(Phenylene) Anion Exchange Membranes. J. Electrochem. Soc. 2014, 161, F944–F950. [Google Scholar] [CrossRef]
- Antolini, E.; Gonzalez, E.R. Alkaline Direct Alcohol Fuel Cells. J. Power Sources 2010, 195, 3431–3450. [Google Scholar] [CrossRef]
- Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Brandon, N.P. Review of Gas Diffusion Cathodes for Alkaline Fuel Cells. J. Power Sources 2009, 187, 39–48. [Google Scholar] [CrossRef]
- Sajjad, S.D.; Liu, D.; Wei, Z.; Sakri, S.; Shen, Y.; Hong, Y.; Liu, F. Guanidinium Based Blend Anion Exchange Membranes for Direct Methanol Alkaline Fuel Cells (DMAFCs). J. Power Sources 2015, 300, 95–103. [Google Scholar] [CrossRef]
- Gupta, U.K.; Pramanik, H. Electrooxidation Study of Pure Ethanol/Methanol and Their Mixture for the Application in Direct Alcohol Alkaline Fuel Cells (DAAFCs). Int. J. Hydrogen Energy 2019, 44, 421–435. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Slade, R.C.T.; Yee, E.L.H.; Poynton, S.D.; Driscoll, D.J. Investigations into the Ex Situ Methanol, Ethanol and Ethylene Glycol Permeabilities of Alkaline Polymer Electrolyte Membranes. J. Power Sources 2007, 173, 194–199. [Google Scholar] [CrossRef][Green Version]
- Prakash, G.K.S.; Krause, F.C.; Viva, F.A.; Narayanan, S.R.; Olah, G.A. Study of Operating Conditions and Cell Design on the Performance of Alkaline Anion Exchange Membrane Based Direct Methanol Fuel Cells. J. Power Sources 2011, 196, 7967–7972. [Google Scholar] [CrossRef]
- Santasalo-Aarnio, A.; Hietala, S.; Rauhala, T.; Kallio, T. In and Ex Situ Characterization of an Anion-Exchange Membrane for Alkaline Direct Methanol Fuel Cell (ADMFC). J. Power Sources 2011, 196, 6153–6159. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Carbone, A.; Trocino, S.; Gatto, I.; Patti, A.; Baglio, V.; Aricò, A.S. Anionic Exchange Membrane for Photo-Electrolysis Application. Polymers 2020, 12, 2991. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Zignani, S.C.; Gatto, I.; Trocino, S.; Aricò, A.S. Assessment of the FAA3-50 Polymer Electrolyte in Combination with a NiMn2O4 Anode Catalyst for Anion Exchange Membrane Water Electrolysis. Int. J. Hydrogen Energy 2020, 45, 9285–9292. [Google Scholar] [CrossRef]
- Carbone, A.; Pedicini, R.; Gatto, I.; Saccà, A.; Patti, A.; Bella, G.; Cordaro, M. Development of Polymeric Membranes Based on Quaternized Polysulfones for AMFC Applications. Polymers 2020, 12, 283. [Google Scholar] [CrossRef] [PubMed]
- Gatto, I.; Caprì, A.; lo Vecchio, C.; Zignani, S.; Patti, A.; Baglio, V. Optimal Operating Conditions Evaluation of an Anion-Exchange-Membrane Electrolyzer Based on FUMASEP® FAA3-50 Membrane. Int. J. Hydrogen Energy 2023, 48, 11914–11921. [Google Scholar] [CrossRef]
- Mazin, P.V.; Kapustina, N.A.; Tarasevich, M.R. Direct Ethanol Oxidation Fuel Cell with Anionite Membrane and Alkaline Electrolyte. Russ. J. Electrochem. 2011, 47, 275–281. [Google Scholar] [CrossRef]
- Hertz, J.; Shen, W. Non-Flooding Polymer Electrolyte Fuel Cell. Patent Application No. WO2012071495, 23 December 2011. [Google Scholar]
- Galvan, V.; Shrimant, B.; Bae, C.; Prakash, G.K.S. Ionomer Significance in Alkaline Direct Methanol Fuel Cell to Achieve High Power with a Quarternized Poly(Terphenylene) Membrane. ACS Appl. Energy Mater 2021, 4, 5858–5867. [Google Scholar] [CrossRef]
- Chaabane, L.; Bulvestre, G.; Larchet, C.; Nikonenko, V.; Deslouis, C.; Takenouti, H. The Influence of Absorbed Methanol on the Swelling and Conductivity Properties of Cation-Exchange Membranes. Evaluation of Nanostructure Parameters. J. Memb. Sci. 2008, 323, 167–175. [Google Scholar] [CrossRef]
- Sherazi, T.A.; Yong Sohn, J.; Moo Lee, Y.; Guiver, M.D. Polyethylene-Based Radiation Grafted Anion-Exchange Membranes for Alkaline Fuel Cells. J. Membr. Sci. 2013, 441, 148–157. [Google Scholar] [CrossRef]
- Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Aric, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E. Performance Comparison of Portable Direct Methanol Fuel Cell Mini-Stacks Based on a Low-Cost Fluorine-Free Polymer Electrolyte and Nafion Membrane. Electrochim. Acta. 2010, 55, 6022–6027. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Havas, D.; Zhang, H.; Xu, P.; Han, J.; Cho, J.; Wu, G. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode. Adv. Sci. 2016, 3, 1600140. [Google Scholar] [CrossRef]
- lo Vecchio, C.; Serov, A.; Romero, H.; Lubers, A.; Zulevi, B.; Aricò, A.S.; Baglio, V. Commercial Platinum Group Metal-Free Cathodic Electrocatalysts for Highly Performed Direct Methanol Fuel Cell Applications. J. Power Sources 2019, 437, 226948. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Wu, Y.; Xu, H.; Chi, X.; Li, W.; Yang, Y.; Yan, G.; Zhuang, Y. Novel Fluoropolymer Anion Exchange Membranes for Alkaline Direct Methanol Fuel Cells. J. Colloid. Interface Sci. 2012, 381, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Qu, T.; Shu, C.Y.; Liu, Y.; He, Y.; Zhai, W.; Guo, S.W.; Liu, L.; Liu, Y.N. High-Performance Polymer Fiber Membrane Based Direct Methanol Fuel Cell System with Non-Platinum Catalysts. ACS Sustain. Chem. Eng. 2019, 7, 17145–17153. [Google Scholar] [CrossRef]
- Fashedemi, O.O.; Mwonga, P.v.; Miller, H.A.; Maphanga, R.R.; Vizza, F.; Ozoemena, K.I. Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells. Electrocatalysis 2021, 12, 295–309. [Google Scholar] [CrossRef]
- da Silva Freitas, W.; Mecheri, B.; lo Vecchio, C.; Gatto, I.; Baglio, V.; Ficca, V.C.A.; Patra, A.; Placidi, E.; D’Epifanio, A. Metal-Organic-Framework-Derived Electrocatalysts for Alkaline Polymer Electrolyte Fuel Cells. J. Power Sources 2022, 550, 232135. [Google Scholar] [CrossRef]
- Msomi, P.F.; Nonjola, P.T.; Ndungu, P.G.; Ramontja, J. Poly (2, 6-Dimethyl-1, 4-Phenylene)/Polysulfone Anion Exchange Membrane Blended with TiO2 with Improved Water Uptake for Alkaline Fuel Cell Application. Int. J. Hydrogen Energy 2020, 45, 29465–29476. [Google Scholar] [CrossRef]
- Joghee, P.; Pylypenko, S.; Wood, K.; Bender, G.; O’Hayre, R. High-Performance Alkaline Direct Methanol Fuel Cell Using a Nitrogen-Postdoped Anode. ChemSusChem 2014, 7, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Jurzinsky, T.; Bär, R.; Cremers, C.; Tübke, J.; Elsner, P. Highly Active Carbon Supported Palladium-Rhodium PdXRh/C Catalysts for Methanol Electrooxidation in Alkaline Media and Their Performance in Anion Exchange Direct Methanol Fuel Cells (AEM-DMFCs). Electrochim. Acta 2015, 176, 1191–1201. [Google Scholar] [CrossRef]
Membrane | KOH Uptake, % | λ | A, % | Th, % | [OH], M | Dσ, cm2/s | Eatt, kJ/mol |
---|---|---|---|---|---|---|---|
FAA3-50 (1 M KOH) | 70 | 25 | 33 | 12 | 1.1 | 7.17 × 10−6 | 27.4 |
FAA3-50 1 M KOH + 1 M MeOH | 86 | 30 | 56 | 7 | 1.1 | 1.06 × 10−6 | 26.5 |
FAA3-50 (1 M KOH/1 M MeOH mixture) | 86 | 30 | 35 | 13 | 1.0 | 1.53 × 10−6 | 41.0 |
Reference | Working Temperature (°C) | Anode and Pt Loading (mg cm−2) | Anionic Exchange Membrane Electrolyte | Cathode Catalyst Loading (mg cm−2) | [MeOH]/ [KOH] (mol/L) | Open Circuit Voltage (V) | Maximum Power Density (mW cm−2) |
---|---|---|---|---|---|---|---|
Sajjad et al. [27] | 25 | Pt/C 1.0 | Guanidinium–chitosan | Pt/C 1.0 | 3 M/1 M | 0.69 | 2.0 |
Gupta et al. [28] | 30 | PtRu/C 1.0 | KOH-doped PVA | Pt/C 1.0 | 3 M/6 M | 0.60 | 7.1 |
Janarthanan et al. [24] | 80 | Pt/C 2.5 | TMAC6PP | Pt/C 2.5 | 1 M/1 M | 0.84 | 53.8 |
Janarthanan et al. [24] | Pt/C 2.5 | TMAC6PP | Pt/C 2.5 | 1 M/KOH-free | 0.56 | 3.97 | |
Varcoe et al. [29] | 50 | Poly(ethylene-co-tetrafluoro ethylene) | 2 M/KOH-free | 0.48 | 2.16 | ||
Prakash et al. [30] | 60 | PtRu 8.0 | Tokuyama | Pt 8.0 | 1 M/1 M | 0.79 | 56.0 |
Zhang et al. [44] | 65 | PtRu/C 1.0 | AQPVBH | Pt/C 1.0 | 1 M/1 M NaOH | 0.71 | 53.2 |
Galvan et al. [38] | 60 | PtRu 0.7 | TPN | Pt 1.3 | 2 M/4 M | 0.71 | 151 |
Galvan et al. [38] | 60 | PtRu 0.7 | TPN | Pt 1.3 | 2 M/KOH-free | 0.58 | 20 |
Santasalo et al. [31] | 30 | PtRu/C 1.0 | FAA-2 Fumatech | Pt/C 1.0 | 1 M/KOH-free | 0.58 | 0.32 |
This work | 60 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.845 | 13.4 |
This work | 70 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.868 | 20.2 |
This work | 80 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/1 M | 0.874 | 33.2 |
This work | 60 | PtRu/C 1.5 | FAA3-50 Fumatech | Pt/C 1.0 | 1 M/KOH-free | 0.775 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Vecchio, C.; Carbone, A.; Gatto, I.; Baglio, V. Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers 2023, 15, 1555. https://doi.org/10.3390/polym15061555
Lo Vecchio C, Carbone A, Gatto I, Baglio V. Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers. 2023; 15(6):1555. https://doi.org/10.3390/polym15061555
Chicago/Turabian StyleLo Vecchio, Carmelo, Alessandra Carbone, Irene Gatto, and Vincenzo Baglio. 2023. "Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells" Polymers 15, no. 6: 1555. https://doi.org/10.3390/polym15061555
APA StyleLo Vecchio, C., Carbone, A., Gatto, I., & Baglio, V. (2023). Investigation of Fumasep® FAA3-50 Membranes in Alkaline Direct Methanol Fuel Cells. Polymers, 15(6), 1555. https://doi.org/10.3390/polym15061555