Photo-Durable Molecularly Oriented Liquid Crystalline Copolymer Film based on Photoalignment of N-benzylideneaniline
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Photoreaction
2.3. Hydrolysis of the Oriented Films
2.4. Characterization
3. Results and Discussion
3.1. Thermal and Spectroscopic Properties of the Copolymers
3.2. Axis-Selective Photoreaction of the Copolymer Films
3.3. Thermal Amplification of the Photoinduced Optical Anisotropy
3.4. Influence of the Annelaing Temperature
3.5. Hydrolysis of the Reoriented Film
3.6. Photo-Durability of Reoriented Films
3.7. Photo-Durability of Hydrolyzed Oriented Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kawatsuki, N.; Ono, H. Photoinduced Reorientation of Photo-Cross-Linkable Polymer Liquid Crystals and Applications to Highly Functionalized Optical Devices. In Organic Electronics and Photonics; Nalwa, H.S., Ed.; American Sci. Publishers: Stevenson Ranch, CA, USA, 2008; Volume 2, pp. 301–344. [Google Scholar]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials; John Wiley & Sons: West Sussex, UK, 2008. [Google Scholar]
- Eich, M.; Wendorff, J.H. Erasable holograms in polymeric liquid crystals. Macromol. Rapid Commun. 1987, 8, 467–471. [Google Scholar] [CrossRef]
- Todorov, T.; Nikolova, L.; Tomova, N. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 1984, 23, 4309–4312. [Google Scholar] [CrossRef]
- Kawatsuki, N.; Hasegawa, T.; Ono, H.; Tamoto, T. Formation of Polarization Gratings and Surface Relief Gratings in Photocrosslinkable Polymer Liquid Crystals by Polarization Holography. Adv. Mater. 2003, 15, 991–994. [Google Scholar] [CrossRef]
- Matsunaga, D.; Tamaki, T.; Akiyama, H.; Ichimura, K. Photofabrication of Micro-patterned Polarizing Elements for Stereoscopic Displays. Adv. Mater. 2002, 14, 1477–1480. [Google Scholar] [CrossRef]
- Schadt, M.; Seiberle, H.; Schuster, A.; Kelly, S.M. Photo-Generation of Linearly Polarized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters. Jpn. J. Appl. Phys. 1995, 34, 3240–3249. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, S.; Park, J. Monolithic, Hierarchical Surface Reliefs by Holographic Photofluidization of Azopolymer Arrays: Direct Visualization of Polymeric Flows. Adv. Funct. Mater. 2011, 21, 4412–4422. [Google Scholar] [CrossRef]
- Hisano, K.; Ota, M.; Aizawa, M.; Akamatsu, N.; Barrett, C.J.; Shishido, A. Single step creation of polarization gratings by scanning wave photopolymerization with unpolarized light. J. Opt. Soc. Am. B 2019, 36, D112–D118. [Google Scholar] [CrossRef]
- Xuan, Y.; Guo, Q.; Zhao, H.; Zhang, H. Full Stokes Polarization Imaging Based on Broadband Liquid Crystal Polarization Gratings. Crystals 2023, 13, 38. [Google Scholar] [CrossRef]
- Oh, C.; Escuti, M.J. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 2008, 33, 2287–2289. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, S.R.; Tabiryan, N.V.; Hoke, L.; Steeves, D.M.; Kimball, B. Polarization insensitive imaging through polarization gtarings. Opt. Lett. 2009, 17, 1817–1830. [Google Scholar]
- Vernon, J.P.; Serak, S.V.; Hakobyan, R.S.; Aleksanyan, A.K.; Tondiglia, V.P.; White, T.J.; Bunning, T.J.; Tabiryan, N.V. Recording polarization gratings with a standing spiral wave. Appl. Phys. Lett. 2013, 103, 201101. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, P.; Chuang, C.; Chao, Y.; Hsu, K.Y. Volume polarization holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate)photopolymer. Opt. Lett. 2011, 36, 3039–3041. [Google Scholar] [CrossRef]
- Kawatsuki, N. Photoalignment and Photoinduced Molecular Reorientation of Photosensitive Materials. Chem. Lett. 2011, 40, 548–554. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4175. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem. 2003, 13, 2037–2057. [Google Scholar] [CrossRef]
- Ichimura, K. Photoalignment of Liquid-Crystal Systems. Chem. Rev. 2000, 100, 1847–1874. [Google Scholar] [CrossRef]
- Kawatsuki, N.; Kawanishi, T.; Uchida, E. Photoinduced Cooperative Reorientation in Photoreactive Hydrogen-Bonded Copolymer Films and LC Alignment Using the Resultant Films. Macromolecules 2008, 41, 4642–4650. [Google Scholar] [CrossRef]
- Kawatsuki, N.; Matsushita, H.; Washio, T.; Kozuki, J.; Kondo, M.; Sasaki, T.; Ono, H. Photoinduced Orientation of Photoresponsive Polymers with N-Benzylideneaniline Derivative Side Groups. Macromolecules 2014, 47, 324–332. [Google Scholar] [CrossRef]
- Meier, J.G.; Ruhmann, R.; Stumpe, J. Planar and Homeotropic Alignment of LC polymers by the Combination of Photoorientation and Self-Organization. Macromolecules 2000, 33, 843–850. [Google Scholar] [CrossRef]
- Barachevsky, V.A. Photoanisotropic polymeric media and their application in optical devices. Proc. SPIE 1991, 1559, 184–193. [Google Scholar]
- Ichimura, K.; Akita, Y.; Akiyama, H.; Kudo, K.; Hayashi, Y. Photoreactivity of Polymers with Regioisomeric Cinnamate Side Chains and Their Ability to Regulate Liquid Crystal Alignment. Macromolecules 1997, 30, 903–911. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Pelzl, G.; Pirwitz, G.; Reznikov, Y.; Zaschke, H.; Kim, J.; Kwon, S.B. Photosensitive Materials on a Base of Polysiloxane for the Alignment of Nematic Liquid Crystals. Jpn. J. Appl. Phys. 1997, 36, 5693–5695. [Google Scholar] [CrossRef]
- Obi, M.; Morino, S.; Ichimura, K. Reversion of Photoalignment Direction of Liquid Crystals Induced by Cinnamate Polymer Films. Jpn. J. Appl. Phys. 1999, 38, L145–L147. [Google Scholar] [CrossRef]
- Ito, A.; Norisada, Y.; Inada, S.; Kondo, M.; Sasaki, T.; Sakamoto, M.; Ono, H.; Kawatsuki, N. Photoinduced Reorientation and Photofunctional Control of Liquid Crystalline Copolymers with In Situ-Formed N-Benzylideneaniline Derivative Side Groups. Langmuir 2021, 37, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Nishizono, T.; Kondo, M.; Kawatsuki, N. Photoinduced Molecular Reorientation of a Liquid Crystalline Polymer with a High Birefringence. Chem. Lett. 2021, 50, 912–915. [Google Scholar] [CrossRef]
- Sakai, A.; Nishizono, T.; Kondo, M.; Sasaki, T.; Sakamoto, M.; Ono, H.; Kawatsuki, N. Birefringence Control of Photoalignable Liquid Crystalline Polymers Based on an In Situ Exchange of Oriented Mesogenic Side Groups. Chem. Lett. 2022, 51, 91–93. [Google Scholar] [CrossRef]
- Shishido, A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym. J. 2010, 42, 525–533. [Google Scholar] [CrossRef]
- Rochon, P.; Gosselin, J. Optically induced and erased birefringence and dichroism in azoaromatic polymers. Appl. Phys. Lett. 1992, 60, 4–6. [Google Scholar] [CrossRef]
- Eich, M.; Wendroff, J. Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers. J. Opt. Soc. Am. B 1990, 7, 1428–1436. [Google Scholar] [CrossRef]
- Seki, T. New strategies and implications for the photoalignment of liquid crystalline polymers. Polym, J. 2014, 46, 751–768. [Google Scholar] [CrossRef]
- Seki, T.; Nagano, S.; Hara, M. Versatility of photoalignment techniques: From nematics to a wide range of functional materials. Polymer 2013, 54, 6053–6072. [Google Scholar] [CrossRef]
- Ishiguro, M.; Sato, D.; Shishido, A.; Ikeda, T. Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties. Langmuir 2007, 23, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Seki, T. Light-directed alignment, surface morphing and related processes: Recent trends. J. Mater. Chem. C 2016, 4, 7895–7910. [Google Scholar] [CrossRef]
- Shibaev, V.P.; Kostromin, S.G.; Ivanov, S.A. Polymers as Electroactive and Photooptical Media; Shibaev, V., Ed.; Springer: Berlin, Germany, 1996; pp. 37–110. [Google Scholar]
- Zettsu, N.; Ubukata, T.; Seki, T.; Ichimura, K. Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation. Adv. Mater. 2001, 13, 1693–1697. [Google Scholar] [CrossRef]
- Mitsui, S.; Nagano, S.; Hara, M.; Seki, T. SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens. Crystals 2017, 7, 52. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sasaki, Y.; Igawa, K.; Tsuji, H. Hydrogen bonding liquid crystalline benzoic acids with alkylthio groups: Phase transition behavior and insights into the cybotactic nematic phase. New J. Chem. 2017, 41, 6514–6522. [Google Scholar] [CrossRef]
- Kato, T.; Fréchet, M.J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 1989, 111, 8533–8534. [Google Scholar] [CrossRef]
- Praefcke, K.; Kohne, B.; Gündogan, B. 2,3,4-Trihexyloxy Cinnamic Acid–The First Example of a Novel Series of Biaxial Nematic Liquid Crystals. Mol. Cryst. Liq. Cryst. Lett. 1990, 7, 27–32. [Google Scholar]
- Gray, G.W.; Jones, B. Mesomorphism and Chemical Constitution. Part I. The n-Alkoxynaphtoic Acids. J. Chem. Soc. 1954, 683–686. [Google Scholar] [CrossRef]
- Kato, T.; Frechet, J.M.J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules 1989, 22, 3818–3819. [Google Scholar] [CrossRef]
- Kato, T.; Mizoshita, N.; Kishimoto, K. Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials. Angew. Chem. Int. Ed. 2006, 45, 38–68. [Google Scholar] [CrossRef]
- Kumar, U.; Kato, T.; Fréchet, J.M.J. Use of Intermolecular Hydrogen Bonding for the Induction od Liquid Crystallinity on the Side Chain of Polysiloxanes. J. Am. Chem. Soc. 1992, 114, 6630–6639. [Google Scholar] [CrossRef]
- Kan, R.O.; Furey, R.L. Photochemicsal Formation of 1,3-Diazetidines. J. Am. Chem. Soc. 1968, 90, 1666–1667. [Google Scholar] [CrossRef]
- Padwa, A.; Bergmark, W.; Pashayan, D. On the Mechanism of the Photoreduction of Aryl N-Alkylimines. J. Am. Chem. Soc. 1969, 91, 2653–2660. [Google Scholar] [CrossRef]
- Balgoh, G.; Schryver, F. The photochemistry of N-substituted benzaldimines. Tetrahedron Lett. 1969, 17, 1371–1372. [Google Scholar] [CrossRef]
- Wu, Y.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 2. Effect of Spacer Length of the Azobenzene Unit on the Alignment Behavior. Macromolecules 1998, 31, 1104–1108. [Google Scholar] [CrossRef]
- Wu, Y.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 3. Effect of Structure of Photochromic Moieties on the Alignment Behavior. Macromolecules 1998, 31, 4457–4463. [Google Scholar] [CrossRef]
- Date, R.W.; Fawcett, A.H.; Geue, T.; Haferkorn, J.; Malcolm, R.K.; Stumpe, J. Self-Ordering within Thin Films of Poly(olefin sulfone)s. Macromolecules 1998, 31, 4935–4949. [Google Scholar] [CrossRef] [PubMed]
- Charette, J.J.; Hoffmann, E.D. Physicochemical properties of Schiff bases. 4. Tautomeric equilibrium and kinetics of hydrolysis of N-benzylideneaniline derivatives. J. Org. Chem. 1979, 44, 2256–2262. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, B.; Behera, G.S. Hydrolysis of Schiff bases, 1. Kinetics and mechanism of spontaneous, acid, and base hydrolysis of N-(2/4-hydroxybenzylidene)-2-aminobenzothiazoles. Int. J. Chem. Kinet. 1991, 23, 639–654. [Google Scholar] [CrossRef]
- Stimson, V.R. Energy of Activation for the Acid-catalysed Hydrolysis of Esters. Nature 1955, 47, 175. [Google Scholar] [CrossRef]
(Co)Polymers | X (a) | Molecular Weight (b) Mn (Mw/Mn) | Thermal Property (°C) (c) (Transition Enthalpy, J/g) |
---|---|---|---|
PBA | 0 | 22,000 (1.5) | G 137 N 179 (29.3) I |
PN10 | 9 | 37,000 (2.6) | G 121 N 177 (24.6) I |
PN20 | 18 | 28,000 (2.5) | G 112 N 174 (19.0) I |
PN50 | 48 | 29,000 (2.1) | G 105 N1 163 (0.63) N2 205 (2.3) I |
PN100 | 100 | 49,000 (1.9) | G 75 N 295 I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, G.; Kondo, M.; Sakamoto, M.; Sasaki, T.; Ono, H.; Kawatsuki, N. Photo-Durable Molecularly Oriented Liquid Crystalline Copolymer Film based on Photoalignment of N-benzylideneaniline. Polymers 2023, 15, 1408. https://doi.org/10.3390/polym15061408
Nakajima G, Kondo M, Sakamoto M, Sasaki T, Ono H, Kawatsuki N. Photo-Durable Molecularly Oriented Liquid Crystalline Copolymer Film based on Photoalignment of N-benzylideneaniline. Polymers. 2023; 15(6):1408. https://doi.org/10.3390/polym15061408
Chicago/Turabian StyleNakajima, Gento, Mizuho Kondo, Moritsugu Sakamoto, Tomoyuki Sasaki, Hiroshi Ono, and Nobuhiro Kawatsuki. 2023. "Photo-Durable Molecularly Oriented Liquid Crystalline Copolymer Film based on Photoalignment of N-benzylideneaniline" Polymers 15, no. 6: 1408. https://doi.org/10.3390/polym15061408
APA StyleNakajima, G., Kondo, M., Sakamoto, M., Sasaki, T., Ono, H., & Kawatsuki, N. (2023). Photo-Durable Molecularly Oriented Liquid Crystalline Copolymer Film based on Photoalignment of N-benzylideneaniline. Polymers, 15(6), 1408. https://doi.org/10.3390/polym15061408