Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars
Abstract
:1. Introduction
2. Properties of FRP Reinforcement
3. Performance of Columns Reinforced with FRP Bars
4. Ultimate Capacity of RC Columns
4.1. Interaction n–m with Compression Bars
4.1.1. The Method Validation
4.1.2. Singularity of the Interaction Curve
4.2. Interaction n–m without the Compression Bars
5. Required Reinforcement
Application Example
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Notation
Af1, Af2 | cross-sectional area of FRP reinforcement |
Ef | tensil elastic modulus of FRP reinforcement |
Es | tensil elastic modulus of steel reinforcement |
M, Mu | bending moment, ultimate bending moment |
N, Nu | axial force, ultimate axial force |
a1, a2 | position in section of FRP reinforcement |
b | section width |
d | effective section height |
e | eccentricity of axial force |
h | section height |
fco | compressive strength of concrete |
ff | tensile strength of FRP reinforcement |
fsy | yield strength of steel reinforcement |
n, m | normalised axial force, normalised bending moment |
β | position of the reinforcement in the section factor |
ξ | relative compression zone depth |
ρ | reinforcement ratio |
εcu | ultimate strain of concrete |
εfu | ultimate tensile strain of FRP longitudinal reinforcement |
ω | mechanical reinforcement ratio |
References
- FRP Reinforcement in RC Structures; fib Bulletin, Technical Report, 40; fib: Lausanne, Switzerland, 2007; Available online: https://www.fib-international.org/publications/fib-bulletins/frp-reinforcement-in-rc-structures-115-detail.html#Ch01 (accessed on 10 January 2023).
- ACI 440.1R-03; Guide for the Design and Construction of Concrete Reinforced with FRB Bars. ACI Committe 440. ACI International: Farmington Hills, MI, USA, 2003.
- ACI 318-14; Building Code Requirements for Structural Concrete and Commentary. ACI: Farmington Hills, MI, USA, 2014.
- CSA S806–12; Design and Construction of Building Components with Fiber-Reinforced Polymers. Canadian Standards Association: Mississauga, ON, Canada, 2012.
- CNR-DT-203/2006; Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars. CNR Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2006.
- Japan Society of Civil Engineers. Recommendation for design and construction of concrete structures using continuums fiber reinforcing materials. Concr. Eng. Ser. JSCE 1997, 23, 325. [Google Scholar]
- Gudonis, E.; Timinskas, E.; Gribniak, V.; Kaklauskas, A.; Arnautov, A.K.; Tamulenas, G. FRP reinforcement for concrete structures: State-of-the-art review of application and design. Eng. Struct. Technol. 2013, 5, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Kotynia, R. Wymiarowanie i kształtowanie wybranych konstrukcji betonowych ze zbrojeniem niemetalicznym (Design and details of selected concrete structures with non-metallic reinforcement). In Proceedings of the XXXIII Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, Poland, 6–9 March 2018; Volume 2, pp. 295–408. [Google Scholar]
- PN-EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Ye, Y.-Y.; Zhuge, Y.; Smith, S.T.; Zeng, J.-J.; Bai, Y.-L. Behavior of GFRP-RC columns under axial compression: Assessment of existing models and a new axial load-strain model. J. Build. Eng. 2022, 47, 103782. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad JSheikh, M.N.; Yu, T.; Hadi, M.N.S. Analytical load-moment (P-M) interaction diagrams of GFRP bar reinforced circular geopolymer concrete columns. Structures 2021, 34, 2445–2454. [Google Scholar] [CrossRef]
- fib Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013; Available online: https://www.fib-international.org/publications/model-codes.html?gclid=Cj0KCQiA3eGfBhCeARIsACpJNU8j1rhgSDuWAy9a8czpuU2i9k6DrrLNkt4xIPLfFmENLOGNuAX6i3MaAq_dEALw_wcB (accessed on 10 January 2023).
- Szmigiera, E.D.; Protchenko, K.; Urbański, M.; Garbacz, A. Mechanical properties of hybrid FRP bars and nano-hybrid FRP bars. Arch. Civ. Eng. 2019, 65, 97–110. [Google Scholar] [CrossRef] [Green Version]
- AlNajmi, L.; Abed, F. Evaluation of FRP bars under compression and their performance in RC columns. Materials 2020, 13, 4541. [Google Scholar] [CrossRef] [PubMed]
- Khorramian, K.; Sadeghian, P. Material characterization of GFRP bars in compression using a new test method. J. Test. Eval. 2021, 49, 1037–1052. [Google Scholar] [CrossRef] [Green Version]
- Banibayat, P.; Patnaik, A. Creep rupture performance of basalt fiber-reinforced polymer bars. J. Aerosp. Eng. 2015, 28, 04014074. [Google Scholar] [CrossRef]
- Solyom, S.; Balazs, G.L. Bond of FRP bars with different surface characteristics. Constr. Build. Mater. 2020, 264, 119839. [Google Scholar] [CrossRef]
- Ascione, L.; Gutierez, E.; Dimova, S.; Pinto, A.; Denton, S. Prospect for New Guidance in the Design of FRP.; Joint Research Centre European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Afifi, M.Z.; Mohamed, H.M.; Benmokrane, B. Strength and Axial Behavior of Circular Concrete Columns Reinforced with CFRP Bars and Spirals. J. Compos. Constr. 2014, 18, 1–9. [Google Scholar] [CrossRef]
- Hadhood, A.; Mohamed, H.M.; Benmokrane, B. Axial load–moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical. J. Compos. Constr. 2017, 21, 1–12. [Google Scholar] [CrossRef]
- Othman, Z.S.; Mohammad, A.H. Behaviour of eccentric concrete columns reinforced with carbon fibre-reinforced polymer bars. Adv. Civ. Eng. 2019, 1769213, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tobbi, H.; Farghaly, A.S.; Benmokrane, B. Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios. ACI Struct. J. 2014, 111, 375–386. [Google Scholar] [CrossRef]
- Tobbi, H.; Farghaly, A.S.; Benmokrane, B. Strength model for concrete columns reinforced with fiber-reinforced polymer bard and ties. ACI Struct. J. 2012, 111, 1–10. [Google Scholar]
- Issa, M.S.; Metwally, I.M.; Elzeiny, S.M. Structural performance of eccentrically loaded GFRP reinforced concrete columns. Int. J. Civ. Struct. Eng. 2011, 2, 395–406. [Google Scholar]
- Bakouregiu, A.S.; Mohamed, H.M.; Yahia, A.; Benmokrane, B. Axial load–moment interaction diagram of full-scale circular LWSCC columns reinforced with BFRP and GFRP bars and spirals: Experimental and theoretical investigations. Eng. Struct. 2021, 242, 112538. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Amin, F. Data for interaction diagrams of geopolymer for slender columns with double-layer GFRP and steel reinforcement. Data 2021, 6, 43. [Google Scholar] [CrossRef]
- Korentz, J. Nośność mimośrodowo ściskanych słupów betonowych ze zbrojeniem niemetalicznym (Bearing capacity of eccentrically compressed concrete columns with non-metallic reinforcement). Builder 2022, 297, 62–64. [Google Scholar] [CrossRef]
- Isleem, H.F.; Tayeh, B.A.; Alaloul, W.S.; Musarat, M.A.; Raza, A. Artificial neural network (ANN) and finite element (FEM) models for GFRP-reinforced concrete columns under axial compression. Materials 2021, 14, 7122. [Google Scholar] [CrossRef]
- Youssef, J.; Hadi, M.N.S. Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns. Constr. Build. Mater. 2017, 135, 550–564. [Google Scholar] [CrossRef] [Green Version]
- Korentz, J. Influence of geometric imperfections on buckling resistance of reinforcing bars during inelastic deformation. Materials 2020, 13, 3473. [Google Scholar] [CrossRef]
- Hales, T.A.; Pantelides, C.P.; Reaveley, L.D. Experimental evaluation of slender high-strength concrete columns with GFRP and hybrid reinforcement. J. Compos. Constr. 2016, 20, 04016050. [Google Scholar] [CrossRef]
- Won, J.P.; Park, C.G.; Kim, H.H.; Lee, S.W.; Jang, C.I. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete. Compos. Part B Eng. 2008, 39, 747–755. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.Z. Experimental and Theoretical Study of GFRP hoops and spirals in hybrid fiber reinforced concrete short columns. Mater. Struct. 2020, 53, 139. [Google Scholar] [CrossRef]
- Zadeh, H.J.; Nanni, A. Design of RC columns using glass FRP reinforcement. J. Compos. Constr. 2013, 17, 294–304. [Google Scholar] [CrossRef]
- Hadi, M.N.S.; Karim, H.; Sheikh, M.N. Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions. J. Compos. Constr. 2016, 20, 04016009. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Matta, F.; Nanni, A. Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial loading. ACI Struct. J. 2010, 107, 589. [Google Scholar]
- Dogan, G.; Arslan, M.H. Failure modes of RC columns under loading. Int. J. Sci. Eng. Res. 2016, 7, 1279–1300. [Google Scholar]
- Maekawa, K.; An, X. Shear failure and ductility of RC columns after yielding of main reinforcement. Eng. Fract. Mech. 2000, 65, 335–368. [Google Scholar] [CrossRef]
- Mari, A.R.; Hellesland, J. Lower slenderness limits for rectangular reinforced concrete columns. J. Struct. Eng. ASCE 2005, 131, 85–95. [Google Scholar] [CrossRef]
- Available online: https://softadvice.informer.com/Imbsen_Software_Systems.html (accessed on 10 January 2023).
- Chen, W.-F.; Atsuta, T. Theory of Beam Column. Volume 1: In-Plane Behaviour and Design; McGraw-Hill International Book Company: New York, NY, USA, 1977. [Google Scholar]
Strain Profile Number | |||
---|---|---|---|
1 | -ꚙ | m1 = 0 | |
2 | 0 | ||
3 | 1/6 | ||
4 | 7/27 | ||
5 | 7/17 | ||
6 | |||
7 | 3/4 | ||
8 | |||
9 | +ꚙ |
Strain Profile Number | |||
---|---|---|---|
1 | -ꚙ | ||
2 | 0 | ||
3 | 1/6 | ||
4 | 7/27 | ||
5 | 7/17 | ||
6 | |||
7 | 3/4 | ||
8 | |||
9 | +ꚙ |
Bar Type | GFRP | CFRP | ||
---|---|---|---|---|
Compression Bars | Yes | No | Yes | No |
n, m from (3) (4) | n = 0.342, m = 0.197 | |||
ω from (Figure 8a,b) | 0.200 | 0.400 | 0.200 | 0.400 |
ρ from (Figure 9) | 2.0% | 4.0% | 0.7% | 1.3% |
(Af1 + Af2) required from (12) | 29.2 cm2 | 58.4 cm2 | 10.2 cm2 | 18.9 cm2 |
(Af1 + Af2) provided | 2 × 5 ϕ 20 31.4 cm2 | 2 × 10 ϕ 20 62.8 cm2 | 2 × 3 ϕ 16 12.0 cm2 | 2 × 3 ϕ 20 18.8 cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korentz, J.; Czarnecki, W. Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars. Polymers 2023, 15, 1161. https://doi.org/10.3390/polym15051161
Korentz J, Czarnecki W. Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars. Polymers. 2023; 15(5):1161. https://doi.org/10.3390/polym15051161
Chicago/Turabian StyleKorentz, Jacek, and Witold Czarnecki. 2023. "Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars" Polymers 15, no. 5: 1161. https://doi.org/10.3390/polym15051161
APA StyleKorentz, J., & Czarnecki, W. (2023). Prediction of Ultimate Capacity of Concrete Columns Reinforced with FRP Bars. Polymers, 15(5), 1161. https://doi.org/10.3390/polym15051161